内源性光学成像及其图像处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑内源信号光学成像是近十几年发展起来的研究大脑皮层神经群体活动的成像方法。该方法具有较高的空间分辨率,主要应用于大脑皮层功能构筑的研究。脑内源信号光学成像是一种二次成像技术,其信号非常微弱并带有皮层生理结构所决定的信号特征。
     有效的空间滤波方式能对图像噪声进行抑制,使微弱信号能得以增强。本文针对脑内源信号光学成像,对所采集的图像结果使用不同的线性与非线性空间滤波处理,对不同滤波方法的噪声抑制程度和图像细节保存度进行讨论。结果显示非线性中值空域滤波对内源性光学图像的去噪效果明显,并能保留清晰的信号细节特征,是适于脑内源性光学成像信号特点的图像增强技术。
     通过对脑内源性光学信号噪声来源和皮层功能柱生理结构特征的讨论,对标准化处理后的功能图像进行二阶统计量分析。根据信号的空间结构特性提出了自适应的滤波窗口设计,对含有不同特征的区域分别采用不同的滤波窗口进行中值空域滤波处理。获得的图像结果去除噪声效果良好,并充分的保留了图像功能信号的细节。
     内源性光学信号不仅微弱,而且在穿过皮层组织时会发生扩散,使得图像存在一定程度的退化。通过选取功能柱区域与非功能柱区域像素进行联合求解高斯函数方程,得到内源性光学信号的点扩展函数的估计,并对内源性光学信号图像进行恢复。恢复图像的二阶统计量的分布形式表明,图像中功能柱区域的范围较处理前更为集中。利用此结果,以恢复后图像的二阶统计量作为阈值划分标准,对图像准确的分割提取出功能柱区域。
     经过去噪和反卷积恢复的功能图像,通过选取激活区域和非激活区域的像素分别进行时间过程对比分析,在结果中观察到一种全新的快速功能成份。通过对内源信号成像过程的血氧动力学的讨论,该快速成份可能表征的是皮层间相互抑制作用。
Optical imaging based on intrinsic signals is a newly emerged technology with highest spatial resolution among in vivo brain research. It is a useful technology for studying functional architecture of the cortex in a large scale. Optical imaging of intrinsic signals is a secondary image of the cerebral cortex. The weak optical signal is decided by anatomical structure of brain.
     The spatial filter is a powerful technology for de-noising and image enhancement. We used different linear filter and nonlinear to deal with optical imaging. Furthermore, we compared the degree of noise suppression and image details. Our result shows that nonlinear median filter can keep more image details with effective noise reduction. It is useful for image enhancement of optical imaging.
     For effectively extracting the endogenous weak optical signal, we analyzed the sources of noise and the signal characteristics in view of the anatomical structures of the brain. The present study explored the second-order statistical results of function image after preprocessing and presented an adaptive filter windows design. Our result shows that this algorithm can keep more image details with effective noise reduction.
     The present study explored the second-order statistical results of function image,and proposed an estimation method for the point spread function of endogenous optical signals based on select different pixels to solute Gauss equations. The second-order statistics of deconvolution results showed that this algorithm keep more details with function columns. The classification method for the threshold extracted from second-order statistical results of deconvolution image was proposed to ensure the accurate division of the activated functional orientation columns.
     Temporal analysis was used to different parts of function image that have been de-noised and deconvoluted. In timecourse curve, we found a new fast functional component. This fast component may show the inhibition of cortex, according to discussion of the results and hemodynamic of intrinsic signal.
引文
[1] A. Grinvald, RD. Frostig, E. Lieke, et al. Optical imaging of neuronal activity. Physiology Review,1988,68:1285~1365.
    [2] RD. Frostig, E. Lieke, D. Ts’o, et al. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,PNAS,1990,87:6082-6086.
    [3] T. Bonhoeffer, A. Grinvald, Optical imaging based on intrinsic signals: the methodology. In Brain Mapping: The methods (A.Toga and J.C.Maziotta,Eds.), Academic Press, San Diego, CA, 55-97, 1996.
    [4] VB. Mountcastle, Modality and Topographic Properties of Single Neurons of Cat's Somatic Sensory Cortex[J]. Journal of Neurophysiology,1957,20(4): 408–434 0505.
    [5] DH. Hubel, TN. Wiesel, Receptive Fields and Functional Architecture in Two Nonstriate Visual Areas (18 and 19) of the Cat[J]. J. Neurophysiol, 1965, 28: 229-289.
    [6] P. Nader, AS. Sameer, AM. Neil, et al. Shedding light on brain mapping: advances in human optical imaging[J].Trends Neurosci,2003,26:277-282.
    [7] CM. Niell, SJ. Smith, Live optical imaging of nervous system development. Annu Rev Physiol,2004,66:771-798.
    [8] A. Grinvald, Visualization of the spread of electrical activity in rat hippocampal slices by voltage sensitive optical probes. J Physiol,1982,333:269-291.
    [9] A. Grinvald, LB. Cohen, S. Lesher, and MB. Boyle. Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia, using a 124 element‘Photodiode’array. J. Neurophysiol., 1981, 45, 829-840
    [10] DK. Hill, RD. Keynes. Opacity changes in stimulated nerve. J.Physiol.,1949,108:278-281.
    [11] B. Chance, P. Cohen, F. Jobsis, et al. Intracellular oxidation reduction states in vivo. Science,1962,137:499-508.57
    [12] FF. Jobsis, JH. Keizer, JC. LaManna, et al. Reflectance spectrophotometry of cytochrome aa3 in vivo. J.Appl.Physiol.Respir.Environ.Exercise Physiol.,1977,43:858-872.
    [13] A. Grinvald. Functional architecture of cortex revealed by optical image of intrinsic signals. Nature,1986,324:361-364.
    [14] DY. Ts’o, RD. Frostig, E. Lieke, and A. Grinvald. Functional organization of primate visual cortex revealed by high resolution optical imaging, Science, 1990, 249, 417-420.
    [15] T. Bonhoeffer, and A. Grinvald. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns, Nature, 1991,353, 429-431.
    [16] T. Bonhoeffer, and A. Grinvald. The layout of Iso-orientation domains in area 18 of cat visual cortex: Optical Imaging reveals pinwheel-like organization, J. Neurosci., 1993, 13, 4157-4180.
    [17] T. Bonhoeffer, A. Kim, D. Malonek, D. Shoham, and A. Grinvald. The functional architecture of cat area 17. Eur. J. Neurosci. 1995, 7, 1973-1988.
    [18] A. Das, and CD. Gilbert. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex Nature, 1995, 375(6534), 780-4.
    [19] A. Das, and CD. Gilbert. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 1997,387, 594-8
    [20] D. Malonek, RBH. Tootell, A. Grinvald. Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT. Proc. R. Soc. Lond. B, ( 994, 258, 109-119.
    [21] A. Shmuel, and A. Grinvald. Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci. 1996, 16, 6945-6964.
    [22] D. Shoham, M. Hubener, A. Grinvald, and T. Bonhoeffer. Spatio-temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex. Nature, 1997, 385, 529-533.
    [23] DY. Ts’o, CD. Gilbert, TN. Wiesel. Orientation selectivity of and interactions between color and disparity subcompartments in area V2 of Macaque monkey, Neurosci. Abstr. 1991, 431(7)
    [24] R. Malach, RBH. Tootell, and D. Malonek. Relationship between orientation Domains, Cytochrome Oxidase Stipes and intrinsic horizontal connections in Squirrel monkey area V2. Cerebral Cortex, 1994, 4, 151-165.
    [25] GM. Ghose, AW. Roe, DY. Ts’o. Features of functional organization within primate V4, Neurosci. Abstr. 1994,350(10).
    [26] D. Malonek, RBH. Tootell, A. Grinvald. Optical imaging reveals the functional architecture of neuronsprocessing shape and motion in owl monkey area MT. Proc. R. Soc. Lond. B, 1994, 258, 109-119.
    [27] R. Malach, TD. Schirman, M. Harel, RBH. Tootell, and D. Malonek. Organization of intrinsic connections in owl monkey area MT. Cerebral Cortex, 1997, 7, 386-393.
    [28] G. Wang, K. Tanaka, M. Tanifuji. Optical imaging of functional organization in Macaque inferotemporal cortex, Neuroscience Abstr. 1994,138(10), 316.
    [29] E. Bartfeld, and A. Grinvald. Relationships between orientation preference pinwheels, cytochrome oxidase blobs and ocular dominance columns in primate striate cortex. Proc. Natl. Acad. Sci. USA ,1992, 89:11905-11909.
    [30] A. Das, and CD. Gilbert. Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex Nature, 1995, 375(6534), 780-4.
    [31] A. Das, and CD. Gilbert. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 1997, 387, 594-8
    [32] D. Shoham, A. Grinvald. Visualizing the cortical representation of single fingers in primate area S1 using intrinsic signal optical imaging, Abstracts of the Israel Society for Neuroscience,1994, 3, 26.
    [33] A. Grinvald, M. Segal, U. kuhnt, R. Hildesheim, A. Manker, L. Anglister, and JA. Freeman. Real-time optical mapping of neuronal activity in vertebrate CNS in vitro and in vivo. Soc. Gen. Physiol. Ser. 1986, 40: 165-197.
    [34] PM. Gochin, P. Bedenbaugh, JJ. Gelfand, GG. Gross, GL. Gerstein. Intrinsic signal optical imaging in the forepaw area of rat somatosensory cortex, PNAS, 1992, 89(17), 8381-8383.
    [35] RD. Frostig, SA. Masino, MC. Kwon. Characterization of functional whisker representation in rat barrel cortex: Optical imaging of intrinsic signals vs. single-unit recordings, Neurosci. Abstr. 1994, 566(8).
    [36] JS. Bakin, MC. Kwon, SA. Masino, NM. Weinberger, RD. Frostig. Tonotopic organization of guinea pig auditory cortex demonstrated by intrinsic signal optical imaging through the skull, Neurosci. Abstr. 1993, 582(11).
    [37] A. Hess, H. Scheich. Tonotopic organization of auditory cortical fields of the Mongolian Gerbil 2DG labeling and optical recording of intrinsic signals, Neurosci. Abstr. 1994, 141 (5).
    [38] VH. Harrison, Harel, A. Kakigi, E. Raveh, and RJ. Mount. Optical imaging of intrinsic signals in chinchilla auditory cortex. Audiol Neurootal, 1998, 3, 214-223.
    [39] A. Grinvald, RD. Frostig, RM. Siegel, and E. Bartfeld. High resolution optical imaging of neuronal activity in awake monkey, PNAS, 1991, 88, 11559-11563.
    [40] N. Vnek, BM. Ramsden, CP. Hung, PS. Goldman-Rakic, AW. Roe. Optical imaging of functional domains in the awake behaving monkey. Soc. Neurosci.Abstr. 1998, Vol. 24, (1137).
    [41] E. Shtoyerman, I. Vanzetta, S. Barabash, A. Grinvald. Spatio-temporal characteristics of oxy and deoxy hemoglobin concentration changes in response to visual stimulation in the awake monkey. Soc. Neurosci. Abstr. 1998, Vol. 24, (10).
    [42] DM. Rector, GR. Poe, P. Redgrave, and RM. Harper. CCD video camera for high sensitivity light measurements in freely behaving animals full source. J. of Neuro. Metho., 1997, 78, 85-91.
    [43] DS. Kim, T. Bonhoeffer. Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex, Nature, 1994, 370, 370-372.
    [44] B. Chapman, T. Bonhoeffer. Chronic optical imaging of the development of orientation domains in ferret area 17, Soc. Neurosci. Abstr., 1994, 20, 98(2), 214.
    [45] B. Chapman, T. Bonhoeffer. Overrepresentation of horizontal and vertical orientation preference in developing ferret area-17. Proceedings of the national academy of science of the United States of America, 1998, 95, 2609-2614.
    [46] T. Bonhoeffer, I. Goedecke. Kittens with alternating monocular experience from birth develop identical cortical orientation preference maps for left and right eye, Soc. Neurosci. Abstr. 1994, 20, 98(3), 215.
    [47] MC. Crair, DG. Gillespie, and MP. Stryker. The role of visual experience in the development of columns in cat visual cortex. Science, 1998, 279, 566-570
    [48] MC. Crair, ES. Ruthazer, DC. Gillespie. Stryker-MP Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J-Neurophysiol., 1997, Jun, 77(6)
    [49] MC. Crair, ES. Ruthazer, DC. Gillespie. Stryker-MP Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats. Neuron. Aug, 1997, 19(2), 307-18
    [50] L. Sirovich, RM. Everson.Management and analysis of large scientific data sets.Int J Supercomp Appl,1992,6:50-68.
    [51] S. Schuett, T. Bonhoeffer, M. Hübener. Mapping of retinotopy in rat visual cortex by combined linear extraction and principle component analysis of optical imaging data.Eur J Neurosci, 2000,12(Suppl 11):74.
    [52] M. Gabbay, C. Brennan, E. Kaplan, et al. A principle components-based method for the detection of neuroal acticity maps:application to optical imaging.NeuroImage,2000,11:313-325.
    [53] A. Sornborger, C. Saistad, E. Kaplan, et al. Spatiotemporal analysis of optical imaging data. NeuroImage,2003, 18(3):610-621.
    [54] AJ. Bell, Sejnowski. An information-maximization approach to blind separation and blind deconvolution.Neural Compt,1995,7:1129-1159.
    [55] M. Stetter, I. Schiessl, T. Otto, et al. Principal component analysis and blind sepatation of sources for optical imaging og intrinsic signals.NeuroImage,2000,11:482-490.
    [56] I. Schiessl, W. Wei, N. McLoughlin. Independent components of the haemodynamic response in intrinsic optical imaging.NeuroImage,2008,39:634-646.
    [57]俞洪波,寿天德.基于内源信号的脑光学成像系统的研制.生物物理学报, 1999, 21 ( 3) : 597- 604.
    [58]俞洪波,寿天德.脑光学成像术揭示的猫初级视皮层方位倾向性效应.生理学报, 2000, 52, 431- 434。
    [59]俞洪波,寿天德.用脑光学成像术研究不同空间拓扑位置猫初级视皮层的空间频率反应特性.生理学报, 2000, 52 ( 5) : 411- 415.
    [60]俞洪波,刑大军,寿天德.脑内源信号光学成像术:视皮层的方位功能柱的活体显示.中国神经科学杂志, 2000, 16, 352- 359
    [61]李明,刘亚东,胡德文.刺激调制下的低频自发振荡信号时空分析,科学通报, 2007, 52(7):803-810
    [62]黄晓斌,胡德文,刘亚东.脑功能光学成像的迭代广义指示函数分析法,电子学报, 2006, 34(4): 664-669
    [63]寿天德主编,神经生物学,第二版.北京:高等教育出版社,2006.
    [64] D. Attwell, SB. Laughlin. An energy budget for signaling in the grey matter of the brain.J Cereb Blood Flow Metab,2001,21:1133–1145.
    [65] CW. Roy, CS. Sherrington. On the regulation of the blood supply of the brain, J.physiol. (London),1890,11:85-108.
    [66] I. Vanzetta, and A. Grinvald. Increased cortical oxidative metabolism due to sensory stimulation:Implications for functional brain imaging.Science,1999,286:1555-1558。
    [67] RD. Frostig, EE. Lieke, DY. Ts’o, et al. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by vivio high-resolution optical imaging of intrinsic signals.Proc Natl Acad Sci,USA,1990,87:6082-6086.58
    [68] SA. Sheth, M. Nemoto, M. Guiou, et al. Linear and Nonlinear Relationships between Neuronal Activity, Oxygen Metabolism, and Hemodynamic Responses. Neruon, 2004, 42:347-355
    [69] http: //omlc.ogi.edu/spectra/hemoglobin/summary.html
    [70] I. Schiel. Blind source separation algorithms for the analysis of optical imaging experiments, Doctor Dissertation,Germany:Technical University of Berlin,2001.
    [71] SM. Narayan, P. Esfahani, AJ. Blood, et al. Functional increases in cerebral blood volume over somatosensory cortex.Journal of Cerebral Blood Flow&Metabolism,1995,15:754-765.
    [72] J. Mayhew, S. Askew, Y. Zheng, J.Porrill, GW. Westby, P. Redgrave, DM. Rector, RM. Harper. Cerebral vasomotion:A 0.1-Hz oscillation in reflected light imaging of neural activity. NeuroImage, 1996,4:183-193.
    [73] SA. Sheth, M. Nemoto, M. Guiou, et al. Linear and nonlinear relationships between neuronal activity,oxygen metabolism,and hemodynamic responses,Neuron,2004, 42:347-355.
    [74] A. Hess, D. Stiller, T. Kaulisch, et al. New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex,J.Neurosci.,2000,20:3328–3338.
    [75] T. Masino, and EI. Knudsen. Orienting head movements resulting from electrical microstimulation of the brainstem tegmentum in the barn owl,The Journal of Neuroscience, 1993, 13:351-370.
    [76] A. Grinvald, C. Gilbert, R. Frostig, et al. Functional architecture of the cortex revealed by optical imaging of intrinsic signals,Nature,1986,324:361-364.
    [77] M. Li, Chen, M. Robert, Anna Friedman, Optical imaging of a tactile illusion in area3b of the primary somatosensory cortex.Science,2003,302:881-885.
    [78] AF. Cannestra, N. Pouratian, SY. Bookheimer, et al. Temporal spatial differences observed by functional MRI and human intraoperative optical imaging,Cerebral Cortex,2001,11:773–782.
    [79] SM. Narayan, P. Esfahani, AJ. Blood, et al. Functional increases in cerebral blood volume over somatosensory cortex.Journal of Cerebral Blood Flow&Metabolism,1995,15:754-765.
    [80] A. Grinvald. In-vivo optical imaging of cortical architecture and dynamics, in Modern Techniques in Neuroscience Research, U. Windhorst and H. Johansson, Editors. 1999, Springer-Verlag: Berlin.p.893-969.
    [81]夏永泉,徐洁,崔伟均值滤波中邻域均值的快速计算.郑州轻工业学院学报, 2008, 23(3): 57-59.
    [82]王文远基于图像信噪比选择优化高斯滤波尺度.电子与信息学报, 2009, 31(10): 2483-2487.
    [83] JAE. Lim, Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ, Prentice Hall, 1990: 548.
    [84] JW. Tukey, Nonlinear methods for smoothing data. Proc of EASCON' 74, 1974: 673-681.
    [85] YH. Lee, SA. Kassam. Generalized median filtering and related nonlinear filtering techniques. IEEE Trans Acoustics, Speech and Signal Processing, 1985, 33(3): 672-683.
    [86]王晓凯,李锋改进的自适应中值滤波.计算机工程与应用, 2010, 46(3): 175-176.
    [87]屈稳太,诸静图像小波变换中的两个关键技术——滤波器的正则性与信号的边界处理.浙江大学学报(工学版), 2003,39(27): 185-189.
    [88] M. Li, YD. Liu, GY. Feng, et al. OI and fMRI Signal Separation Using Both Temporal and Spatial Autocorrelations. IEEE trans. Biomedical Engineering, 2010, 57(8): 1917-1926.
    [89] A. Grinvald. Functional architecture of cortex revealed by optical image of intrinsic signals. Nature, 1986, 324: 361-364.
    [90] T. Bonhoeffer, A. Grinvald. Optical imaging based on intrinsic signals: the methodology. In: Brain mapping: the methods (Toga A, Mazziotta JC, eds), 1996, 55–97. San Diego: Academic
    [91] A. Grinvald, RD. Frosting. Optical imaging of neuronal activity. Physiol Rev. 1988,64: 1285-1366.
    [92] A. Grinvald, RD. Frosting. High resolution optical imaging of neuronal activity in awake monkey. PNAS. 1991,88: 11559-11563.
    [93] JW. Tukey. Nonlinear methods for smoothing data. Proc of EASCON' 74, 1974: 673-681.
    [94] YH. Lee, SA. Kassam. Generalized median filtering and related nonlinear filtering techniques.IEEE Trans Acoustics, Speech and Signal Processing, 1985, 33(3) : 672-683.
    [95] RC. Gonzalez, RE. Woods. Digital image processing. 2nded. New Jersey: Prentice-Hal, 2001.
    [96] H. Lin, AN. Willson.. Median filter with adaptive length .IEEE Trans Circuits and Systems, 1988, 35(6): 675-690.
    [97] H. Hwang, RA. Haddad.Adaptive median filters: New algorithms and results. IEEE Trans Signal Processing, 1995, 4(4): 499-502.
    [98]吕成淮,何小海,陶青川,张敏.图像复原中高斯点扩展函数参数估计算法研究.计算机工程与应用, 2007,43(10): 31-34.
    [99] CD. Claxton, RC. Staunton. Measurement of the point spread function of a noisy imaging system. Journal of the Optical Society of American: Optics, Image Science, and Vision, 2008, 25(1): 1592170.
    [100] K. Vishwakumara, JB. Martens. Estimation of perceived image blur using edge features. International Journal of Imaging Systems and Technology, 1996, 7: 102- 109.
    [101] JH. Elder, SW. Zucker. Local scale control for edge detection and blur estimation. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20( 7) : 699- 716.
    [102]吴俊芳,刘桂雄,韦宁.散焦含噪图像的点扩散函数估计与边缘检测.华南理工大学学报(自然科学版), 2010,38(6): 118-121
    [103] RD. Frostig, EE. Lieke, DY. Ts’o, and A. Grinvald. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. Proc. Natl. Acad. Sci. USA 1990, 87, 6082-6086.
    [104] SS. Kety, WM. Landau, WH. Freygang, LP. Rowland, L. Sokoloff. Estimation of regional circulation in the brain by uptake of an inert gas, American Physiological Society Abstr. 1955, 85.
    [105] NA. Lassen, DH. Ingvar. The blood flow of the cerebral cortex determined by radioactive krypton, Experimentia Basel, 1961, 17, 42-43.
    [106] L. Sokoloff. Relation between physiological function and energy metabolism in the central nervous system. J. Neurochem. 1977, 19, 13-26.
    [107] ME. Raichle, WRW. Martin, P. Herscovitz, MA. Minton, JJ. Markham. Brain blood flow measured with intravenous H2(15)0. II. Implementation and validation, J. Nucl. Med. 1983, 24(9), 790-798.
    [108] PT. Fox, MA. Mintun, ME. Raichle, FM. Miezin, JM. Allman, and DC. van Essen. Mapping human visual cortex with positron emission tomography. Nature, 1986, 323, 806-809
    [109] ZM. Shen, WF. Xu, CY. Li, Cue-invariant detection of centre–surround discontinuity by V1 neurons in awake macaque monkey. J Physiol, 2007, 583(2):581–592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700