适应对猫外膝体细胞反应特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉系统对于连续的刺激会产生一种自我校准的机制,这种自我校准机制会使得视觉系统对输入信号中占优势的统计量产生适应。适应是视觉系统的一个普遍现象。自从适应现象被发现以来,人们就从心理物理学和生理学等方面对其进行了广泛的研究。适应之所以这样令人感兴趣主要有两个原因:一是由于适应产生的速度足够快,这样它就贡献于实时感觉信息处理;二是由于适应是研究正常神经组织可塑性的一种有用的工具。因此,适应也被称为心理物理学家的电极或探针。
     在生理学上,人们发现适应现象存在于视觉通路的各个阶段。最初,对适应的研究主要集中在初级视皮层区域。随着研究的深入,人们逐渐在视网膜、外侧膝状体(外膝体,lateral geniculate nucleus, LGN)和高级视皮层发现适应现象。在这些后来发现的适应现象中,研究的最为详尽的是视网膜上的适应。与此同时,人们在猴和猫上发现了一些知觉后效的神经基础:时间频率、空间频率、对比度、方位、方向和速度适应都逐步的被发现。
     在知觉上,适应能够形成各种各样的后效应。在生理学领域,人们研究适应的一个任务就是要找出这些后效应的生理学基础及其发生的位点。现在已了解方位适应是著名的倾斜后效应的生理学基础。人们在猫的皮层中已经观察到在方位适应后会排斥性的改变细胞的最优方位,从而得出倾斜效应起源于初级视皮层的观点。
     LGN通常被认为是视觉信息到皮层的一个被动的中继站。然而,近来的研究表明LGN可能扮演重要的作用:作为早期视觉通路上的“守门人”控制注意反应的增益和视知觉。这表明LGN在视觉通路上可能不仅仅是被动的传递视觉信息。因此,在这里我们研究了适应对猫LGN细胞反应特性的影响,这其中包括方位适应对高方位选择性的外膝体细胞反应特性的影响以及对比度适应对外膝体X和Y细胞反应影响的差异。
     1.方位适应对高方位选择性的外膝体细胞反应特性的影响
     对刺激方位适应通常被认为是皮层细胞的特性,很少有研究表明方位适应是否影响皮层下神经元的活动。先前的研究表明,LGN的一些神经元具有方位选择性,同时外膝体神经元也具有适应现象。这提示我们在具有高方位选择性的LGN细胞中可能发生方位适应并对外膝体细胞反应产生影响。
     同时,在中央视觉系统,每一阶段的神经元反应特性都受到更高阶段的反馈调节。对于猫和灵长类,视网膜输入仅占LGN中继细胞接收输入的10%左右,然而皮层反馈占据了接收输入的30%左右。先前的研究表明皮层反馈影响LGN神经元感受野的空间结构和中央周边交互作用,控制LGN神经元发放的时间同步性,提高视觉信息的传递。这提示了我们:皮层–外膝体反馈可能对LGN神经元方位适应有贡献。
     我们用单细胞记录技术和皮层冷冻使皮层失活的方法,在有、无皮层反馈的条件下研究了在麻醉、麻痹猫中方位适应对外膝体(LGN)高方位选择性神经元反应的影响。我们发现在用某一方位的刺激进行适应后,适应方位的反应下降,神经元的最优方位相对于适应方位发生排斥性改变。这个效应和在猫的初级视皮层观察到的方位适应效应相似,并且当适应方位处于相对于适应前最优方位的合适的位置时最显著。此外,当初级视皮层失活后,方位适应仍然能导致反应的下降,但是最优方位没有表现出系统的改变。这个结果表明皮层反馈对高方位选择性LGN细胞的方位适应效应有贡献。我们的数据提供了皮层丘脑循环如何调节视觉信息处理的一个例子,并提示LGN不仅仅是视觉通路上一个简单被动的中继站,它也参与了对视觉信息的调控。
     2.对比度适应对外膝体X和Y细胞不同的效应
     对比度适应是众所周知的心理物理现象。盯着高对比度刺激一段时间,会导致我们的对比敏感度就降低。对比度适应提供了两个潜在的好处:它能保护细胞不至于被高对比度刺激饱和;而且可以确保一个细胞的操作范围仅分布于特定图像中的对比度范围内。
     在电生理领域中,对比度适应首先在猫和灵长类的初级视皮层被发现,而早期的生理学研究在猫和猴的LGN很少发现对比度适应。这些结果把对比度适应严格限制在了初级皮层。然而,此后慢对比度适应在蝾螈、兔子和猴的视网膜上被发现。此外,人们重新评估皮层神经元的适应认为对比度适应差不多只发生在单眼视觉通路。这些发现提示对比度适应可能也发生在LGN水平。
     Solomon发现在猴的LGN中对比度适应主要影响M细胞而对P细胞影响很少。Duong的结果也从一个侧面提示了对比度适应现象可能在猫的LGN中也存在。然而,很少有实验证据表明在猫的外膝体中对比度适应是否对X和Y细胞有同样的效应。因此,我们用单细胞记录方法,在麻醉麻痹猫上研究了上述问题。我们发现对比度适应主要改变LGN细胞的对比度增益而很少影响细胞最大反应,同时对比度适应提高了LGN细胞的对比度检测阈值。Y细胞比X细胞表现出更大的对比度增益的改变从而表现出更强的对比度适应。而在对比度检测阈值提高方面,X和Y细胞没有显著的差异。我们的结果表明对比度适应在LGN细胞中是分离处理的,从而提供了视觉信息分离处理的例子。
Visual system will produce a self-calibration mechanism in a continuous work, and such a self-calibration mechanism will allow the visual system adapt to the dominated statistics component of the signal input. Adaptation is a common phenomenon in visual system. Since the adaptation phenomenon has been found, it has been studied comprehensively in psychophysics and physiology. Adaptation is of interesting for two reasons: one is that adaptation occurs rapidly enough to contribute to real time sensory information processing; another is that adaptation is a useful tool for studying the plasticity of normal issues. Therefore,adaptation is known as the electrode or probe of psychophysicist.
     In physiology, the adaptation phenomenon has been found at all levels of visual system. At first, adaptation studying focuses on the primary visual cortex. With the study going on, the adaptation phenomenon has gradually been found in retina, LGN and the advanced visual cortex.
     In perception, adaptation could bring about various after-effects. For physiology, one task of study is to find the physiological basis of these after-effects and the site of its occurring. Orientation adaptation is thought to be the physiological substrate of the well-known tilt after-effect (TAE). In primary cortex of cat, the observation of the repulsive shift of orientation preference after orientation adaptation leads to the view that the TAE originates from the V1.
     The LGN is often thought of as a passive relay of visual information to the cortex. However, recent studies have demonstrated that the LGN could play an important role as an early“gatekeeper”for controlling the gain of attentional responses and visual awareness. This suggested that LGN is not only a passive relay of visual information transmitting. Therefore, we studied the effects of adaptation on the responses properties of LGN cells, which include the effects of orientation adaptation on the responses properties of LGN cells with high orientation bias in cats and contrast adaptation has different effects on X and Y cells of the lateral geniculate nucleus.
     1. The effects of orientation adaptation on the responses properties of LGN cells with high orientation bias in cats
     Adaptation to stimulus orientation is assumed to have a cortical basis, but few studies have addressed whether it affects the activity of subcortical neurons. Previous studies demonstrated that some LGN neurons exhibited an orientation bias and also showed adaptation phenomena. In the light of these studies, it seems that orientation adaptation could have specific effects on the activities of LGN neurons with high orientation bias.
     In the central visual system, the properties of neurons at each stage are modulated by feedback from higher structures. For cats and primates, retinal afferents comprise 10% of the inputs to LGN relay cells, whereas corticofugal feedback comprises 30% of their inputs. Previous studies have shown that cortical feedback influences the spatial structure and centre-surround interaction of LGN receptive fields, controls temporal synchronization of LGN spiking activity. Thus, it is possible that corticogeniculate feedback contributes to the orientation adaptation of LGN neurons.
     Using single-unit recording and inactivating cortex by freezing, we studied the effects of orientation adaptation on the responses of lateral geniculate nucleus (LGN) neurons with high orientation bias in anesthetized and paralyzed cats under with feedback or without feedback condition. Following adaptation to one stimulus orientation, the response at the adapting orientation was decreased and the preferred orientation was shifted away from the adapting orientation. This phenomenon was similar to the effects observed for orientation adaptation in the primary visual cortex, and was obvious when the adapting orientation was at an appropriate location relative to the original preferred orientation. Moreover, when the primary visual cortex was inactivated, the response at the adapting orientation was also decreased but the preferred orientation did not show a systematic shift after orientation adaptation in LGN. This result indicates that cortical feedback contributes to the effect of orientation adaptation on LGN neurons, which have a high orientation bias. These data provide an example of how the corticothalamic loop modulates the processing of visual information, and suggest that the LGN is not only a simply passive relay but also a modulator of visual information.
     2. Contrast adaptation has different effects on X and Y cells of the lateral geniculate nucleus
     Contrast adaptation is well known psychophysical phenomenon. When we stare at a high contrast stimulus for a time, our subsequent contrast sensitivity will decrease. Contrast adaptation provides two potential benefits: it may protect a cell from saturation by high contrast stimuli and it may ensure that the operating range of a cell spans only the range of contrasts contained in a particular image.
     In electrophysiology, Contrast adaptation first has been found in primary cortex of cat and primate, and early physiological studies has found little contrast adaptation in the LGN of cat or monkey. These results would place contrast adaptation strictly into early cortex. However, a slow contrast adaptation has been found in the retina of salamander, rabbit, and macaque, and furthermore a reevaluation of adaptation in cortical neurons has concluded that contrast adaptation occurs almost exclusively in that part of the visual pathway which is monocular. These finding suggest contrast adaptation could occur at the level of LGN.
     Solomon et al have found contrast adaptation affects most on the M cells and little on the P cells in the LGN of macaque. Recently Duong’s results have also confirmed contrast adaptation phenomenon exists in LGN of cat from the other side. However, whether contrast adaptation has same effects on X and Y cells of lateral geniculate nucleus (LGN) of cat are not clear documented. Using single-unit recording, we here studied this issue in anesthetized and paralyzed cats. We found that contrast adaptation mostly shifted contrast gain of LGN cells, caused maximum response to change little, and increased the contrast detection threshold of LGN cells. Y cells express stronger contrast adaptation than X cells for contrast gain change. However, there was no significant difference between X and Y cells for the increase of contrast detection threshold. These results indicate contrast adaptation is separated to process by LGN cells and further provide an example of separate processing of visual information.
引文
Abbonizio G, Langley K, Clifford CW (2002) Contrast adaptation may enhance contrast discrimination. Spat Vis 16: 45-58.
    Abbott LF, Dayan P (1999) The effect of correlated variability on the accuracy of a population code. Neural Comput 11: 91-101.
    Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275: 220-224.
    Abraham WC, Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19: 126-130.
    Ahmed B, Allison JD, Douglas RJ, Martin KA (1997) An intracellular study of the contrast-dependence of neuronal activity in cat visual cortex. Cereb Cortex 7: 559-570.
    Ahmed B, Anderson JC, Douglas RJ, Martin KA, Nelson JC (1994) Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 341: 39-49.
    Albrecht DG, Farrar SB, Hamilton DB (1984) Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. J Physiol 347: 713-739.
    Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48: 217-237.
    Andolina IM, Jones HE, Wang W, Sillito AM (2007) Corticothalamic feedback enhances stimulus response precision in the visual system. Proc Natl Acad Sci U S A 104: 1685-1690.
    Attneave F (1954) Some informational aspects of visual perception. Psychol Rev 61: 183-193.
    Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry. Neuron 36: 909-919.
    Bair W, Movshon JA (2004) Adaptive temporal integration of motion in direction-selective neurons in macaque visual cortex. J Neurosci 24: 7305-7323.
    Barlow H (1990) A theory about the functional role and synaptic mechanisms of visual after-effects. In: Vision: Coding and Efficiency (Blakemore C, ed.), pp 363–375. New York: Cambridge Univ. Press,.
    Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Sensory Communication (WA R, ed.), pp 217–234. Cambridge MA: MIT Press.
    Barlow HB (1997) The knowledge used in vision and where it comes from. Philos Trans R Soc Lond B Biol Sci 352: 1141-1147.
    Barlow HB, Foldiak, P. (1989) Adaptation and decorrelation in the cortex. In: The ComputingNeuron, (Durbin R MC, Mitchinson G., ed.), pp 54–72. New York: Addison-Wesley.
    Barlow HB FP (1989) Adaptation and decorrelation in the cortex. In: The Computing Neuron, (Durbin R MC, Mitchinson G., ed.), pp 54–72. New York: Addison-Wesley.
    Barlow HB, Hill RM (1963) Evidence for a Physiological Explanation of the Waterfall Phenomenon and Figural after-Effects. Nature 200: 1345-1347.
    Barlow HB, Macleod DI, van Meeteren A (1976) Adaptation to gratings: no compensatory advantages found. Vision Res 16: 1043-1045.
    Baylis GC, Rolls ET (1987) Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Exp Brain Res 65: 614-622.
    Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc Natl Acad Sci U S A 94: 5411-5416.
    Blakemore C, Campbell FW (1969) Adaptation to spatial stimuli. J Physiol 200: 11P-13P.
    Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol 203: 237-260.
    Blakemore C, Sutton P (1969) Size adaptation: a new aftereffect. Science 166: 245-247.
    Bonds AB (1991) Temporal dynamics of contrast gain in single cells of the cat striate cortex. Vis Neurosci 6: 239-255.
    Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28: 157-189.
    Borst A, Flanagin VL, Sompolinsky H (2005) Adaptation without parameter change: Dynamic gain control in motion detection. Proc Natl Acad Sci U S A 102: 6172 - 6176.
    Boudreau CE, Ferster D (2005) Short-term depression in thalamocortical synapses of cat primary visual cortex. J Neurosci 25: 7179-7190.
    Bowling DB, Michael CR (1984) Terminal patterns of single, physiologically characterized optic tract fibers in the cat's lateral geniculate nucleus. J Neurosci 4: 198-216.
    Boyapati J, Henry G (1984) Corticofugal axons in the lateral geniculate nucleus of the cat. Exp Brain Res 53: 335-340.
    Boyapati J, Henry GH (1987) The duplex character of the corticofugal pathway from the striate cortex to the lateral geniculate complex of the cat. Vision Res 27: 723-726.
    Bradley A, Skottun BC, Ohzawa I, Sclar G, Freeman RD (1987) Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. J Neurophysiol 57: 755-772.
    Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26: 695-702.
    Briggs F, Usrey WM (2007) A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. J Neurosci 27: 5431-5436.
    Brown SP, Masland RH (2001) Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat Neurosci 4: 44-51.
    Buiatti M, van Vreeswijk C (2003) Variance normalisation: a key mechanism for temporal adaptation in natural vision? Vision Res 43: 1895-1906.
    Bullier J, Norton TT (1979) Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat. J Neurophysiol 42: 274-291.
    Butts DA, Goldman MS (2006) Tuning curves, neuronal variability, and sensory coding. PLoS Biol 4: e92.
    Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21: 47-74.
    Callaway EM, Sanes JR (2006) New technologies. Curr Opin Neurobiol 16: 540-542.
    Carandini M, Barlow HB, O'Keefe LP, Poirson AB, Movshon JA (1997) Adaptation to contingencies in macaque primary visual cortex. Philos Trans R Soc Lond B Biol Sci 352: 1149-1154.
    Carandini M, Ferster D (1997) A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276: 949-952.
    Carandini M, Heeger DJ, Movshon JA (1997) Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci 17: 8621-8644.
    Carandini M, Movshon JA, Ferster D (1998) Pattern adaptation and cross-orientation interactions in the primary visual cortex. Neuropharmacology 37: 501-511.
    Casagrande VA (1994) A third parallel visual pathway to primate area V1. Trends Neurosci 17: 305-310.
    Castelo-Branco M, Neuenschwander S, Singer W (1998) Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat. J Neurosci 18: 6395-6410.
    Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the temporal response characteristics of V1 cells. J Neurosci 18: 4785-4799.
    Chander D, Chichilnisky EJ (2001) Adaptation to temporal contrast in primate and salamander retina. J Neurosci 21: 9904-9916.
    Chechik G, Anderson MJ, Bar-Yosef O, Young ED, Tishby N, Nelken I (2006) Reduction of information redundancy in the ascending auditory pathway. Neuron 51: 359-368.
    Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributesto rapid adaptation of cortical sensory responses in vivo. Neuron 34: 437-446.
    Clifford CW (2002) Perceptual adaptation: motion parallels orientation. Trends Cogn Sci 6: 136-143.
    Clifford CW, Wenderoth P (1999) Adaptation to temporal modulation can enhance differential speed sensitivity. Vision Res 39: 4324-4332.
    Clifford CW, Wenderoth P, Spehar B (2000) A functional angle on some after-effects in cortical vision. Proc Biol Sci 267: 1705-1710.
    Clifford CW, Wyatt AM, Arnold DH, Smith ST, Wenderoth P (2001) Orthogonal adaptation improves orientation discrimination. Vision Res 41: 151-159.
    Cohn TE, Green DG, Tanner WP, Jr. (1975) Receiver operating characteristic analysis. Application to the study of quantum fluctuation effects in optic nerve of Rana pipiens. J Gen Physiol 66: 583-616.
    Compte A, Wang XJ (2006) Tuning curve shift by attention modulation in cortical neurons: a computational study of its mechanisms. Cereb Cortex 16: 761-778.
    Crowder NA, Price NS, Hietanen MA, Dreher B, Clifford CW, Ibbotson MR (2006) Relationship between contrast adaptation and orientation tuning in V1 and V2 of cat visual cortex. J Neurophysiol 95: 271-283.
    Cudeiro J, Sillito AM (1996) Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol 490 ( Pt 2): 481-492.
    Cudeiro J, Sillito AM (2006) Looking back: corticothalamic feedback and early visual processing. Trends Neurosci 29: 298-306.
    De Valois KK (1977) Spatial frequency adaptation can enhance contrast sensitivity. Vision Res 17: 1057-1065.
    Dealy RS, Tolhurst DJ (1974) Is spatial adaptation an after-effect of prolonged inhibition? J Physiol 241: 261-270.
    Dean I, Harper NS, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8: 1684-1689.
    DeBruyn EJ, Bonds AB (1986) Contrast adaptation in cat visual cortex is not mediated by GABA. Brain Res 383: 339-342.
    Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357: 219-240.
    Ding Y, Casagrande VA (1997) The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci 14: 691-704.
    Dow BM (1974) Functional classes of cells and their laminar distribution in monkey visual cortex.J Neurophysiol 37: 927-946.
    Dragoi V, Rivadulla C, Sur M (2001) Foci of orientation plasticity in visual cortex. Nature 411: 80-86.
    Dragoi V, Sharma J, Miller EK, Sur M (2002) Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nat Neurosci 5: 883-891.
    Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28: 287-298.
    Dragoi V, Sur M (2000) Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. J Neurophysiol 83: 1019-1030.
    Duong T, Freeman R (2007) Spatial Frequency Specific Contrast Adaptation Originates in the Primary Visual Cortex. J Neurophysiol.
    Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187: 517-552.
    Erisir A, Van Horn SC, Sherman SM (1997) Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc Natl Acad Sci U S A 94: 1517-1520.
    Fahle M, Poggio, T. (2002) Perceptual Learning. Cambridge, MA: MIT Press.
    Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412: 787-792.
    Felsen G, Shen YS, Yao H, Spor G, Li C, Dan Y (2002) Dynamic modification of cortical orientation tuning mediated by recurrent connections. Neuron 36: 945-954.
    Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4: 2379-2394.
    Finlayson PG, Cynader MS (1995) Synaptic depression in visual cortex tissue slices: an in vitro model for cortical neuron adaptation. Exp Brain Res 106: 145-155.
    Fitzpatrick D, Usrey WM, Schofield BR, Einstein G (1994) The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Vis Neurosci 11: 307-315.
    Fu YX, Djupsund K, Gao H, Hayden B, Shen K, Dan Y (2002) Temporal specificity in the cortical plasticity of visual space representation. Science 296: 1999-2003.
    Funke K, Nelle E, Li B, Worgotter F (1996) Corticofugal feedback improves the timing of retino-geniculate signal transmission. Neuroreport 7: 2130-2134.
    Geisler WS, Perry JS, Super BJ, Gallogly DP (2001) Edge co-occurrence in natural images predicts contour grouping performance. Vision Res 41: 711-724.
    Georgeson MA, Harris MG (1984) Spatial selectivity of contrast adaptation: models and data. Vision Res 24: 729-741.
    Giaschi D, Douglas R, Marlin S, Cynader M (1993) The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. J Neurophysiol 70: 2024-2034.
    Gibson J, Radner M (1937) Adaptation,aftereffect and contrast in the perception of tilted lines: I.Quantitative studies,. J Exp Psychol 20: 453-467.
    Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19: 679-686.
    Gilbert CD (1977) Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol 268: 391-421.
    Gilbert CD, Wiesel TN (1990) The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res 30: 1689-1701.
    Graham N (1989) Visual Pattern Analyzers. New York: Oxford.
    Green DM, Swets JA (1966) Signal detection theory and Psychophysics. New York: Wiley.
    Greenlee MW, Heitger F (1988) The functional role of contrast adaptation. Vision Res 28: 791-797.
    Grieve KL, Sillito AM (1991) The length summation properties of layer VI cells in the visual cortex and hypercomplex cell end zone inhibition. Exp Brain Res 84: 319-325.
    Grieve KL, Sillito AM (1995) Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. J Neurosci 15: 4868-4874.
    Guido W, Weyand T (1995) Burst responses in thalamic relay cells of the awake behaving cat. J Neurophysiol 74: 1782-1786.
    Gutfreund Y, Knudsen EI (2006) Adaptation in the auditory space map of the barn owl. J Neurophysiol 96: 813-825.
    Hammond P, Mouat GS (1988) Neural correlates of motion after-effects in cat striate cortical neurones: interocular transfer. Exp Brain Res 72: 21-28.
    Hammond P, Mouat GS, Smith AT (1988) Neural correlates of motion after-effects in cat striate cortical neurones: monocular adaptation. Exp Brain Res 72: 1-20.
    Harris RA, O'Carroll DC, Laughlin SB (2000) Contrast gain reduction in fly motion adaptation. Neuron 28: 595-606.
    Harvey AR (1980) A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. J Physiol 302: 507-534.
    Hawken MJ, Parker AJ, Lund JS (1988) Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey. J Neurosci 8: 3541-3548.
    He S, MacLeod DI (2001) Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature 411: 473-476.
    Hendry SH, Yoshioka T (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264: 575-577.
    Hietanen MA, Crowder NA, Price NSC, Ibbotson MR (2007) Influence of adapting speed on speed and contrast coding in the primary visual cortex of the cat. J Physiol 584: 451-462.
    Hillenbrand U, van Hemmen JL (2002) Adaptation in the corticothalamic loop: computational prospects of tuning the senses. Philos Trans R Soc Lond B Biol Sci 357: 1859-1867.
    Hochstein S, Shapley RM (1976) Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol 262: 265-284.
    Hochstein S, Shapley RM (1976) Quantitative analysis of retinal ganglion cell classifications. J Physiol 262: 237-264.
    Hol K, Treue S (2001) Different populations of neurons contribute to the detection and discrimination of visual motion. Vision Res 41: 685-689.
    Hosoya T, Baccus SA, Meister M (2005) Dynamic predictive coding by the retina. Nature 436: 71-77.
    Huang L, Chen X, Shou T (2004) Spatial frequency-dependent feedback of visual cortical area 21a modulating functional orientation column maps in areas 17 and 18 of the cat. Brain Res 998: 194-201.
    Hupe JM, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85: 134-145.
    Ibbotson MR (2005) Contrast and temporal frequency-related adaptation in the pretectal nucleus of the optic tract. J Neurophysiol 94: 136-146.
    Jin DZ, Dragoi V, Sur M, Seung HS (2005) Tilt aftereffect and adaptation-induced changes in orientation tuning in visual cortex. J Neurophysiol 94: 4038-4050.
    Jones HE, Andolina IM, Oakely NM, Murphy PC, Sillito AM (2000) Spatial summation in lateral geniculate nucleus and visual cortex. Exp Brain Res 135: 279-284.
    Jones HE, Grieve KL, Wang W, Sillito AM (2001) Surround suppression in primate V1. J Neurophysiol 86: 2011-2028.
    Jones HE, Wang W, Sillito AM (2002) Spatial organization and magnitude of orientation contrast interactions in primate V1. J Neurophysiol 88: 2796-2808.
    Jones HE, Wang, W., Andolina, I.M., Grieve, K. L., Salt, T. E. & Sillito, A.M. (2001) Spatial characteristics and laminar organisation of feedback effects from MT to V1. Soc Neurosci Abstr 27: 620.611.
    Jones HE, Wang, W., Andolina, I.M., Salt, T. E. & Sillito, A.M. (2002) MT feedback effects in the primate LGN. Soc Neurosci Abstr 28: 658.617.
    Jones HE, Wang, W., Salt, T. E. & Sillito, A.M. (2000) In?uence of enhanced MT feedback on the responses of cells in primate V1. Soc Neurosci Abstr 26: 162.110.
    Kaplan E, Benardete E (2001) The dynamics of primate retinal ganglion cells. Prog Brain Res 134: 17-34.
    Kastner S, Schneider KA, Wunderlich K (2006) Beyond a relay nucleus: neuroimaging views on the human LGN. Prog Brain Res 155: 125-143.
    Kim KJ, Rieke F (2001) Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J Neurosci 21: 287-299.
    Kim KJ, Rieke F (2003) Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. J Neurosci 23: 1506-1516.
    Knierim JJ, van Essen DC (1992) Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol 67: 961-980.
    Kohn A, Movshon JA (2003) Neuronal adaptation to visual motion in area MT of the macaque. Neuron 39: 681-691.
    Kohn A, Movshon JA (2004) Adaptation changes the direction tuning of macaque MT neurons. Nat Neurosci 7: 764-772.
    Kohn A, Whitsel BL (2002) Sensory cortical dynamics. Behav Brain Res 135: 119-126.
    Krekelberg B, Boynton GM, van Wezel RJ (2006) Adaptation: from single cells to BOLD signals. Trends Neurosci 29: 250-256.
    Krekelberg B, van Wezel RJ, Albright TD (2006) Adaptation in macaque MT reduces perceived speed and improves speed discrimination. J Neurophysiol 95: 255-270.
    Kristjansson A (2001) Increased sensitivity to speed changes during adaptation to first-order, but not to second-order motion. Vision Res 41: 1825-1832.
    Lamme VA (1995) The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci 15: 1605-1615.
    Latawiec D, Martin KA, Meskenaite V (2000) Termination of the geniculocortical projection in the striate cortex of macaque monkey: a quantitative immunoelectron microscopic study. J Comp Neurol 419: 306-319.
    Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11: 475-480.
    Lennie P (2003) The cost of cortical computation. Curr Biol 13: 493-497.
    Leopold DA, O'Toole AJ, Vetter T, Blanz V (2001) Prototype-referenced shape encoding revealedby high-level aftereffects. Nat Neurosci 4: 89-94.
    Levick WR, Thibos LN (1982) Analysis of orientation bias in cat retina. J Physiol 329: 243-261.
    Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4: 309-356.
    Maattanen LM, Koenderink JJ (1991) Contrast adaptation and contrast gain control. Exp Brain Res 87: 205-212.
    Maffei L, Fiorentini A, Bisti S (1973) Neural correlate of perceptual adaptation to gratings. Science 182: 1036-1038.
    Magnussen S, Johnsen T (1986) Temporal aspects of spatial adaptation. A study of the tilt aftereffect. Vision Res 26: 661-672.
    Manookin MB, Demb JB (2006) Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50: 453-464.
    Maravall M, Petersen RS, Fairhall AL, Arabzadeh E, Diamond ME (2007) Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol 5: e19.
    Marlin SG, Hasan SJ, Cynader MS (1988) Direction-selective adaptation in simple and complex cells in cat striate cortex. J Neurophysiol 59: 1314-1330.
    Marrocco RT, McClurkin JW, Young RA (1982) Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. J Neurosci 2: 256-263.
    McClurkin JW, Marrocco RT (1984) Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells. J Physiol 348: 135-152.
    McClurkin JW, Optican LM, Richmond BJ (1994) Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons. Vis Neurosci 11: 601-617.
    McCollough C (1965) Color Adaptation of Edge-Detectors in the Human Visual System. Science 149: 1115-1116.
    McLean J, Palmer LA (1996) Contrast adaptation and excitatory amino acid receptors in cat striate cortex. Vis Neurosci 13: 1069-1087.
    Miller EK, Desimone R (1994) Parallel neuronal mechanisms for short-term memory. Science 263: 520-522.
    Miller EK, Gochin PM, Gross CG (1991) Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque. Vis Neurosci 7: 357-362.
    Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurones. Nature 278: 850-852.
    Muller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285: 1405-1408.
    Murphy PC, Duckett SG, Sillito AM (1999) Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286: 1552-1554.
    Murphy PC, Duckett SG, Sillito AM (2000) Comparison of the laminar distribution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat. J Neurosci 20: 845-853.
    Murphy PC, Sillito AM (1987) Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329: 727-729.
    Murphy PC, Sillito AM (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci 16: 1180-1192.
    Nagel KI, Doupe AJ (2006) Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51: 845-859.
    Nelson SB (1991) Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. J Neurosci 11: 344-356.
    Nelson SB (1991) Temporal interactions in the cat visual system. III. Pharmacological studies of cortical suppression suggest a presynaptic mechanism. J Neurosci 11: 369-380.
    Neuenschwander S, Singer W (1996) Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379: 728-732.
    Nowak LG, Sanchez-Vives MV, McCormick DA (2005) Role of synaptic and intrinsic membrane properties in short-term receptive field dynamics in cat area 17. J Neurosci 25: 1866-1880.
    O'Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5: 1203-1209.
    Ohzawa I, Sclar G, Freeman RD (1982) Contrast gain control in the cat visual cortex. Nature 298: 266-268.
    Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat's visual system. J Neurophysiol 54: 651-667.
    Orban GA, Kennedy H, Bullier J (1986) Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. J Neurophysiol 56: 462-480.
    Pack CC, Conway BR, Born RT, Livingstone MS (2006) Spatiotemporal structure of nonlinear subunits in macaque visual cortex. J Neurosci 26: 893-907.
    Pack CC, Livingstone MS, Duffy KR, Born RT (2003) End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron 39: 671-680.
    Petersen SE, Baker JF, Allman JM (1985) Direction-specific adaptation in area MT of the owlmonkey. Brain Res 346: 146-150.
    Pouget A, Dayan P, Zemel RS (2003) Inference and computation with population codes. Annu Rev Neurosci 26: 381-410.
    Priebe NJ, Churchland MM, Lisberger SG (2002) Constraints on the source of short-term motion adaptation in macaque area MT. I. the role of input and intrinsic mechanisms. J Neurophysiol 88: 354-369.
    Priebe NJ, Lisberger SG (2002) Constraints on the source of short-term motion adaptation in macaque area MT. II. tuning of neural circuit mechanisms. J Neurophysiol 88: 370-382.
    Przybyszewski AW, Gaska JP, Foote W, Pollen DA (2000) Striate cortex increases contrast gain of macaque LGN neurons. Vis Neurosci 17: 485-494.
    Purpura K, Tranchina D, Kaplan E, Shapley RM (1990) Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells. Vis Neurosci 4: 75-93.
    Qian N, Andersen RA (1994) Transparent motion perception as detection of unbalanced motion signals. II. Physiology. J Neurosci 14: 7367-7380.
    Raiguel SE, Lagae L, Gulyas B, Orban GA (1989) Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Res 493: 155-159.
    Ramcharan EJ, Gnadt JW, Sherman SM (2000) Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis Neurosci 17: 55-62.
    Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87-103.
    Regan D, Beverley KI (1985) Postadaptation orientation discrimination. J Opt Soc Am A 2: 147-155.
    Reig R, Gallego R, Nowak LG, Sanchez-Vives MV (2006) Impact of cortical network activity on short-term synaptic depression. Cereb Cortex 16: 688-695.
    Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J Neurosci 20: 5392-5400.
    Rieke F (2001) Temporal contrast adaptation in salamander bipolar cells. J Neurosci 21: 9445-9454.
    Rieke F, Bodnar DA, Bialek W (1995) Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents. Proc Biol Sci 262: 259-265.
    Rieke F, Warland, D., de Ruyter van Steveninck, R. & Bialek, W. (1997) Spikes: Exploring the Neural Code. Cambridge, Massachusetts: MIT Press.
    Rieke F, Warland, D., de Ruyter van Steveninck, R., & Bialek, W. (1997) Spikes: Exploring the neural code. . Cambridge, MA: MIT Press.
    Ringo JL (1996) Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey. Behav Brain Res 76: 191-197.
    Robson JA (1983) The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat. J Comp Neurol 216: 89-103.
    Robson JA (1984) Reconstructions of corticogeniculate axons in the cat. J Comp Neurol 225: 193-200.
    Rockland KS, Knutson T (2000) Feedback connections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425: 345-368.
    Rowe MH, Fischer Q (2001) Dynamic properties of retino-geniculate synapses in the cat. Vis Neurosci 18: 219-231.
    Ruderman DL, Bialek W (1994) Statistics of natural images: Scaling in the woods. Phys Rev Lett 73: 814-817.
    Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20: 4286-4299.
    Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20: 4267-4285.
    Saul AB, Cynader MS (1989) Adaptation in single units in visual cortex: the tuning of aftereffects in the spatial domain. Vis Neurosci 2: 593-607.
    Saul AB, Cynader MS (1989) Adaptation in single units in visual cortex: the tuning of aftereffects in the temporal domain. Vis Neurosci 2: 609-620.
    Sawamura H, Orban GA, Vogels R (2006) Selectivity of neuronal adaptation does not match response selectivity: a single-cell study of the FMRI adaptation paradigm. Neuron 49: 307-318.
    Schiller PH, Finlay BL, Volman SF (1976) Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J Neurophysiol 39: 1288-1319.
    Schiller PH, Logothetis NK, Charles ER (1990) Functions of the colour-opponent and broad-band channels of the visual system. Nature 343: 68-70.
    Schwartz O, Hsu A, Dayan P (2007) Space and time in visual context. Nat Rev Neurosci 8: 522-535.
    Sclar G, Lennie P, DePriest DD (1989) Contrast adaptation in striate cortex of macaque. Vision Res 29: 747-755.
    Sclar G, Maunsell JH, Lennie P (1990) Coding of image contrast in central visual pathways of the macaque monkey. Vision Res 30: 1-10.
    Sekuler R, Pantle A (1967) A model for after-effects of seen movement. Vision Res 7: 427-439.
    Shapley R E-CC (1984) Visual adaptation and retinal gain control. Prog Ret Res: 263–346.
    Shapley R, Hochstein S (1975) Visual spatial summation in two classes of geniculate cells. Nature 256: 411-413.
    Shapley RM, Victor JD (1978) The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol 285: 275-298.
    Shapley RM, Victor JD (1979) Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. J Physiol 290: 141-161.
    Shapley RM, Victor JD (1981) How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. J Physiol 318: 161-179.
    Sharpee TO, Sugihara H, Kurgansky AV, Rebrik SP, Stryker MP, Miller KD (2006) Adaptive
    filtering enhances information transmission in visual cortex. Nature 439: 936-942.
    Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24: 122-126.
    Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76: 1367-1395.
    Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357: 1695-1708.
    Shin J (2001) Adaptation in spiking neurons based on the noise shaping neural coding hypothesis. Neural Netw 14: 907-919.
    Shin J, Koch C, Douglas R (1999) Adaptive neural coding dependent on the time-varying statistics of the somatic input current. Neural Comput 11: 1893-1913.
    Shipp S, Zeki S (1989) The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex. Eur J Neurosci 1: 309-332.
    Shipp S, Zeki S (1989) The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex. Eur J Neurosci 1: 333-354.
    Shou T, Li X, Zhou Y, Hu B (1996) Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings. Vis Neurosci 13: 605-613.
    Shou T, Ruan D, Zhou Y (1986) The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina. Exp Brain Res 64: 233-236.
    Shou TD, Leventhal AG (1989) Organized arrangement of orientation-sensitive relay cells in thecat's dorsal lateral geniculate nucleus. J Neurosci 9: 4287-4302.
    Sillito AM, Cudeiro J, Jones HE (2006) Always returning: feedback and sensory processing in visual cortex and thalamus. Trends Neurosci 29: 307-316.
    Sillito AM, Cudeiro J, Murphy PC (1993) Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res 93: 6-16.
    Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378: 492-496.
    Sillito AM, Jones HE (2002) Corticothalamic interactions in the transfer of visual information. Philos Trans R Soc Lond B Biol Sci 357: 1739-1752.
    Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369: 479-482.
    Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24: 1193-1216.
    Skottun BC, Bradley A, Sclar G, Ohzawa I, Freeman RD (1987) The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J Neurophysiol 57: 773-786.
    Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M (1997) Adaptation of retinal processing to image contrast and spatial scale. Nature 386: 69-73.
    Smith EL, 3rd, Chino YM, Ridder WH, 3rd, Kitagawa K, Langston A (1990) Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys. Vis Neurosci 5: 525-545.
    Smith MA, Bair W, Movshon JA (2006) Dynamics of suppression in macaque primary visual cortex. J Neurosci 26: 4826-4834.
    Snowden RJ, Treue S, Erickson RG, Andersen RA (1991) The response of area MT and V1 neurons to transparent motion. J Neurosci 11: 2768-2785.
    So YT, Shapley R (1979) Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction veolcities of their inputs. Exp Brain Res 36: 533-550.
    Solomon SG, Peirce JW, Dhruv NT, Lennie P (2004) Profound contrast adaptation early in the visual pathway. Neuron 42: 155-162.
    Soodak RE, Shapley RM, Kaplan E (1987) Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. J Neurophysiol 58: 267-275.
    Sowden PT, Rose D, Davies IR (2002) Perceptual learning of luminance contrast detection: specific for spatial frequency and retinal location but not orientation. Vision Res 42: 1249-1258.
    Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci 216: 427-459.
    Stocker AA S, EP. (2006) Sensory adaptation within a Bayesian framework for perception. In: dvances in Neural Information Processing Systems (Weiss Y SB, Platt J, ed.). Cambridge, MA: MIT Press.
    Stocker AA, Simoncelli EP (2006) Noise characteristics and prior expectations in human visual speed perception. Nat Neurosci 9: 578-585.
    Stocker AA, Simoncelli, E.P. (2006) Sensory adaptation within a Bayesian framework for perception. In: dvances in Neural Information Processing Systems (Weiss Y SB, Platt J, ed.). Cambridge, MA: MIT Press.
    Stratford KJ, Tarczy-Hornoch K, Martin KA, Bannister NJ, Jack JJ (1996) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature 382: 258-261.
    Strong SP, de Ruyter van Steveninck RR, Bialek W, Koberle R (1998) On the application of information theory to neural spike trains. Pac Symp Biocomput: 621-632.
    Sun C, Chen X, Huang L, Shou T (2004) Orientation bias of the extraclassical receptive field of the relay cells in the cat's dorsal lateral geniculate nucleus. Neuroscience 125: 495-505.
    Suzuki S (2001) Attention-dependent brief adaptation to contour orientation: a high-level aftereffect for convexity? Vision Res 41: 3883-3902.
    Swindale NV (1998) Orientation tuning curves: empirical description and estimation of parameters. Biol Cybern 78: 45-56.
    Teich AF, Qian N (2003) Learning and adaptation in a recurrent model of V1 orientation selectivity. J Neurophysiol 89: 2086-2100.
    Thompson KG, Leventhal AG, Zhou Y, Liu D (1994) Stimulus dependence of orientation and direction sensitivity of cat LGNd relay cells without cortical inputs: a comparison with area 17 cells. Vis Neurosci 11: 939-951.
    Thompson P, Burr D (2009) Visual aftereffects. Curr Biol 19: R11-14.
    Thompson PG, Movshon JA (1978) Storage of spatially specific threshold elevation. Perception 7: 65-73.
    Thomson AM, Deuchars J (1997) Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. Cereb Cortex 7: 510-522.
    Toib A, Lyakhov V, Marom S (1998) Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels. J Neurosci 18: 1893-1903.
    Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons incat and monkey visual cortex. Vision Res 23: 775-785.
    Tolias AS, Keliris GA, Smirnakis SM, Logothetis NK (2005) Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli. Nat Neurosci 8: 591-593.
    Truchard AM, Ohzawa I, Freeman RD (2000) Contrast gain control in the visual cortex: monocular versus binocular mechanisms. J Neurosci 20: 3017-3032.
    Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94: 719-723.
    Tsumoto T, Creutzfeldt OD, Legendy CR (1978) Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Exp Brain Res 32: 345-364.
    Tsumoto T, Suda K (1980) Three groups of cortico-geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex. J Comp Neurol 193: 223-236.
    Tusa RJ, Palmer LA, Rosenquist AC (1978) The retinotopic organization of area 17 (striate cortex) in the cat. J Comp Neurol 177: 213-235.
    Tusa RJ, Rosenquist AC, Palmer LA (1979) Retinotopic organization of areas 18 and 19 in the cat. J Comp Neurol 185: 657-678.
    Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6: 391-398.
    Usrey WM, Alonso JM, Reid RC (2000) Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J Neurosci 20: 5461-5467.
    Van Horn SC, Erisir A, Sherman SM (2000) Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol 416: 509-520.
    Van Wezel RJ, Britten KH (2002) Motion adaptation in area MT. J Neurophysiol 88: 3469-3476.
    Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17: 7926-7940.
    Vautin RG, Berkley MA (1977) Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. J Neurophysiol 40: 1051-1065.
    Vidyasagar TR (1990) Pattern adaptation in cat visual cortex is a co-operative phenomenon. Neuroscience 36: 175-179.
    Vidyasagar TR, Urbas JV (1982) Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46: 157-169.
    von Krosigk M, Monckton JE, Reiner PB, McCormick DA (1999) Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitorypostsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus. Neuroscience 91: 7-20.
    Wainwright MJ (1999) Visual adaptation as optimal information transmission. Vision Res 39: 3960-3974.
    Wainwright MJ, Schwartz, O., & Simoncelli, E. P. (2002) Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons. In: Probabilistic models of the brain: Perception and neural function. (R. Rao BO, &M. Lewicki, ed.). Cambridge, MA: MIT.
    Waleszczyk WJ, Bekisz M, Wrobel A (2005) Cortical modulation of neuronal activity in the cat's lateral geniculate and perigeniculate nuclei. Exp Neurol 196: 54-72.
    Wang W, Jones HE, Andolina IM, Salt TE, Sillito AM (2006) Functional alignment of feedback effects from visual cortex to thalamus. Nat Neurosci 9: 1330-1336.
    Wang W, Jones, H. E., Andolina, I.M., Salt, T. E. & Sillito, A.M. (2001) Focal activation of feedback from V1 to LGN shifts cell firing patterns between bursting and tonic modes. Soc Neurosci Abstr 27: 723.723.
    Wang XJ, Liu Y, Sanchez-Vives MV, McCormick DA (2003) Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J Neurophysiol 89: 3279-3293.
    Webster MA, Kaping D, Mizokami Y, Duhamel P (2004) Adaptation to natural facial categories. Nature 428: 557-561.
    Westheimer G, Gee A (2002) Orthogonal adaptation and orientation discrimination. Vision Res 42: 2339-2343.
    Wilson JR (1993) Circuitry of the dorsal lateral geniculate nucleus in the cat and monkey. Acta Anat (Basel) 147: 1-13.
    Wiser AK, Callaway EM (1996) Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex. J Neurosci 16: 2724-2739.
    Xu X, Ichida J, Shostak Y, Bonds AB, Casagrande VA (2002) Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? Vis Neurosci 19: 97-108.
    Xu Y, Li B, Li BW, Diao YC (2001) Adaptation of PMLS neurons to prolonged optic flow stimuli. Neuroreport 12: 4055-4059.
    Yang Y, Jin J, Zhou Y, Shou T (2003) GABA(A) and GABA(B) receptors mediated inhibition affect the pattern adaptation of relay cells in the dorsal lateral geniculate nucleus (LGNd) of cats. Brain Res 959: 295-303.
    Yeh C-I, Stoelzel CR, Weng C, Alonso J-M (2009) Functional consequences of neuronal divergence within the retinogeniculate pathway. J Neurophysiol: 91088.92008.
    Yu Y, Lee TS (2003) Dynamical mechanisms underlying contrast gain control in single neurons. Phys Rev E Stat Nonlin Soft Matter Phys 68: 011901.
    Zohary E (1992) Population coding of visual stimuli by cortical neurons tuned to more than one dimension. Biol Cybern 66: 265-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700