黄瓜中GA信号转导因子CsGAIP和CsGAMYB1的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis Sativus L.)属单性花植物,花的性别分化直接影响着增产潜力。前人已就黄瓜雌花发育的调控机制开展了较多研究,而雄花发育分子机制则一直被忽视,尚难全面了解黄瓜花芽性别发育的分子机制。赤霉素(GA)是重要的植物激素之一,可促进黄瓜雄花形成,但其作用机制尚不清楚。本文以雌雄同株型黄瓜为材料,通过时空表达、亚细胞定位和功能分析,研究了GA信号转导因子CsGAIP(负调节因子)和CsGAMYB1(正调节因子)对黄瓜雄花形成的调控机制,旨在丰富黄瓜花芽性别发育的理论基础。取得的主要结果如下:
     1、黄瓜CsGAIP属于DELIA家族的同源基因,其N端含有DELLA和、/HYNP两个保守域;时空表达分析表明,CsGAIP主要在黄瓜的茎和雄花芽处表达,而在雄花发育过程中,CsGAIP的表达量主要集中在初期的花序分生组织、花分生组织、维管束和两性期的萼片原基、花瓣原基、雄蕊原基、雌蕊原基以及后期的花粉母细胞、花粉囊壁、花粉粒中,且在两性期的表达量最高;亚细胞定位分析显示,CsGAIP蛋白定位于细胞核;通过在拟南芥中的功能验证,发现CsGAIP的异位表达可部分恢复双突变体rga-24/gai-t6的植株高度、雄蕊发育以及植物育性表型,同时可通过下调花官属性基因AP3和PI的表达抑制野生型拟南芥的雄蕊发育。
     2、黄瓜CsGAMYB1属于GAMYB家族的同源基因,其序列中含有一个R2R3重复序列以及3个GAMYB家族特有的保守元件Box1、Box2、Box3;时空表达分析表明,CsGAMYB1主要在黄瓜的雄花芽处表达,且外源GA3处理可上调其表达,而在花发育过程中,CsGAMYB1的表达主要分布在初期的花序分生组织、花分生组织和两性期的萼片原基、花瓣原基、雄蕊原基、雌蕊原基以及雄花的花粉母细胞、花粉囊壁、花粉粒中,而在雌花的子房中有微弱的表达;亚细胞定位分析显示,CsGAMYB1蛋白定位于细胞核;通过在拟南芥中的功能验证,发现CsGAMYB1能部分恢复双突变体myb33myb65中雄蕊发育异常和不育的表型,但其过量表达可导致野生型拟南芥的雄性不育,推测其作用机制中存在一种剂量依赖效应;此外,通过黄瓜遗传转化体系,获得了CsGAMYB1干扰转基因植株,与对照相比,干扰植株中的雄花节与雌花节之间的比例显著下降,但乙烯合成基因F、M和内源乙烯含量没有明显变化,表明CsGAMYB1可调节黄瓜的性别表达,而乙烯没有参与此调控过程。
Cucumber (Cucumis sativus L.) is a typical monoecious vegetable with individual male and female flowers, and the sex determination directly affects the product yield. Extensive studies have been performed previously on the mechanism of cucumber female flower development, while the molecular regulation of male flower development has been neglected, which greatly hinders the understanding of sex expression in cucumber. Gibberellin (GA) is an important plant hormone that can promote male flower formation in cucumber, but the regulatory mechanism remains elusive. In this study, two GA signaling factors, CsGAIP (a repressor of GA action) and CsGAMYB1(a positive regulator for GA signaling pathway), were identified from the monoecious cucumber. Through expression, subcellular localization and functional analyses, we researched the regulator mechanism of CsGAIP and CsGAMYB1in male flower formation of cucumber. The main results are as follows:
     CsGAIP belongs to DELLA family in cucumber, and it contains DELLA and VHYNP domains in the N-terminal region. CsGAIP is predominantly expressed in stems and male flower buds. During male flower development, CsGAIP RNA was found in the inflorescence meristem, floral meristem, vascular strands of the early stage, developing sepals, petals, stamens, carpels of the hermaphrodite stage and microsporocytes, anther wall, pollen grains of the later stages, while the expression in the hermaphrodite stage is the highest. Further, CsGAIP protein is localized in nucleus. Ectopic expression of CsGAIP can partially rescue the plant height, stamen development and fertility phenotypes of Arabidopsis rga-24/gai-t6mutant, as well as inhibit stamen development of wide-type Arabidopsis through transcriptional repression of floral homeotic genes APETALA3(AP3) and PISTILLATA (PI). CsGAMYB1belongs to GAMYB family in cucumber, and it contains an R2R3repeat domain and three conserved motifs Box1, Box2and Box3, which are typical structures in GAMYB family. CsGAMYB1is predominantly expressed in male flower buds of cucumber, where its expression is upregulated by GA3treatment. During flower development, CsGAMYB1RNA was found in the inflorescence meristem, floral meristem of the early stage and developing sepals, petals, stamens, carpels of the hermaphrodite stage. For male flowers, CsGAMYB1is predominately expressed in the microsporocytes, anther wall and pollen grains. For female flowers, the expression of CsGAMYB1is detected in the developing ovary, but the signal is weaker. Further, CsGAMYB1protein is localized in nucleus. CsGAMYB1can partially rescue stamen development and fertility phenotypes of Arabidopsis myb33myb65double mutant. However, overexpression of CsGAMYB1in wild-type Arabidopsis resulted in male sterility with dose-dependent manner. Besides, we generated the CsGAMYB1-RNAi transgenic plants in cucumber and found that knockdown of CsGAMYB1decreases the ratio of nodes with male and female flowers, but no effect on expression of F and M genes and ethylene production, suggesting that CsGAMYB1can regulate sex expression of cucumber, and ethylene is not involved in this process.
引文
王金祥,李玲,潘瑞炽.高等植物中赤霉素的生物合成及其调控.植物生理学通讯,2002,39(1):1-8
    白书农,许智宏.从“乙烯促雌”到“乙烯抑雄”:黄瓜单性花非正常器官发育命运研究的回顾.中国科学:生命科学,2010,40(6):469-475
    石琰璟,沙广利,束怀瑞.赤霉素生物合成及其分子机理研究进展.西北植物学报,2006,26(7):1482-1489
    李兴国,李全梓,张宪省.黄瓜性别决定的细胞学研究.山东农业大学学报(自然科学版),2001,32(4):411-417
    周明兵,汤定钦.高等植物赤霉素生物合成及其关键酶的研究进展.浙江林学院学报,2004,21(3):344-348
    姜仕豪,庞基良,王利琳,等.赤霉素促进花发育的分子机制.植物生理学通讯,2008,44(5):835-843
    柳美玲,丁莲,张小兰.蔬菜作物的RNA原位杂交技术.山西农业大学学报,2013,33(1):42-45
    袁高峰,赵普庆,孙海燕,等.黄瓜性器官发育过程中显微形态研究及雄花发育晚期SDS-PAGE分析.浙江大学学报(农业与生命科学版),2005,31(2):145-150
    程立宝,秦智伟,刘宏宇,等.黄瓜cs-acslg基因克隆及不同时空表达的研究.园艺学报,2005,32(5):75-78
    许传俊,李玲.GA信号转导.植物生理学通讯,2006,42(5):961-966
    谈心,马欣荣.赤霉素生物合成途径及其相关研究进展.应用与环境生物学报,2008,14(4):571-577
    赵志刚,柳美玲.黄瓜性别决定的分子机理研究进展.武汉纺织大学学报,2012,25(6):65-69
    陈惠明,卢向阳,许亮,等.黄瓜性别决定相关基因和性别表达机制.植物生理学通讯,2005,41(1):7-13
    陈学好,陈艳萍.一种新的花粉压片染色法.生物学杂志,2001,18(1):17
    陈学好,陈艳萍,金银根.黄瓜性器官败育的细胞学研究.扬州大学学报(农业与生命科学版),2003,24(2):68-71
    黄先忠,蒋才富,廖立力,等.赤霉素作用机理的分子基础与调控模式研究进展.植物学通报,2006,23(5):499-510
    Achard P, Baghour M, Chapple A, et al. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proceedings of the National Academy of Sciences of the United States of America,2007,104:6484-6489
    Achard P, Herr A, Baulcombe DC, et al. Modulation of floral development by a gibberellin-regulated microRNA. Development,2004,131:3357-3365
    Alonso-Peral MM, Li J, Li Y, et al. The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiology,2010,154:757-771
    Ariizumi T, Lawrence PK, Steber CM. The role of two F-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiology,2011,155:765-775
    Atsmon D, Tabbak C. Comparative effects of gibberellin, silver nitrate and aminoethoxyvinyl glycine on sexual tendency and ethylene evolution in the cucumber plant (Cucumis sativus L.). Plant, Cell and Environment,1979,20:1547-1555
    Aya K, Ueguchi-Tanaka M, Kondo M, et al. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell,2009,21:1453-1472
    B8rner A, Plaschke J, Korzun V, et al. The relationships between the dwarfing genes of wheat and rye. Euphytica,1996,89:69-75
    Bai SL, Peng YB, Cui JX, et al. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.). Planta,2004,220: 230-240
    Bai SN, Xu ZH. Cucumber unisexual flowers, sex and sex differentiation. International Review of Cell and Molecular Biology,2013,304:1-56
    Beyer E. Silver ion:a potent antiethylene agent in cucumber and tomato. Hortscience,1976,11: 195-196
    Bie BB, Pan JS, He HL, et al. Molecular cloning and expression analysis of the ethylene insensitive3 (EIN3) gene in cucumber (Cucumis sativus). Genetics and Molecular Research,2013,12: 4179-4191
    Blazquez MA, Green R, Nilsson O, et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell,1998,10:791-800
    Blazquez MA, Soowal L, Lee I, et al. LEAFY expression and flower initiation in Arabidopsis. Development,1997,124:3835-3844
    Boualem A, Troadec C, Kovalski I, et al. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two cucumis species. PLoS One,2009,4:e6144
    Cercos M, Gomez-Cadenas A, Ho THD. Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers:cis-and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant Journal,1999,19:107-118
    Cheng H, Qin LJ, Lee SC, et al. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development,2004,131:1055-1064
    Cheng H, Song S, Xiao L, et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genetics,2009,5: el000440
    Clough SJ, Bent AF. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal,1998,16:735-743
    Colombo N, Favret EA. The effect of gibberellic acid on male fertility in bread wheat. Euphytica,1996, 91:297-303
    Debeaujon I, Koornneef M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characterstics and embryonic abscisic acid. Plant Physiology,2000,122:415-424
    Dill A, Sun TP. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics,2001,159:777-785
    Dill A, Thomas SG, Hu JH, et al. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell,2004,16:1392-1405
    Eriksson S, Bohlenius H, Moritz T, et al. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell,2006,18:2172-2181
    Feng S, Martinez C, Gusmaroli G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature,2008,451:475-479
    Fleet CM, Sun TP. A DELLAcate balance:the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology,2005,8:77-85
    Fujita Y, Fujieda K. Relation between sex expression types and cotyledon etiolation of cucumber in vitro. I. On the role of ethylene evolved from seedlings. Plant, Cell and Environment,1981,22: 667-674
    Galun E. Gibberellic acid as a tool for the estimation of the time interval between physiological and morphological bisexuality of cucumber floral buds. Byton,1961a,16:57-62
    Galun E. Study of the inheritance of sex expression in the cucumber. The interaction of major genes with modifying genetic and non-genetic factors. Genetica,1961b,17:134-163
    Gocal GF, Poole AT, Gubler F, et al. Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiology,1999,119:1271-1281
    Gocal GF, Sheldon CC, Gubler F, et al. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiology,2001,127:1682-1693
    Griffiths J, Murase K, Rieu I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell,2006,18:3399-3414
    Gubler F, Kalla R, Roberts JK, et al. Gibberellin-regulated expression of a myb gene in barley aleurone cells:Evidence for Myb transactivation of a high-pI α-amylase gene promoter. Plant Cell,1995,7: 1879-1891
    Gubler F, Raventos D, Keys M, Watts, R., et al. Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant Journal,1999,17:1-9
    Hao YJ, Wang DH, Peng YB, et al. DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.). Planta,2003,217: 888-895
    Harberd NP, Belfield E, Yasumura Y. The angiosperm Gibberellin-GID1-DELLA growth regulatory mechanism:how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. Plant Cell,2009,21:1328-1339
    Harberd NP, Freeling M. Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics, 1989,121:827-838
    Hartweck LM. Gibberellin signaling. Planta,2008,229:1-13
    Hedden P, Kamiya Y. Gibberellin biosynthesis:enzymes, genes and their regulation. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:431-460
    Helliwell CA, Chandler PM, Poole A, et al. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America,2001,98:2065-2070
    Helliwell CA, Poole A, Peacock WJ, et al. Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiology,1999,119:507-510
    Helliwell CA, Sheldon CC, Olive MR, et al. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proceedings of the National Academy of Sciences of the United States of America,1998,95: 9019-9024
    Hemphill DD, Baker LR, Sell HM. Different sex phenotypes of Cucumis sativus L. and C. melo L. and their endogenous gibberellin activity. Euphytica,1972,21:285-291
    Hirano K, Asano K, Tsuji H, et al. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell,2010,22:2680-2696
    Hou X, Hu WW, Shen L, et al. Global identification of DELLA target genes during Arabidopsis flower development. Plant Physiology,2008,147:1126-1142
    Huang HY, Wang ZY, Cheng JT, et al. An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system. Scientia Horticulturae,2013,150:206-212
    Huang S, Li R, Zhang Z, et al. The genome of the cucumber, Cucumis sativus L. Nature Genetics,2009, 41:1275-1281
    Itoh H, Ueguchi-Tanaka M, Sato Y, et al. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell,2002,14,57-70
    Iuchi S, Suzuki H, Kim YC, et al. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGIDls completely shuts down a gibberellin signal. Plant Journal,2007,50:958-966
    Iwahori S, Lyons JM, William LS. Induced femaleness in cucumber by 2-chloroethanephosphonic acid. Nature,1969,222:271-272
    Jacobsen SE, Binkowski KA, Olszewski NE. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,1996,93:9292-9296
    Jacobsen SE, Olszewski NE. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiology,1991,97:409-414
    Jacobsen SE, Olszewski NE. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell,1993,5:887-896
    Kamachi S, Mizusawa H, Matsuura S, et al. Expression of two 1-aminocyclopropane-1-carboxylate synthase genes, CS-ACS1 and CS-ACS2, correlated with sex phenotypes in cucumber plants (Cucumis sativus L.). Plant Biotechnology,2000,17:69-74
    Kamachi S, Sekimoto H, Kondo N, et al. Cloning of a cDNAfor a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant, Cell and Environment,1997,38:1197-1206
    Kaneko M, Inukai Y, Ueguchi-Tanaka M, et al. Loss-of-function mutations of the rice GAMYB gene impair alpha-amylase expression in aleurone and flower development. Plant Cell,2004,16:33-44
    King KE, Moritz T, Harberd NP. Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA Genetics,2001a,159:767-776
    King RW, Evans LT. Gibberellins and flowering of grasses and cereals:prizing open the lid of the "florigen" black box. Annual Review of Plant Biology,2003,54:307-328
    King RW, Moritz T, Evans LT, et al. Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiology,2001b,127: 624-632
    Knopf RR, Trebitsh T. The female-specific Cs-ACSIG gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-l-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant, Cell and Environment,2006,47: 1217-1228
    Kranz HD, Denekamp M, Greco R, et al. Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant Journal,1998,16:263-276
    Kubicki B. Investigations on sex determination in cucumbers (Cucumis sativus L.) V. genes controlling intensity of femaleness. Genetica Polonica,1969,10:69-86
    Lange T. Molecular biology of gibberellin synthesis. Planta,1998,204:409-419
    Lee H, Suh SS, Park E, et al. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes & Development,2000,14:2366-2376
    Li Z, Huang S, Liu S, et al. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics,2009,182: 1381-1385
    Li Z, Wang S, Tao Q, et al. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.). Journal of Experimental Botany,2012,63:4475-4484
    Liu Z, Bao W, Liang W, et al. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. Journal of Integrative Plant Biology,2010,52:670-678
    Lohmann JU, Weigel D. Building beauty:the genetic control of floral patterning. Developmental Cell, 2002,2:135-142
    MacMurray AL, Miller CM. Cucumber sex expression modified by 2-chloroethanephosphonic acid. Science,1968,162:1397-1398
    Malepszy S, Niemirowicz-Szczytt K. Sex determination in cucumber(Cucumis sativus) as a model system for molecular biology. Plant Science,1991,80:39-47
    McGinnis KM, Thomas SG, Soule JD, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-Box subunit of an SCF E3 ubiquitin ligase. Plant Cell,2003,15:1120-1130
    Mibus H, Tatlioglu T. Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics,2004,109:1669-1676
    Millar AA, Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell,2005,17: 705-721
    Moon J, Suh SS, Lee H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant Journal,2003,35:613-623
    Mouradov A, Cremer F, Coupland G Control of flowering time:interacting pathways as a basis for diversity. Plant Cell,2002,14:S111-S130
    Murase K, Hirano Y, Sun TP, et al. Gibberellin-induced DELIA recognition by the gibberellin receptor GID1. Nature,2008,456:459-463
    Murray F, Kalla R, Jacobsen J, et al. A role for HvGAMYB in anther development. Plant Journal,2003, 33:481-491
    Nakajima M, Shimada A, Takashi Y, et al. Identification and characterization of Arabidopsis gibberellin receptors. Plant Journal,2006,46:880-889
    Olszewski N, Sun TP, Gubler F. Gibberellin signaling:biosynthesis, catabolism, and response pathways. Plant Cell (Supplement),2002,14:S61-S80
    Palatnik JF, Allen E, Wu X, et al. Control of leaf morphogenesis by microRNAs. Nature,2003,425: 257-263
    Peng J, Carol P, Richards DE, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development,1997,11:3194-3205
    Peng J, Richards DE, Hartley NM, et al.'Green revolution'genes encode mutant gibberellin response modulators. Nature,1999,400:256-261
    Peterson CE, Anhder LD. Induction of staminate flowers on gynoecious cucumbers with gibberellin A3. Science,1960,131:1673-1674
    Pharis RP, King RW. Gibberellins and reproductive development in seed plants. Annual Review of Plant Physiology,1985,36:517-568
    Pierce LK, Wehner TC. Review of genes and linkage groups in Cucumber. Hortscience,1990,25: 605-615
    Pike LM, Peterson CE. Gibberellin A4/A7, for induction of staminate flowers on the gynoecious cucumber (Cucumis sativus L.) Euphytica,1969,18:106-109
    Pimenta Lange MJ, Knop N, Lange T. Stamen-derived bioactive gibberellin is essential for male flower development of Cucurbita maxima L. Journal of Experimental Botany,2012,63:2681-2691
    Plackett AR, Ferguson AC, Powers SJ, et al. DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytologist,2014,201:825-836
    Plackett AR, Thomas SG, Wilson ZA, et al. Gibberellin control of stamen development:a fertile field. Trends in Plant Science,2011,16:568-578
    Reber M, Kaneta T, Kawaide H, et al. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant Journal,1999,17:241-250
    Richards DE, King KE, Ait-ali T, et al. How gibberellin regulates plant growth and development:a molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:67-88
    Romero I, Fuertes A, Benito MJ, et al. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant Journal,1998,14:273-284
    Rood SB, Pharis RP, Major DJ. Changes of endogenous gibberellin-like substances with sex reversal of the apical inflorescence of corn. Plant Physiology,1980,66:793-796
    Rudich J, Halevy AH, Kedar N. Ethylene evolution from cucumber plants as related to sex expression. Plant Physiology,1972a,49:998-999
    Rudich J, Halevy AH, Kedar N. The level of phytohormones in monoecious and gynoecious cucumbers as affected by photoperiod and ethephon. Plant Physiology,1972b,50:585-590
    Saito S, Fujii N, Miyazawa Y, et al. Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. Journal of Experimental Botany,2007,58: 2897-2907
    Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4:406-425
    Sasaki A, Itoh H, Gomi K, et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science,2003,299:1896-1898
    Schwab R, Palatnik JF, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Developmental Cell,2005,8:517-527
    Schwechheimer C. Understanding gibberellic acid signaling-are we there yet? Current Opinion in Plant Biology,2008,11:9-15
    Shannon S, De La Guardia MD. Sex expression and the production of ethylene induced by auxin in cucumber (Cucumis sativus L.). Nature,1969,223:186
    Silverstone AL, Chang CW, Krol E, et al. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant Journal,1997,12:9-19
    Silverstone AL, Ciampaglio CN, Sun TP. The Arabidopsis RGAgene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell,1998,10:155-169
    Simpson GG, Dean C. Arabidopsis, the rosetta stone of flowering time? Science,2002,296:285-289
    Smith MW, Yamaguchi S, Ait-Ali T, et al. The first step of gibberellin biosynthesis in pumpkin is catalyzed by at least two copalyl diphosphate synthases encoded by differentially regulated genes. Plant Physiology,1998,118:1411-1419
    Song S, Qi T, Huang H, et al. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Molecular Plant,2013,6:1065-1073
    Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology,2001,4:447-456
    Sun TP. Gibberellin-GIDl-DELLA:a pivotal regulatory module for plant growth and development. Plant Physiology,2010,154:567-570
    Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Current Biology,2011,21:R338-R345
    Sun TP, Goodman HM, Ausube FM. Cloning the Arabidopsis GA1 locus by genomic subtraction. Plant Cell,1992,4:119-128
    Sun TP, Gubler F. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology,2004,55:197-223
    Sun TP, Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell,1994,6:1509-1518
    Swain SM, Muller AJ, Singh DP. The gar2 and rga alleles increase the growth of gibberellin-deficient pollen tubes in Arabidopsis. Plant Physiology,2004,134:694-705
    Takahashi H, Jaffe MJ. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors. Phyton,1984,44:81-86
    Takahashi H, Suge H. Sex expression in cucumber plants as affected by mechanical stress. Plant, Cell and Environment,1980,21:303-310
    Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution,2011,28:2731-2739
    Trebitsh T, Rudich J, Riov J. Auxin, biosynthesis of ethylene and sex expression in cucumber (Cucumis sativus L.). Plant Growth Regulation,1987,5:105-113
    Trebitsh T, Staub JE, O'Neill SD. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiology,1997,113:987-995
    Tsuji H, Aya K, Ueguchi-Tanaka M, et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant Journal,2006,47:427-444
    Tyler L, Thomas SG, Hu JH, et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology,2004,135:1008-1019
    Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature,2005,437:693-698
    Ueguchi-Tanaka M, Nakajima M, Katoh E, et al. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELIA protein, SLR1, and gibberellin. Plant Cell,2007a,19:2140-2155
    Ueguchi-Tanaka M, Nakajima M, Motoyuki A, et al. Gibberellin receptor and its role in gibberellin signaling in plants. Annual Review of Plant Biology,2007b.58:183-198
    Varagona MJ, Schmidt RJ, Raikhel NV. Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell,1992,4:1213-1227
    Vierstra R. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in Plant Science,2003,8:135-142
    Wang DH, Li F, Duan QH, et al. Ethylene perception is involved in female cucumber flower development. Plant Journal,2010,61:862-872
    Wang H, Sui X, Guo J, et al. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant, Cell and Environment,2014,37:795-810
    Wild M, Daviere JM, Cheminant S, et al. The Arabidopsis DELIA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell,2012,24:3307-3319
    Willige BC, Ghosh S, Nill C, et al. The DELIA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell,2007,19: 1209-1220
    Willige BC, Isono E, Richter R, et al. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell,2011, 23:2184-2195
    Wilson R, Heckman JW, Somerville C. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology,1992,100:403-408
    Winkler RG, Freeling M. Physiological genetics of the dominant gibberellin-nonresponsive maize dwarfs, Dwarf8 and Dwarf9. Planta,1994,193:341-348
    Wittwer SH, Bukovac MI. Staminate flower formation on gynoecious cucumber as influenced by the various gibberellins. Naturwissenshaften,1962,49:305-306
    Wu J, Kong X, Wan J, et al. Dominant and pleiotropic effects of a GAI gene in wheat results from lack of interaction between DELIA and GID1. Plant Physiology,2011,157:2120-2130
    Xie Z, Kasschau KD, Carrington JC. Negative feedback regulation of Dicer-Likel in Arabidopsis by microRNA-guided mRNA degradation. Current Biology,2003,13:784-789
    Yamaguchi S. Gibberellin metabolism and its regulation. Annual Review of Plant Biology,2008,59: 225-251
    Yamaguchi S, Saito T, Abe H, et al. Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.). Plant Journal,1996,10:203-213
    Yamaguchi S, Sun TP, Kawaide H, et al. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiology,1998,116:1271-1278
    Yamasaki S, Fujii N, Matsuura S, et al. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant, Cell and Environment,2001,42:608-619
    Yamasaki S, Fujii N, Takahashi H.. Photoperiodic regulation of CS-ACS2, CS-ACS4 and CS-ERS gene expression contributes to the femaleness of cucumber flowers through diurnal ethylene production under short-day conditions. Plant, Cell and Environment,2003a,26:537-546
    Yamazaki Y, Fujii N, Takahashi H. Characterization of ethylene effects on sex determination in cucumber plants. Sexual Plant Reproduction,2003b,16:103-111
    Yang DL, Yao J, Mei CS, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America,2012,109:E1192-1200
    Yin T, Quinn JA. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). American Journal of Botany,1995,82:1537-1546
    Yu H, Ito T, Zhao Y, et al. Floral homeotic genes are targets of gibberellin signaling in flower development. Proceedings of the National Academy of Sciences of the United States of America, 2004,101:7827-7832
    Yu H, Xu Y, Tan EL, et al. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proceedings of the National Academy of Sciences of the United States of America,2002,99: 16336-16341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700