猫纹状皮层神经元感受野和整合野的突触机制及细胞形态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用在体全细胞记录技术,结合细胞内染色的方法,研究了猫纹状皮层神经元不同类型感受野和整合野的突触特性,以及相关神经元的形态学特征。
    在本文第一部分,讨论了我们实验室建立的一种新的全细胞记录方法。此方法的关键是不打开硬脑膜,先用胶原酶(collagenase)将其软化,使玻璃微电极能够穿过。此方法能有效地减弱由心跳和呼吸引起的脑波动,同时又能减少皮层表面的细胞直接受外界环境的影像,从而获得长时间稳定的胞内记录和胞内注射,并极大地简化了通常胞内记录所必须的繁杂手术准备。从细胞内记录和胞内染色的结果可以看出,用胶原酶软化硬脑膜对皮层神经元的功能和形态均无影响。
    第二部分用上述在体胞内记录技术研究了视皮层内兴奋性和抑制性回路在方位调谐加工中的作用。在全细胞记录状态下,多数皮层细胞的静息膜电位可以达到-30到-60mV,并可清晰地观察到被记录细胞的兴奋性突触后电位(EPSPs)、抑制性突触后电位(IPSPs)和动作电位(AP)。在用不同方位的正弦调制光栅刺激感受野时,膜电位也呈现与刺激频率相同的正弦形波动。表现为膜电位去极化,主要由复合的EPSP构成,也包含少数IPSP。根据此波动的振幅与刺激方位的关系,可以测出视皮层神经元输入端(PSPs)的方位调谐曲线。同样,根据AP频率与刺激方位的关系,可以测出视皮层神经元输出端的方位调谐曲线。将同一神经元的输入和输出曲线进行比较可以看出,经过视皮层内神经回路加工以后,方位调谐曲线的宽度变窄,调谐特性被明显地锐化。为了阐明这种锐化作用的机制,我们进一步分析了视皮层神经元的调制传递函数,观察到在输入和输出信号之间,存在着一种指数函数关系。这说明方位调谐的锐化取决于皮层神经元的非线性传递特性。在对比度调谐和空间频率调谐的加工过程中,皮层神经元的这种非线性机制也同样起到了锐化作用。
    第三部分在在体全细胞记录的过程中,通过给细胞施加去极化或超极化电流,可以改变细胞的发放活动。据此我设计实验让细胞在去极化,超极化和正常状态下接受长时间的非最佳方位光栅刺激,考查细胞的方位和方向选择特性是否会发生可塑性变化。结果发现细胞的方位方向调谐特性确实会发生一些变化,但细胞的个体差异很大。
    
    
    第四部分用在体全细胞记录方法研究了整合野与感受野之间相互作用的突触机制。分别用正弦光栅刺激感受野和/或整合野,用一种统计学方法定量地测量被记录细胞的EPSP和IPSP的变化。在用最佳光栅同时刺激感受野易化型整合野时,记录到的EPSP增加,细胞的膜平均电位水平被去极化,但主要改变的成分因细胞而异;在用最佳光栅同时刺激感受抑制型型整合野时,记录到的细胞平均膜电位趋向超极化,同样被改变的成分因细胞各异,有的EPSP减少,有的IPSP成分加强,有的膜电位波动幅度减小,有的电位分布整体向超极化移动。提示整合野的作用可能涉及多种机制。
    第五部分用细胞内注射生物胞素(biocytin)染色的方法,研究了不同类型整合野神经元的细胞形态学及其与功能的关系。易化型整合野神经元多数为多棘锥体细胞,胞体和树突野较大;树突棘密度高,多为粗短型;轴突分枝广泛,分布范围包括多个皮层层次,在II、III层可见到大范围的水平分支和间隔400-700?m的簇状分布。抑制型整合野神经元为少棘锥体细胞或非锥体细胞;胞体和树突野较小,树突棘少而稀疏,多为纤细型;轴突分枝极少,有的是以单一纤维形式直接投射到白质内。
The synaptic properties of classical receptive field (CRF) and integration field (IF) of cat's striate cortical neurons and their morphological features were investigated using the whole cell recording and intracellular staining techniques in vivo. In part I of this thesis, a new approach of the whole cell recording method developed by our laboratory is discussed. The core of this method is to remain the dura intact. To ensure the penetration of glass microelectrode, dura mater was softened by collagenase. A continuous positive pressure was applied during penetration to keep electrode clean of tissue debris. When the tip of the electrode was finally resting on the cell membrane, the positive pressure was released and a small negative pressure was applied to the electrode for the formation of a seal. This method can effectively minimize cardiopulmonary pulsations of the brain and remain the intracellular recordings and injections stable for an hour or two without performing a pneumothorax preparation. Cortical neurons had well-preserved morphological state and normal electrophysiological properties after dura mater was treated by the enzyme.
    In part II, the effects of intracortical excitatory and inhibitory circuitries on the orientation selectivity were studied using the in vivo whole cell recording technique. Under this condition, the resting membrane potentials of most neurons were between -30 and -60 mV, and the EPSPs, IPSPs and action potentials (AP) were clearly observed. When a sinusoidal luminance grating moving across the simple cell's receptive field, all the cells tested responded with periodic fluctuations in their membrane potentials at the temporal frequency of the visual stimulus. The
    
    fluctuations were mostly due to periodic depolarization of membrane potential resulted from the summed EPSPs, which were occasionally interrupted by individual IPSPs. Orientation tuning of the cells can be deduced from the input signals, i.e., the amplitude of EPSPs and from the output signals, the firing frequency of AP, respectively. By comparing the tuning width of the input and output tuning curves, it is shown that the orientation selectivity is sharpened after being processed by the intracortical connection. To explore the mechanisms of this sharpening process, we analysed the transfer function of cortical neurons. An exponential transfer characteristic was observed between the synaptic input and the cell's output. This non-linear transformation of cortical neurons may underlie the sharpening of orientation tuning properties. This mechanism was also involved in the sharpening of the other selectivities of visual attributes. On the other hand, the amplitude of summed IPSPs was also modulated by the visual stimulation. In most cases, the IPSPs reached maximum at the optimal orientation, implying an effect of enhancing temporal and spatial precision.
    In part III, the synaptic plasticity of orientation and direction selectivity of simple cells in primary visual cortex was studied. We use hyperpolarize and depolarize current to change the membrane potential and discharge activity of the cells, paired with selected orientation drifting grating stimulation. The subsequent orientation tuning properties were examined. We found the optimal orientation and direction shifted not only related to the polarity of the current paired with training orientation.
    In part IV, synaptic mechanisms of the interaction between the CRF and IF were investigated using the whole cell recording technique in vivo. The probability of depolarization and hyperpolarization of membrane potential was counted when CRF and/or IF were stimulated by the drifting sinusoidal gratings. When an optimal grating moved across the facilitatory both the CRF and IF, the amplitude and frequency of EPSPs increased and the membrane potential depolarized. The mechanisms and components of the changes in membrane potential may differ in different cells. Similarly, stimulating the inhibitory IF induced increase of the amplitude and frequency of IPSPs or supp
引文
1. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv 391, 85-100.
    2. Sakmann, B., and Neher, E. (1983). Single-channel recording. New York: Plenum Press.
    3. Pei, X., Volgushev, M., Vidyasagar, T., and Creutzfeldt, O. (1991). Whole cell recording and conductance measurements in cat visual cortex in vivo. Neurorep. 2, 485-488.
    4. Ferster, D., and Jagadeesh, B. (1992). EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12, 1262-1274.
    5. Krause WJ, Cutts JH. Meninges. In: Gardner J N, Vaughn V M (Eds), Concise text of histology (second edition), 1986 pp:166-167, Baltimore: Williama & Wilkins
    6. Mandl I, Zipper H, Ferguson LT. Clostridium histolyticum collagenase: its purification and properties. Arch Biochem Biophys 1958 74: 465-475
    7. Seifter S, Grallop PM, Klein L, Meilman E. Studies on collagen.Ⅱ. Properties of purified collagenase and its inhibition. J Biol Chem 1959 234(2): 285-293
    8. Yutaka N. Collagenase digestion of collagen. J Biochem (Tokyo) 1961 51: 486-492
    9. Lasfargues EY. Cultivation and behavior in vitro of the normal mammary epithelium of the adult mouse. Anat Rec 1957 127: 117-129
    10.Freshney RI. Collagenase. In: Culture of animal cells-A manual of basic technique (second edition), 1987 pp:122-124 New York: Alan R. Liss, Inc.
    11.Huttner WB, Meyermann R, Neuhoff V, Althaus HH. Neurochemical and morphological studies of bulk isolated rat brain cells. II. Preparation of viable cerebral neurons which retain synaptic complexes. Brain Res 1979 171(2):225-37
    12.Kim SU, Warren KG, Kalia M. Tissue culture of adult human neurons.
    
    Neurosci Lett 1979 11(2):137-41
    13.Kaneda M, Nakamura H, Akaike N. Mechanical and enzymatic isolation of mammalian CNS neurons. Neurosci Res 1988 5(4):299-315
    14.Hubel DH and Wiesel TN. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond), 160, 106-154.
    15.Hubel DH and Wiesel TN. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229-289.
    16.Hubel DH and Wiesel TN. (1968). Receptive fields and functional architecture of monkey stiate cortex. J. Physiol. (Lond.), 195, 215-243.
    17. Chapman B, Zahs KR, Stryker MP. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J Neurosci 1991 11(5):1347-58
    18. Reid RC, Alonso JM. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 1995 378(6554):281-4
    19. Ferster D, Chung S, Wheat H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 1996 380(6571):249-52
    20. Hubel, D.H., and Wiesel, T.N. (1963). Receptive fields of cells instriate cortex of very young, visually inexperienced kittens. J. Neurophysiol.26, 994-1002.
    21. Fregnac, Y., and Imbert, M. (1978). Early development of visual cortical cells in normal and dark-reared kittens: relationship between orientation selectivity and ocular dominance. J. Physiol. Lond. 278,27-44.
    22. Crair, M.C., Gillespie, D.C., and Stryker, M.P. (1998). The role of visual experience in the development of columns in cat visual cortex. Science 279, 566-570.
    23. Blakemore, C., and Cooper, G.F.D. (1970). Development of the brain depends on the visual environment. Nature 228, 477-478.
    24. Sengpiel, F., Stawinski, P., and Bonhoeffer, T. (1999). Influence of experience on orientation maps in cat visual cortex. Nat. Neurosci. 2, 727-732.
    25. Hartline HK. The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Am J Physiol 1938 121:400-415
    
    
    26. Dreher B. Hypercomplex cells in the cat's striate cortex. Invest Ophthalmol 1972 11:355-356
    27. Bishop PO & Henry GH. Striate neurons: receptive field concepts. Invest Ophthalmol 1972 11:346-354
    28. Rose D. Responses of single units in cat visual cortex to moving bars of light as a function of bar length. Journal of Physiology London 1977 271:1-23
    29. Orban GA, Kato H & Bishop PO. End-zone region in receptive fields of hypercomplex and other striate neurons in the cat. Journal of Neurophysiology 1979a 42:818-832
    30.Orban GA, Kato H & Bishop PO. Dimensions and properties of end-zone inhibitory areas in receptive fields of hypercomplex cells in the cat striate cortex. J Neurophysiol 1979b 42:833-849
    31. Blakemore C & Tobin EA. Lateral inhibition between orientation detectors in the cat's visual cortex. Experimental Brain Research 1972 15:439-440
    32. Bishop PO, Coombs JS & Henry GH. Receptive fields of simple cells in the cat striate cortex. Journal of Physiology, London 1973 231:31-60
    33. Albus K and Fries W. Inhibitory sidebands of complex receptive fields in the cat's striate cortex. Vision Res. 1980 20:369-372
    34. Jones BH. Response of single neurons in cat visual cortex to a simple and more complex stimus. Am J Physiol. 1970 218:1102-1107
    35. Nelson JI and Frost BJ. Orientation selective inhibition from beyond the classic visual receptive field. Brain Res 1978 139:359-365
    36. Nelson JI and Frost BJ. Intracortical facilitation among co-oriented co-axially aligned simple cells in cat striate cortex. Exp Brain Res 1985 61:54-61
    37.De Valois RL, Thorell LG and Albrecht DG. Periodicity of striate-cortex-cell receptive field. J Opt Soc Am A 1985 2:1115-1122
    38. Li CY and Li W. Extensive integration field beyond the classical receptive field of cat's striate cortical neurons-classification and tuning properties. Vision Res,1994 34(18):2337-2355
    39.Li CY. Unresponsive field beyond the classical receptive field -- Organization and functional properties. News In Physiological Sciences 1996 11:181-186
    40.Li CY, Lei JJ and Yao HS. Shift in Speed Selectivity of Visual Corical Neurons: A NeuraBasis of Perceived Motion Contrast. Proc Natl Acad
    
    Sci USA 1999a 96:4052-4056
    41. 李武, 李朝义:猫纹状皮层神元整合野的形状和范围。生理学报 1995 47: 111-119
    42.李朝义,李武:猫纹状皮层神经元整合野亚区结构和亚区间空间总合特性。中国科学1996 26(1): 54-60
    43.Li CY, Qiu FT, Xu W F. Spatial summation properties and classification of integration fields in V2 neurons of awake monkey. (in preparation)
    44. Fernald R & Chase E. An improved method for plotting retinal landmarks and focusing the eye. Vision Res 1971 11: 95-96
    45. Sholl DA. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 1953 87:387-407
    46. Gilbert CD, Wiesel TN. Morphology and intracortical projections of functionally characterized neurons in the cat visual cortex. Nature Lond 1979 280:120-125
    47. Ferster D. Orientation selectivity of synaptic potentials in cat primary visual cortex. J Neurosci 1986 6:1284-1301
    48.Ferster D. Origin of orientation-selective EPSPs in simole cells of cat visual cortex. J Neurosci 1987 7:1780-791
    49. Jagadeesh B, Gray CM and Ferster D. Visually evoked oscilations of membrane potential in cells of cat visual cortex. Science 1992 257:552-554
    50. Levick WR, Thibos LN. Orientation bias of cat retinal ganglion cells. Nature. 1980 Jul 24;286(5771):389-90.
    51. Vidyasagar TR and Urbas JV. Orientation selectivity of cat LGN neurons with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 1982 46:157-169
    52. Soodak RE, Shapley RM and Kaplan E. Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. J Neurophysiol 1987 58:267-275
    53. Shou TD, Leventhal AG. Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus. J Neurosci 1989 9(12):4287-302
    54. Douglas RJ, Koch C, Mahowald M. Martin KAC and Suarez HH. Recurrent excitation in neocortical circuits. Science 1995 269:981-985
    55. Douglas RJ, Martin KA, Whitteridge D. An intracellular analysis of the visual responses of neurones in cat visual cortex. J Physiol (Lond) 1991 440:659-96
    56. Vidyasagar TR, Pei X and Volgushev M. Multiple mechanisms underlying
    
    the orientation selectivity of visual cortical neurons. Trends Neurosci 1996 19:272-277
    57. T'so DY, Gilbert CD and Wiesel TN. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 1986 6:1160-1170
    58. Gilbert CD and Wiesel TN. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 1989 9:2432-2442
    59. Douglas RJ, Martin KA, Whitteridge D. Selective response of visual cortical cells do not depend on shunting inhibition. Nature 1988 332:642-644
    60. Muller, J.R., Metha, A.B., Krauskopf, J., and Lennie, P. (1999). Rapid adaptation in visual cortex to the structure of images. Science 285, 1405-1408.
    61. Dragoi, V., and Sur, M. (2000). Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. J. Neurophysiol. 83, 1019-1030.
    62.Fregnac, Y., Shulz, D., Thorpe, S., and Bienenstock, E. (1988). A cellular analogue of visual cortical plasticity. Nature 333, 367-370.
    63. Fregnac, Y., Shulz, D., Thorpe, S., and Bienenstock, E. (1992). Cellular analogs of visual cortical epigenesis. I. Plasticity of orientation selectivity. J. Neurosci. 12, 1280-1300.
    64. McLean, J., and Palmer, L.A. (1998). Plasticity of neuronal response properties in adult cat striate cortex. Vis. Neurosci. 15, 177-196.
    65. Bringuier V, Chavane F, Glaeser L, Fregnac Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 1999 283(5402):695-9
    66. Shaw C, Cynader M (1986) Laminar distribution of receptors in monkey (Macaca fascicularis) geniculostriate system.J Comp Neurol 1986 Jun 248:301-12
    67. Takayuki Murakoshi, Si-Young Song, Shiro Konishib, Tsutomu Tanabe (2001) Multiple G-protein-coupled receptors mediate presynaptic inhibition at single excitatory synapses in the rat visual cortex. Neuroscience Letters 309:117-120
    68. Fisken RA, Garey LJ and Powell TP. The intrinsic association and commissural connections of area 17 on the visual cortex. Philos Trans R Soc Lund Ser B Biol Sci 1975 272:487-536
    
    
    69. Creutzfeldt OD, Garey LJ Kuroda R and Wolff JR. The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp Brain Res 1977 27:419-440
    70. Gilbert CD, Wiesel TN. Clustered intrinsic connections in cat visual cortex. J Neuosci 1983 3:1116-1133
    71. Rocland KS and Lund JS. Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 1982 215:1532-1534
    72.Rocland KS and Lund JS. Intrinsic laminar lattice connections in the primate visual cortex. J Comp Neurol 1983 216:303-318
    73.Martin KA, Whitteridge D. Form, function and intracortical projections of spiny neurons in the striate visual cortex of the cat. J Physiol Lond 1984a 353:463-504
    74.Kisvarday ZF, Martin KAC, Freund TF, Magloczky Z, Whitteridge D and Somogyi P. Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res 1986 64:541-552
    75.Kisvarday ZF, Cowey A, Smith AD and Somogyi P. Interlaminar and lateral excitatory amino acid connections in the striate cortex of monkey. J Neurosci 1989 9:667-682
    76.Kisvarday ZF and Eysel UT. Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17). Neuroscience 1992 46:275-286
    77. Hirsch JA & Gilbert CD. Synaptic physiology of horizontal connections in the cat's visual cortex. J Neurosci 1991 11:1800-1809
    78. Allman J, Miezin F and McGuinness E. Stimulus specific responses from beyond the classical receptive field, neurophysiological mechanisms for local-global comparisons in visual neurons. Ann Rev Neurosci 1985 8:407-430
    79. Salin PA and Bullier J. Corticocortical connections in the visual system: Structure and function. Physiol Rev 1995 75:107-154
    80. Victor AF Lamme, Hans Super and Henk Spekreijse. Feedforward, horizontal, and feed back processing in the visual cortex. Curr Opin Neurobiol 1998 8:529-535
    81.Bringuier V, Chavane F, Glaeser L, Fregnac Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 1999 283(5402):695-9
    82. Levay S, Gilbert CD. Laminar patterns of geniculocortical projection in the cat. Brain Rres 1976 113:1-19
    83 Ahmed B, Anderson JC, Douglas RC, Martin KAC and Nelson JC.
    
    Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 1994 341:39-49
    84.Colonnier M. The tangential organization of the cortex. J Anat 1964 98:327-344
    85. Elston GN, Rosa MG. Morphological variation of layer III pyramidal neurones in the occipitotemporal pathway of the macaque monkey visual cortex. Cereb Cortex. 1998 Apr-May;8(3):278-94.
    86. Hirsch JA, Gallagher CA, Alonso JM, Martinez LM. Ascending projections of simple and complex cells in layer 6 of the cat striate cortex. J Neurosci 1998 18(19):8086-94
    87. Fisken RA, Garey LJ and Powell TP. The intrinsic association and commissural connections of area 17 on the visual cortex. Philos Trans R Soc Lund Ser B Biol Sci 1975 272:487-536
    88. Lund JS, Yoshioka T and Levitt JB. Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. Cerebral Cortex 1993 3:148-162
    89.Livingstone MS and Hubel DH. Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 1984 4:309-356
    90. Yabuta NH, Callaway EM. Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1. Vis Neurosci 1998 15(6):1007-27
    91. T'so DY and Gilbert CD. The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 1988 8:1712-1727
    92. Hata Y, Tsumoto T, Sato H and Tamura H. Horizontal interactions between visual cortical neurons studied by cross-correlation analysis in the cat. J Physiol Lond 1991 441:593-614
    93. Amorim AK, Picanco-Diniz CW. Morphometric analysis of intrinsic axon terminals of Cebus monkey area 17. Braz J Med Biol Res 1996 29(10):1363-8
    94. Qian N, Sejnowski TJ. When is an inhibitory synapse effective? Proc Natl Acad Sci USA 1990 87:8145-8149
    95. Koch C, Zador A. The function of dendritic spines devices subserving biochemical rather than electrical compartmentalization. J Neurosci 1993 13:413-422
    96. Gabbott PLA, Martin KAC and Whitteridge D. Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 1987 259:364-381
    
    
    97. McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN. Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol 1991 305(3):370-92
    98. Somogyi P and Cowey A. Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 1981 195:547-566
    99. De Lima AD and Morrison JH. Ultrastructural analysis of somatostain -immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey. J Comp Neurol 1989 283:212-227
    100. Defelipe J, Hendry SH, Hashikawa T, Molinarl M and Jones EG. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 1990 37:655-673
    101. Peters A and Harriman KM. Enigmatic bipolar cell of rat visual cortex. J Comp Neurol 1988 267:409-432
    102. Conti F, Defelipe J, Farinas I and Manzoni T. Glutamatepositive neurons and axon terminals in cat sensory cortex: a correlative light and electron microscopic study. J Comp Neurol 1989 290:141-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700