光成像结合电生理方法研究猫视皮层及急性眼压升高对其功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(一) 猫的初级视皮层神经元的组织存在着内在的、固有的特性。功能相似的
    神经元相互聚集在一起,形成柱状的功能结构。皮层的细胞组织具有精确的视网
    膜-皮层拓扑对应关系。在本论文的第一部分,我们首先利用基于脑内源信号的
    光学成像和二维互相关分析的方法,分析了猫的初级视皮层的功能,研究内容主
    要围绕在三个方面:第一,即对猫初级视皮层 17 区的视野拓扑离心度(即视网
    膜-皮层拓扑关系)进行了精确测量。第二,利用视网膜-皮层的拓扑对应关系
    以及皮层 17 区和 18 区边界的细胞感受野的特殊特性,对皮层 17 区和 18 区的边
    界作了标定。第三,利用不同的空间频率的正弦光栅为视觉刺激,分析了初级视
    皮层的空间频率特性。
    在这部分论文中,我们对“利用光学记录研究初级视皮层特性”这个课题
    进行了新的尝试,研究结果为大面积地确定视皮层细胞感受野在视野中的位置提
    供了一种快速和较准确的方法;从一个新的角度为确定 17 区和 18 区的边界提供
    了一种快速的方法;获得了皮层的空间频率特性功能图的,为我们以后的实验研
    究(如眼压升高对初级视皮层功能的影响,21a 区反馈对 17 区的功能影响等)
    打下了基础。
    (二)急性青光眼和眼内压升高对视觉系统的影响是国际眼科学的前沿课题。以
    往关于急性眼内压升高对视觉系统的影响的研究很少涉及皮层细胞的功能。以往
    本实验室在皮层下的研究显示,急性眼内压升高对视网膜和外膝体的不同类型神
    经元的影响有明显差异。在本论文的第二和第三部分,利用光学成像和电生理方
    法,我们对皮层细胞的功能在急性眼内压升高前后的变化进行了研究。
    结果显示,在眼内压升高时,光学功能图的反应强度下降,单细胞的反应也
    降低。这种下降依赖于灌注压的降低而非绝对的眼内压升高。在眼压升高时,高
    空间频率光栅刺激获得的方位功能图反应强度下降的更为显著,同时最优空间频
    率高的细胞比最优空间频率低的细胞反应下降得更为明显,皮层简单细胞较复杂
    细胞反应下降得更为明显。然而,尽管功能图反应强度下降和单细胞的方位选择
    性强度均有所下降,但方位功能图的基本模式没有因眼压升高而发生变化,细胞
    的最优方位也没有显著变化。
     22
    
    
    复旦大学博士学位论文摘要
    本工作用光学记录和电生理记录的方法第一次揭示了皮层细胞的功能在急
    性眼内压升高前后的变化,为了解和研究急性眼内压升高对高级视觉中枢的影响
    提供了丰富的实验数据和一个典型的动物模型。表明正常的眼内压对维持视觉皮
    层细胞正常功能是非常重要的。由于我们实验中所采用的急性眼内压升高的生理
    状态和在我国人群中比例较大的急性闭角性青光眼发作时的生理状态相似,因
    此,本研究对临床也有一定的指导意义。
I ) There are many inherent properties of functional organization of neurons in
    primary visual cortex. The neurons with similar properties are organized together,
    forming the columnar structure which is very accurate in the retinotopic topography
    of the visual cortex. In the first part of this thesis, using optical imaging method and
    planar cross correlation analysis, the function of primary visual cortex of the cat was
    investigated. Three aspects were observed. Firstly, the retinotopic topography of area
    17 in cat was measured accurately. Secondly, the border of area 17 and area 18 was
    demarcated based on the properties of single neuron’s receptive field in this border
    and the relationship between the retina and retinotopic topography of visual cortex.
    Thirdly, the spatial frequency properties of orientation maps were analyzed in primary
    visual cortex when animals were stimulated by sinusoidal gratings of different spatial
    frequencies.
     In this part, the properties of visual cortex were investigated using optical imaging
    method. The results of the research provided a fast and relatively accurate method to
    calculate the retinotopic eccentricities in a large cortical area of the visual cortex;
    furthermore, the border of area 17 and 18 was demarcated in a newly developed way;
    and finally, the overall spatial frequency properties of primary visual cortex were
    analyzed based on the spatial frequency maps revealed by optical imaging, which
    established the foundation of the subsequent researches, such as studies on the effect
    of elevation of intraocular pressure (IOP) on the function of visual cortex and the
    function of the feedback of high-order visual cortical areas (7, 21a, PMLS) to
    lower-order areas 17 and 18.
    II ) The effects of acute glaucoma and elevation of IOP on the structure and
    function in the visual system is one of several important tasks in ophthalmology. All
    the past studies on the effect of short time elevation of IOP on the visual system have
    not involved the function of neurons in visual cortex. The previous researches in our
    laboratory have showed that the effects of elevation of IOP on the different types of
     24
    
    
    复旦大学博士学位论文 摘要
    neurons were different in the retinal ganglion cells and LGN cells in the cat. In the
    second and third parts of this thesis, using optical imaging and electrophysiological
    single unit recording methods, we studied the neurons’ response before and during
    elevation of IOP in the visual cortex of the cat.
     The results showed that, during elevation of IOP, both the responses amplitude of
    functional orientation maps and the responses of single neurons decreased. However,
    the effect of elevation of IOP on simple cells was more significant than complex cells.
    The decrease in response was dependent on the retinal perfusion pressure but not on
    the absolute IOP. Interestingly, the blurring or loss of the pattern of the orientation
    maps caused by elevation of IOP was most severe in appearance of the posterior part
    of the exposed cortex when high-spatial-frequency gratings were used. On the other
    hand, the responses of the cortical neurons with high preferred spatial frequency
    decreased more than those of low spatial frequency during elevation of IOP. However,
    the basic patterns of the orientation maps remained unchanged and the preferred
    orientation of single neurons did not change as well. To our best of knowledge, this is
    a first studied on the function of visual cortex cells during elevation of IOP which
    shows that a stable normal IOP is essential for maintaining normal functions of the
    visual cortex. The animal’s eye condition in the experiments was similar to that of
    acute angle-closure glaucoma at the breaking-out stage mostly seen in Chinese
    population, which results in a sharp decrease of visual acuity and even rapidly causes
    blindness, thus, the results shown here have a clinical significance
引文
Alm A, Bill A. Blood flow and oxygen extraction in the cat uvea at normal and
    high intraocular pressures. Acta physiol. Acand. 1970; 80: 19.
     Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased
    intraocular pressures in monkeys (macaca irus): A study with radioactively labeled
    microspheres including flow determinations in brain and some other tissues. Exp Eye
    Res. 1973; 15:15.
     Alonso JM, Usrey WM, Reid RC. Rules of connectiv- ity between geniculate cells
    and simple cells in cat primary visual affer-cortex. J. Neurosci. 2001:21:4002–4015.
     Anderson DR, Davis EB. Sensitivities of ocular tissues to acute pressure-induced
    ischemia. Arch Ophthalmol. 1975; 93: 267.
     Anzai A, Ohzawa I, Freeman RD. Neural mechanisms for processing binocular
    information. II. Complex Cells. J. Neuro- physiol. 1999:82: 909–924.
     Azzopardi P, Jones KE, Cowey A. Uneven mapping of magnocellular and
    parvocellular projections from the lateral geniculate nucleus to the striate cortex in the
    macaque monkey. Vision Res. 1999:39:2179-2189
     Batschelet E. circular statistics in biology. New York: Academic, 1981.
     Bobak P, Bodis-Wollner I, Harnois C, Maffei L, Mylin L, Podos S, Thornton J.
    Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple
    sclerosis. Am J Ophthalmol. 1983; 96: 72.
     Bonhoeffer T, Grinvald A. Optical imaging based on intrinsic signals: The
    methodology. In: Toga AW, Mazziotta JC, eds, Brain Mapping: the methods. London:
    Academic Press; 1996:55-97
     Bonhoeffer T, Grinvald A. The layout of iso-orientation domains in area 18 of cat
    visual cortex: optical imaging reveals a pinwheel-like organization. J. Neurosci.,
    1993:13:4157-80.
     Bosking WH, Crowley JC and Fitzpatrick D. Spatial coding of position and
    orientation in primary visual cortex. Nature Neuroscience. 2002:5:874-882.
     Boycott BB, W?ssle H. The morphological types of ganglion cells of the domestic
     86
    
    
    复旦大学博士学位论文 参考文献
    cat’s retina. J Physiol. London. 1974:240:397-419
     Brown KT. The electroretinogram: its components and their origins. Vision Res.
    1968; 8: 633.
     Bullier, J., and Henry, G.H. Ordinal position of neurons in cat striate cortex. J.
    Neurophysiol. 1979:42:1251–1263.
     Chance, F.S., Nelson, S.B., and Abbott, L.F. Complex cells as cortically amplified
    simple cells. Nat. Neurosci. 1999:2:277–282.
     Chapman B, Godecke I. Cortical cell orientation selectivity fails to develop in the
    absence of on-center ganglion cell activity. J Neurosci. 2000; 20;1922-1930.
     Chapman B, Styker MP, Bonhoeffer T. Development of orientation preference
    maps in ferret primary visual cortex. J Neurosci. 1996; 16:6443-6453.
     Chen X, Sun C, Huang LX, Shou TD. Selective Loss of Orientation Column Maps
    in Visual Cortex during Brief Elevation of Intraocular Pressure. Invest Ophthalmol Vis
    Sci. 2003;44:435–441
     Cleland BG, Dubin MW, Levick WR. Sustained and transient neurons in the cat’s
    retina and lateral geniculate nucleus. J Physiol. London. 1971:217:473-96
     Cleland BG, Levick WR, W?ssle H. Physiological identification of a morphological
    class of cat retinal ganglion cells. J Physiol. London. 1975:248:151-71
     Dandona L., Hendrickson A., Quigley H.A. Selective effects of experimental
    glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate
    nucleus. Invest.Ophthalmol. Visual Sci. 1991:32:1593 –1599.
     Debanne, D., Shulz, D.E., and Fregnac, Y. Activity-dependent regulation of ’on’
    and ’off’ responses in cat visual cortical receptive fields. J. Physiol. (Lond.) 1998:508:
    523–548.
     Derrington AM, Lennie P. Spatial and temporal contrast sensitivities of neurons in
    lateral geniculate nucleus of macaque. Journal of Physiology. 1984:357:219-240
     Dondona L, Hendrickson A, Quigley HA. Selective effects of experimental
    glaucoma on axonal transport by retinal ganglion cells to the dorsal lateral geniculate
    nucleus. Invest Ophthalmol Vis Sci. 1991;32:1593-1599.
     Douglas GR, Drance SM, Schulzer M. The visual field and nerve head in angle
     87
    
    
    复旦大学博士学位论文 参考文献
    closure glaucoma. A comparison of the effects of acute and chronic angle closure. Arch
    Ophthalmol. 1975; 93: 409.
     Dowling JE, Ehinger B, Hedden WL. The interplexiform cell: a new type of retinal
    neuron. Invest Ophthalmol Vis Sci. 1976; 15: 916.
     Dreher B, Fukuda Y, Rodieck RM. Identification and anatomical segregation of
    cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world
    primates. J Physiol. 1976;258:433-452.
     Dreher B, Michalski A,Cleland BG,Burke W. Effects of selective block of Y-type
    nerve optic ?bers on the receptive ?eld properties of neurons in area 18 of the visual
    cortex of the cat. Visual Neurosci. 1992:9:65 –78.
     Dumoulin SO, Hoge RD, Baker Jr CL, Hess RF, Achtman RL and Evansb AC.
    Automatic volumetric segmentation of human visual retinotopic cortex. NeuroImage.
    2003 in print.
     Duysens J, Orban GA, van der Glas HW, Maes H. Receptive field structure of area
    19 as compared to area 17 of the cat. Brain Res. 1982:231:293-308.
     Enroth-Cugell C. Goldstick TK, Linsenmeier RA. The contrast sensitivity of cat
    retinal ganglion cells at reduced oxygen tensions. J Physiol. 1980; 304; 59.
     Enroth-Cugell C,Robson JG. The contrast sensitivity of retinal ganglion cells of
    the cat. J Physiol., 1966:187:517
     Everson RM, Prashanth AK, Gabbay M, Knight BW, Sirovich L, Kaplan E.
    Representation of spatial frequency and orientation in the visual cortex. Proc Natl
    Acad Sci USA 1998;95:8334 –8338.
     Fernald R, Chase R. An improved method for plotting retinal ganglion cells of the
    cat. J. Physiol., 1971, 258: 433-52.
     Ferster D, Chung S, Weat H. Orientation selectivity of thalamic input of simple
    cells of cat visual cortex. Nature, 1996;380:249-252.
     Ferster D, LeVay S. The axonal arborizations of lateral geniculate neurons in the
    striate cortex of the cat. J Comp. Neurol. 1978:
     Fiorentini A, Maffei L, Pirchio M, Spinelli D, Porciatti V. The ERG in response to
    alternating gratings in patients with disease of the peripheral visual pathway. Invest
     88
    
    
    复旦大学博士学位论文 参考文献
    Ophthalmol Vis Sci. 1981; 21: 409.
     Flower RW, Patz A. The effect of hyperbaric oxygenation on retinal ischemia.
    Invest Ophthalmol. 1971; 10: 605.
     Fox, WD, Black R, Bourne JR. Visual evoked cortical potentials during
    pressure-blinding. Vis Res. 1973;13:501-503.
     Fukuda Y, Stone J. Retinal distribution and central projections of Y-, X-, and
    W-cells of the cat's retina. J Neurophysiol. 1974; 38:749-772.
     Garey LJ, Powell TPS. The projection of the lateral geniculate nucleus upon the
    cortex in the cat. Proc. Roy. Soc., London, Ser. B. 1967:169:107-126.
     Geijer C, Bill A. Effects of raised intraocular pressure no retinal, prelaminar,
    laminar and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci.
    1979; 18: 1030.
     Gilbert CD, Wiesel TN. Morphology and intracortical projections of functionally
    characterised neurones in the cat visual cortex. Nature. 1979;280:120-5.
     Gilbert CD, Wiesel TN. Columnar specificity of intrinsic horizontal and
    corticocortical connections in cat visual cortex. J Neurosci., 1989;9:2432-42.
     Glovinsky Y., Quigley H.A., Dunkelberger G.R. Retinal ganglion cell loss is size
    dependent in experimental glaucoma. Invest.Ophthalmol.Visual Sci. 1991:32:484 –491.
     Glovinsky Y, Quigley HA, Pease ME. Foveal ganglion cell loss is size dependent in
    experimental glaucoma. Invest Ophthalmol Vis Sci. 1993;34:395–400.
     Godde B, Hilger T, von Seelen W, Berkefeld T, Dinse HR. Optical imaging of rat
    somatosensory cortex reveals representational overlap as topographic principle.
    Neuroreport, 1995 Dec 29;7(1):24-8.
     G?edecke I and Bonhoeffer T. Development of identical orientation maps for two
    eyes without common visual experience. Nature. 1996:379:23:26
     Grehn F, Stange D. The influence of short-term IOP elevation and hypoxia on the
    impulse conduction in the nerve fibre layer of the cat retina. Doc Ophthalmol Proc Ser.
    1977; 14: 147.
     Grehn F. The sensitivity of the retinal nerve fiber layer to elevated intraocular
    pressure and graded hypoxia in the cat. Vision Res. 1981; 21: 1697.
     89
    
    
    复旦大学博士学位论文 参考文献
     Grehn F, Prost M. Function of retinal nerve fibers depends on perfusion pressure:
    neurophysiologic investigations during acute pressure elevation. Invest Ophthalmol Vis
    Sci. 1983; 24:347-357.
     Grehn F, Grusser OJ, Stange D. Effect of short-term intraocular pressure increase
    on cat retinal ganglion cell activity. Behavioural Brain Res. 1984; 14: 109-121.
     Grinvald A, Frostig RD, Siegel RM, Bartfeld E. High-resolution optical imaging of
    functional brain architecture in the awake monkey. Proc Natl Acad Sci U S A,
    1991;88(24):11559-63.
     Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional organization
    of primate visual cortex revealed by optical imaging of intrinsic signals. Nature,
    1986;324:361-364.
     Grinvald A, Manker A, Segal M. Visualization of the spread of electrical activity in
    rat hippocampal slices by voltage sensitive optical probes. J. Physiol., 1982,
    333:269-291
     Grinvald A, Shoham D, Shmuel A, Glaser D, Vanzetta I, Shtoyerman E, Slovin H,
    Sterkin A, Wijnbergen C, Hildesheim R and Arieli A. IN-VIVO OPTICAL IMAGING
    OF CORTICAL ARCHITECTURE AND DYNAMICS: Modern Techniques in
    Neuroscience Research. 2001. Springer Verlag
     Hayreh SS, Revie HIS, Edwards J. Vasogenic origin of visual field defects and
    optic nerve changes in glaucoma. Br J Ophthalmol. 1970(1971?); 54: 461.
     Hayreh SS, Kolder HE, Weingeist TA. Central retinal artery occlusion and retinal
    tolerance time. Ophthalmology. 1980; 87: 75.
     Henkind P. The retinal vascular system of the domestic cat. Exp Eye Res. 1966; 5:
    10.
     Hirsch JA, Alonso JM, Reid RC, Martinez LM. Synaptic integration in striate
    cortical simple cells. J. Neurosci. 1998:18:9517–9528.
     Hochstein S, Shapley RM. Quantitative analysis of retinal ganglion cell
    classifications. J Physiol., 1976(a):262:237
     Hochstein S, Shapley RM. Linear and nonlinear spatial subunits in Y cat retinal
    ganglion cells. J Physiol., 1976(b):262:265
     90
    
    
    复旦大学博士学位论文 参考文献
     Hoffmann KP, Stone J. Conduction velocity of afferents to cat visual cortex: A
    correlation with cortical receptive field properties. Brain Res. 1971:32:460-66.
     Huber DH, Wiesel TN. Receptive fields, binocular interaction and functional
    architecture in the cat’s visual cortex. J Physiol (Lond). 1962:160:106-154.
     Huber DH, Wiesel TN. Receptive fields and functional architecture in two
    nonstriate visual areas (18 and 19) of the cat. J Neurophysiol. 1965:28:229-289.
     Hubel DH, Wiesel TN. Laminar and columnar distribution of geniculocortical
    fibers in the macaque monkey. Journal of Comparative Neurology. 1972:146:421-450
     Hubel DH, Wiesel TN. Sequence regularity and geometry of orientation columns in
    the monkey striate cortex. J Comp Neurol. 1974;158:267-294.
     Hübener M, Shoham D, Grinvald A, Bonhoeffer T. Spatial Relationships among
    three columnar systems in cat area 17. J Neurosci., 1997:17:9270-84.
     Hung CP, Ramsden BM, Chen LM, Roe AW. Building surface from borders in
    areas 17 and 18 of the cat. Vis Res, 2001;41:1389-1407.
     Issa NP, Trepel C, Stryker MP. Spatial frequency maps in cat visual cortex. J
    Neurosci. 2000;20:8504-8514.
     Kalatsky VA and Stryker MP. New paradigm for optical imaging: Temporally
    encoded maps of intrinsic signal. Neuron. 2003:38:529-545.
     Kerrigan-Baumrind L.A., Quigley H.A., Pease M.E., Kerrigan D.F., Mitchell R.S.
    Number of ganglion cells in glaucoma eyes compared with threshold visual ?eld tests
    in the same persons. Invest.Ophthalmol.Visual Sci. 2000:41:741 –748.
     Kirk DL, Cleland BG, Levick WR. Axonal conduction latencies of cat retinal
    ganglion cells. J Neurophysiol. 1975;38:1395-1402.
     Kisvárday ZF, Buzás P and Eysel U. Calculating Direction Maps from Intrinsic
    Signals revealed by Optical Imaging. Cerebral Cortex. 2001;11:636–647.
     Leone J, Ochs S. Anoxic block and recovery of axoplasmic transport and electrical
    excitability of nerve. J Neurobiol. 1978; 9: 229.
     LeVay S, Ferster D. Relay cell classes in the lateral geniculate nucleus of the cat
    and the effects of visual deprivation. J. Comp. Neurol. 1977:172:563-84
     Levick WR, Thibos LN. Analysis of orientation bias in cat retina. J Physiol.
     91
    
    
    复旦大学博士学位论文 参考文献
    1982;329:243-261.
     Lund JS, Yoshioka T, Levitt JB. Local circuit neurons of developing and mature
    macaque prefrontal cortex: Golgi and immunocytochemical characteristics. J Comp
    Neurol., 1993;328:282-312.
     Malpeli JG. Activity of cells in area 17 of the cat in absence of input from layer a of
    lateral geniculate nucleus. J. Neurophysiol. 1983:49: 595–610.
     Malpeli, J.G., Lee, C., Schwark, H.D., and Weyand, T.G. Cat area 17. I. Pattern of
    thalamic control of cortical layers. J. Neurophysiol. 1986:56:1062–1073.
     Maffei L, Fiorentini A. Electroretinographic response to alternating gratings before
    and after section of the optic nerve. Science. 1981; 211: 953.
     Maffei L, Fiorentini A. Electroretinographic response to alternating gratings in the
    cat. Exp Brain Res. 1982; 48: 327.
     Maffei L, Fiorentini A, Bisti S, Hollander H. Pattern ERG in the monkey after
    section of the optic nerve. Exp Brain Res. 1985; 59: 423.
     Martin KA, Whitteridge D. Form, function and intracortical projections of spiny
    neurones in the striate visual cortex of the cat. J Physiol., 1984;353:463-504.
     Marx MS, Podos SM, Bodis-Wollner I, Howard-Williams JR, Siegel MJ,
    Teitelbaum CS, Maclin EL, Severin C. Flash and pattern electroretinograms in normal
    and laser-induced glaucomatous primate eyes. Invest Ophthalmol Vis Sci. 1986; 27:
    378.
     McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN. Targets of horizontal connections
    in macaque primary visual cortex. J Comp Neurol., 1991;305:370-92.
     Mignard, M., and Malpeli, J.G. Paths of information flow through visual cortex.
    Science 1991:251:1249–1251.
     Minckler DS, Spaeth GL. Optic nerve damage in glaucoma. Surv Ophthalmol.
    1981; 26:128.
     Mitzdorf U, Singer W. Laminar segregation of afferents to lateral geniculate
    nucleus of the cat: An analysis of current source destiny. J Neurophysiol.
    1977:40:1227-44
     Neetens A, Delaunois AL, Hendrata Y, van Rompaey J, van Rompu E. Effects of
     92
    
    
    复旦大学博士学位论文 参考文献
    intraocular pressure and systemic blood pressure on optic pathway action potentials.
    Glaucoma. 1981; 3: 259.
     Movshon JA, thompson ID, Tohurst DJ. Spatial and temporal contrast sensitivity of
    neurons in areas 17 and 18 of the cat’s visual cortex. J Physiol. 1978;283:101-120.
     Ochoa J, Fowler TJ, Gilliatt RW. Anatomical change in peripheral nerves
    compressed by a pneumatic tourniquet. J Anat. 1972;113:433-55.
     Ohzawa I, DeAngelis GC, Freeman RD. Stereoscopic depth discrimination in the
    visual cortex: neurons ideally suited as disparity detectors. Science 1990:249:
    1037–1041.
     Orban AG. Neuronal operations in the visual cortex. Studies of brain function, Vol
    11. 1984, Springer-Verlag.
     Pettigrew JD, Cooper ML, Blasdel GG. Improved use of tapetal reflection for
    eye-position monitoring. Invest. Ophthalmol. Vis. Sci., 1979, 18: 490-95.
     Pettigrew JD, Nikara T, Bishop PO. Responses to moving slits by single units in cat
    striate cortex. Exp Brain Res. 1968:6:373-390.
     Porciatti V, von Berger GP. Pattern ERG and VEP in optic nerve disease: Early
    diagnosis and prognosis. Doc Ophthalmol Proc Ser. 1984; 40: 117.
     Quigley HA, Flower RW, Addicks EM, Mc Leod DS. The mechanism of optic
    nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol
    Vis Sci. 1980; 19: 505.
     Quigley HA, Addicks EM. Chronic experimental glaucoma in primates. II. Effect
    of extended intraocular pressure elevation on optic nerve head and axonal transport.
    Invest Ophthalmol Vis Sci. 1980b; 19: 137.
     Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in
    human glaucoma. II. The site of injury and susceptibility to damage. Arch. Ophthalmol.
    1981; 99: 635.
     Quigley H.A., Dunkelberger G.R., Green W.R. Chronic human glaucoma causing
    selectively greater loss of large optic nerve ?bers. Ophthalmology. 1988:95:357 –363.
     Quigley HA, Sanchez RM, Dunkelberger GR, et al. Chronic glau-coma selectively
    damages large optic nerve fibers. Invest Ophthalmol Vis Sci. 1987;28:913–920.
     93
    
    
    复旦大学博士学位论文 参考文献
     Radius RL, Anderson DR. Reversibility of optic nerve damage in primate eyes
    subjected to intraocular pressure above systolic blood pressure. Brit. J. Ophthalmol.
    1981; 65: 661.
     Radius RL, Peterson JE. Laser-induced primate glaucoma, II: histology. Arch
    Ophthalmol. 1984;102:1693–1698.
     Rossignol S, Colonnier M. A light microscope study of degeneration patterns in cat
    cortex after lesions of the lateral geniculate nucleus. Vision Res. Suppl.
    1971:3:329-338.
     Sakai K, and Tanaka S. Spatial pooling in the second-order spatial structure of
    cortical complex cells. Vision Res. 2000:40: 855–871.
     Schuett S, Bonhoeffer T, Hübener M. Mapping retinotopic structure in mouse
    visual cortex with optical imaging. J Neuosci., 2002:22:6549-59.
     Sherman SM and Spear PD. Organization of visual pathways in normal and
    visually deprived cats. Physiol Rev. 1982; 62:738-855.
     Shmuel A, Grinvald A. Functional organization for direction of motion and its
    relationship to orientation maps in cat area 18. J Neurosci. 1996:16:6945-64
     Shoham D, Hubener M, Schulze S, Grinvald A, Bonhoeffer T. Spatio-temporal
    frequency domains and their relation to cytochrome oxidase staining in cat visual
    cortex. Nature. 1997;385:529-532.
     Soodak RE, Shapley, RM, Kaplan E. Linear mechanism of orientation tuning in the
    retina and lateral geniculate nucleus of the cat. J Neurophysiol. 1987;58:267-274.
     Shou T, Leventhal AG. Organized arrangement of orientation-sensitive relay cells
    in the cat’s dorsal lateral geniculate nucleus. J Neurosci. 1989;9:4387-4302.
     Shou T, Liu J, Wang W, Zhou Y, Zhao K. Differential dendritic shrinkage of α and
    β retinal ganglion cells in cats with chronic glaucoma. Invest Ophthalmol Vis Sci.
    2003;44:3005–3010
     Shou T, Ruan D, Zhou Y. The orientation bias of LGN neurons shows topographic
    relation to area centralis in the cat retina. Exp Brain Res.1986;64:233-236.
     Shou T, Wang W, Yu H. Orientation biased extended surround of the receptive field
    of cat retinal ganglion cells. Neuroscience 2000:98: 207-212.
     94
    
    
    复旦大学博士学位论文 参考文献
     Shou T, Yang G, Zhang K. A comparative study of the effect of intraocular pressure
    elevation on ERG and VECP in the rabbit. Acta Physiol.Sinica. 1985:37:567 –571.
     Shou T., Zhou Y. Y cells in the cat retina are more tolerant than X cells to brief
    elevation of IOP. Invest.Ophthalmol.Visual Sci. 1989:30:2093 –2098.
     Shou T., Zhou Y., Deng P., Zhang H. Incremental IOP for abolishing the response
    of cat LGN Y cells and X cells to ?ash stimulation of the eye. Chin.J.Physiol.Sci.
    1990:6:95 –99.
     Siliprandi R, Bucci MG, Canella, Carmignoto G. Flash and pattern
    electroretinograms during and after acute intraocular pressure elevation in cats. Invest
    Ophthal Vis Sci. 1988;29:558-565.
     Singer W, Tretter F, Cyander M. Organization of cat striate cortex: a correlation of
    receptive-field properties with afferent and efferent connections. J Neurophysiol.
    1975:38:1080-1098.
     Sossi N, Anderson DR. Effect of elevated intraocular pressure on blood flow.
    Occurrence in cat optic nerve head studied with iodoantipyrine J 125. Arch Ophthalmol.
    1983; 101: 98.
     Spitzer, H., and Hochstein, S. Complex-cell receptive field models. Prog.
    Neurobiol. 1988:31:285–309.
     Stone J. Morphology and physiology of the geniculocortical synapse in the cat: the
    question of parallel input to the striate cortex. Invest. Opthalmol. 1972:11338-344.
     Stone and Dreher, 1973 **
     Stone J., Dreher B., and Leventhal A. (1979). Hierarchical and parallel mechanisms
    in the organization of visual cortex. Brain Res. 1979:180:345–394.
     Szulborski RG, and Palmer LA. The two-dimensional spatial structure of nonlinear
    subunits in the receptive fields of complex cells. Vision Res. 1990:30:249–254.
     Tanaka K. Distinct X- and Y-streams in the cat visual cortex revealed by
    bicuculline application. Brain Res. 1983:265:143-147.
     Tanaka K. Organization of geniculate inputs to visual cortical cells in the cat.
    Vision Res. 1985:25:357:364.
     Tootell RB, Silverman MS, DeValois RL. Spatial frequency columns in primary
     95
    
    
    复旦大学博士学位论文 参考文献
    visual cortex. Science. 1981, 214:813-815
     Toth LJ, Kim DS, Rao SC, Sur M. Integration of local inputs in visual cortex. Cere.
    Cortex, 1997,7:703-710.
     Toth LJ, Rao SC, Kim DS, Somers D, Sur M. Subthreshold facilitation and
    suppression in primary visual cortex revealed by intrinsic signal imaging. Proc Natl
    Acad Sci U S A, 1996;93:9869-74.
     Toyama K, Matsunami K. Synaptic action of specific visual impulses upon cat’s
    parastriate cortex. Brain Res. 1968:10:473-476
     Trick GL. Retinal potentials in patients with primary open angle glaucoma:
    Physiological evidence for temporal frequency tuning deficits. Invest Opthalmol Vis
    Sci. 1985; 26: 1750.
     Troy J.B., Robson J G. Steady discharges of X and Y retinal ganglion cells of cat
    under photopic illuminance. Visual Neurosci. 1992:9:535 –553.
     Troy J.B., Shou T. The receptive fields of cat retinal ganglion cells in physiological
    and pathological states: where we are after half a century of research. Progress in
    retinal and Eye research. 2002:21:263-302.
     Tusa RJ, Palman LA, Rosenquist AC. The retinotopic organization of area 17
    (striate cortex) in the cat. J Comp Neurol., 1978;177:213-236.
     Wang C, Dreher B, Burke W. Effects of eliminating retinal Y cell input on center
    –surround interactions in the dorsal lateral geniculate nucleus of the cat. Visual
    Neurosci. 1996:13:1089 –1097.
     Wanger P, Persson HE. Pattern-reversal electroretinograms in unilateral glaucoma.
    Invest Opthalmol Vis Sci. 1983; 24: 749.
     Watanabe S, Konishi M, Creutzfeldt O. Postsynaptic potentials in the cat’s visual
    cortex following electrical stimulation of afferent pathways. Exptl. Brain Res.
    1966:1:272-283
     W?ssl H, Boycott BB, Illing RB. Morphology and lattice of on- and off- beta cells
    in the cat retina and some functional considerations. Proc R Soc. B (lond.),
    1981;212:177-195.
     Wilson PD, Rowe MH, Stone J. Properties of relay cells in cats lateral geniculate
     96
    
    
    复旦大学博士学位论文 参考文献
    nucleus: a comparison of W-cells with X- and Y-cells. J. Neurophysiol.
    1976:39:1193-1209
     Wulfing B. Clinical electroretino-dynamography. Doc Ophthalmol. 1964;18:
    419-429.
     Yu H, Shou T. Spatial frequency tuning characteristics of cat primary visual cortex
    at different topological locations by optical imaging. Acta Physiol Sin (生理学报),
    2000:52:411-415. ( in Chinese with English abstract)
     Zar JH. Circular distributions. In: Biostatistical analysis. Engle-wood Cliffs, NJ:
    RrenticeHall, 1974.
     Zhan X, Troy JB. Modeling cat retinal beta-cell arrays. Vis Neurosci.
    2000;17:23-39.
     Zhou Y, Leventhal AG, Thompson KG. Visual deprivation does not affect the
    orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of
    the cat. J Neurosci. 1995;15:189-198.
     Zhou Y., Wang W., Ren B., Shou T. Receptive ?eld properties of cat retinal
    ganglion cells during short-term IOP elevation. Invest.Ophthalmol.Visual Sci. 1994:35:
    2758 –2764.
     寿天德,视觉处理的神经机制,上海科技教育出版社,1997。
     眼科手册,上海科学技术出版社,1978。
     现代眼科手册(第二版),人民卫生出版社,1990。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700