聚乙二醇修饰的可生物降解聚酯药物载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计合成了多种聚乙二醇修饰的可降解酯类聚合物,表征了其结构和性质,并对它们作为抗癌药物载体的性能进行了初步研究。
     采用熔融缩聚法合成了聚乙二醇-聚左旋乳酸(PELLA)和聚乙二醇-聚消旋乳酸(PEDLLA)二嵌段共聚物;并以甲苯二异氰酸酯(TDI)为偶联剂,聚己内酯(PCL)和聚乙二醇(PEG)为原料合成了聚乙二醇-聚己内酯-聚乙二醇(PECL)三嵌段共聚物。研究了PEDLLA与PELLA或PECL在水溶液中共混,自组装杂化纳米粒(HNPs)的性能。该HNPs为具有核壳结构的球形(粒径小于100 nm),并且可以有效包载紫杉醇。载药HNPs随着PELLA或PECL含量的增加,药物释放速率逐渐降低,且处于PEDLLA与PELLA或PECL纳米粒的药物释放速率之间。通过调节PEDLLA和PELLA或PECL的比率可以控制紫杉醇的释放速率。WAXD和DSC结果表明HNPs的控制药物释放能力与PLLA或PCL段的结晶相与PDLLA段的无定形相在HNPs的内核中共存有关。
     通过二硫醇和聚乙二醇二丙烯酸酯(PEGDA)或聚乙二醇二甲基丙烯酸酯(PEGDMA)缩合聚合得到聚乙二醇修饰的聚硫酯类聚合物(DPEG)。该聚合物具有多个活性基团,如:巯基端基,甲基/丙烯酸端基和侧羟基。运用这些基团成功地和抗癌药物喜树碱形成了前药,还使聚合物端基连接上靶向基团叶酸。调节反应中聚合物,药物的比率,可使聚合物长链带上不同量的药物。所合成的前药具有肿瘤敏感性,而聚合物本身则没有。DPEG的降解速率具有pH依赖性,在pH为7.4的环境中稳定存在,而在酸性环境(pH=6.0,5.0)中快速降解。并且,该聚合物还具有温度敏感性,且相转变范围窄。通过调节大分子单体链长,双键的类型,以及硫醇的类型,可调节相转变温度。其中,有两种聚合物的相转变温度分别为36°C和39°C,与人体温度相近,有应用前景。交联上述直链DPEG可得到具有温度敏感性的凝胶,且通过后交联法得到的凝胶具有和直链聚合物相似的温度敏感特性。
     通过PEG和二酸酐缩合聚合得到聚乙二醇修饰的聚碳酸酯类聚合物(PEG-DA)。这种聚合物主链为酯键键接,在每个酯键旁都有一个游离的羧基。在酸性环境(pH=6.0,5.0)中,因羧基对酯键的进攻而快速水解。通过该聚合物与不同的抗癌药物(喜树碱、顺铂)键接,制备出了聚合物前药。通过调节反应中聚合物,药物的比率,可使聚合物长链带上不同量的药物。所合成的前药具有肿瘤敏感性,而聚合物本身则没有。
In this paper, several kinds of PEGylated biodegradable polyesters were designed and synthesized. Their structures and characters were characterized. The pharmaceutical capabilities of these polyesters as anti-cancer drug carriers were also investigated.
     A convenient pathway to control drug release from copolymer nanoparticles (NPs) by hybrid assembly of different kinds of copolymers was investigated in this paper. Three kinds of biodegradable amphiphilic copolymers, Methoxy poly(ethylene glycol)-block-poly(L-lactic acid) (PELLA), methoxy poly(ethylene glycol)-block-poly (D,L-lactic acid) (PEDLLA) and poly(ethylene glycol)-block-poly(caprolactone)- block -poly(ethylene glycol) (PECL) were prepared and used to assemble into hybrid nanoparticles (HNPs) as carriers of paclitaxel. The structure and properties of the paclitaxel loaded copolymer NPs and HNPs were characterized by DSC, WAXD, TEM and light scattering. The results show that small spherical HNPs (diameter < 100 nm) with good paclitaxel loading ability and entrapping efficiency were obtained simply by hybrid assembling different copolymers. The in vitro release studies indicate that paclitaxel release rate can be controlled easily by varying the ratio of the hydride copolymers. The release control mechanism of the HNPs is mainly due to the crystallization adjustment by mixing of PEDLLA into PELLA or PECL. The HNPs provide a convenient approach to control drug release for drug-loaded NPs.
     PEGylated poly(ester-sulfide)s (DPEGs) were synthesized by condensation polymerization of dithiols and poly(ethylene glycol) diacrylates (PEGDA) or dimethacrylates (PEGDMA). These DPEGs carried functional groups such as terminal thiol or (meth)acrylate groups and pendant hydroxyl groups. Using these functional groups can successfully react with anti-cancer drug camptothecin to form poly-drug conjugate, and connect targeting group folic acid to the end groups of polymer. With different ratio of polymer and drug in conjugation reaction, polymer chain can carry different amount of drugs. The synthesized polymer-drug conjugates have cancer sensitivity, while polymers do not have. DPEGs are pH-dependent degradable. They are stable at pH 7.4 but degraded quickly in acid condition (pH=6.0, 5.0). DPEGs have thermoresponsibility and the phase transition ranges sharp. With changing the PEG chain length, the type of the double bond and the type of dithiol, phase transition temperature can be adjusted. There are two polymers have LCSTs at 36°C and 39°C, respectively, close to the body temperature which make them have promising application potential. Crosslinking DPEG chains produced thermoresponsive hydrogels. And the hydrogels prepared by end-capping method maintain the thermoresponsive properties of the DPEGs.
     PEGylated polycarbonates (PEG-DA) were synthesized by condensation polymerization of PEG and dianhydride. This kind of polymers is connected by ester bond and there is a free carbonic acid group near ester bond. Under acid circumstances (pH=6.0,5.0), polymers are hydrolysized quickly by the attack of acid group. PEG-DA can effectively conjugate anti-cancer drugs (camptothecin, cisplatin). With different ratio of polymer and drug in conjugation reaction, polymer chain can carry different amount of drugs. The synthesized polymer-drug conjugates have cancer sensitivity, while polymers do not have.
引文
[1] 姚日生,董岸杰,刘永琼,药用高分子材料,北京:化学工业出版社,2003,1~2
    [2] 郭胜荣, 余晓捷, 莫小曼,医药用生物降解性高分子材料,北京:化学工业出版社,2003, 18~21
    [3] 余耀庭,张兴栋,王身国,生物医用材料,天津:天津大学出版社,2003,1~3
    [4] 蒋挺大,壳聚糖.北京:化学工业出版社,2001,9~16
    [5] Felt O., Buri P., Gurny R., Chitosan: a unique polysaccharide for drug delivery. Drug Dev. Ind. Pharm., 1998, 24 (11): 979-993.
    [6] Akbuga J., Abiopolymer: chitosan, Int. J. Pharm. Adv., 1995,1(1):3~17.
    [7] Kas H. S., Chitosan: properties, preparations and application to microparticulate systems, J.Microencapul., 1997,14(6):689~711.
    [8] Lehr C M, Bouwstra J A ,Schacht E H et al., In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers, Int. J. Pharm., 1992,78:43-48.
    [9] Paul W, Sharma C P, Chitosan, a drug carrier for the 21st century: a review, S.T.P. Pharm. Sci. 2000,10(l):5~22.
    [10] Roper H ., Koch H ., Starch in biodegradable thermoplastic, Starch, 1990,42(4),123~130
    [11] Munford R. S., Hall C. L., Detoxification of bacterial lipopolysaccharide (endotoxin) by a human neutrophil enzyme, Science, 1986, 234, 203~205
    [12] Greenwald GI, Ganz T. Defensins mediate the microbicidal activity of human neutrophil granule extract agaist Acinetobacter calcoaceticus.Infect Immun, 1987; 55:1365-1368
    [13] Levitz SM, Selsted ME, Ganz T, Lehrer RI, Diamond ,RD. In vitro killing of spores and hyphae of Aspergillis funigatus and Rhizopus oryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages. J Infect Dis, 1986; 154: 483-489
    [14] Zhu. L, Kumar V. and Banker G. S., Examination of oxidized cellulose as a macromolecular prodrug carrier: preparation and characterization of an oxidized cellulose-phenylpropanolamine, J. Reprid. Med., 2001, 7(233):35~47
    [15] Middleton J.C., Tipton. A.J., Synthetic biodegradable polymers as medical devices, Medi. Plasti. and Biomat., 1998, 3(52): 178-184
    [16] Frazza E .J., Schmitt E.E.. A new absorbable suture J. Biomed. Mater. Res. Symp., 1971, 1,43-47
    [17] Gilding D. K., Reed A. M., Biodegradable polymers for use in surgery-polyglycolic/polyactic acid homo and copolymers:1, Polymer, 1979, 20, 1459-1463
    [18] Reed A. M., Gilding D. K.. Biodegradable polymers for use in surgery-poly(glycolic)/poly(lactic acid) homo and copolymers: 2. in vitro degradation, Polymer, 1981, 22, 494-498
    [19] Leenslag J. W., Pennings A. J., Bos R. R. M., et al. Resorbable materials of poly(L-lactide). VI. Plates and screws for internal fracture fixation, Biomaterials, 1987, 8, 70-76
    [20] Vainionpaa S., Kilpikari J., Laiho J., et al. Strength and strength vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation, Biomaterials, 1987, 8 (1): 46-48.
    [21] Tsuji H., Hyon S. H., Ikada Y.. Stereocomplex formation between enantiomeric poly(lactic acid): 5. calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution, Macromolecules, 1992, 25(11): 2940~2946
    [22] Eling B., Gogolewski S., Pennings A. J., Biodegradable materials of poly(L-lactic acid): 1. melt-spun and solution-spun fibres, Polymer, 1982, 23(3): 1587~1590
    [23] Potts J. E., Clendinning R. A., Cohen S., Study on curing reaction mechanism of epoxy resin with polyfunctional active ester, Soc. Plast. Eng. Tech. Pap, 1975, 21(4): 567-571
    [24] Pitt C. G., Chasalow F. I., Hibionada Y. M., et al. Aliphatic polyesters. I. The degradation of polycarprolactone in vivo, J. Appl. Polym. Sci. 1981, 26 (5):3779~ 3782
    [25]陈建海,生物材料PCL的晶体结构,高分子材料科学与工程,1995,11(1):79~82
    [26] Pitt C. G.. Poly-ε-caprolactone and its Copolymers, in Biodegradable Polymer as Drug Delivery Systems, ( Eds. R. Langer and M.Chasin), Marcel Dekker, New York, 1990, 71-78
    [27]陈莉,杜锡光,赵保中等,聚羟基乙酸及其共聚物,高分子通报,2003,1,18~24
    [28] Lewis D. H., Controlled Release of Bioactive Agents from Lactide/Glycolide Polymers, in Biodegradable Polymers as Drug Delivery Systems (Eds. R. Langer and M. Chasin), Marcel Dekker, New York, 1990
    [29] Vion J. M., Jerome R., Teyssie P., et al. Synthesis, characterization, and miscibility of caprolactone random copolymers, Macromolecules, 1986, 19(7): 1828~1838
    [30] Fukuzaki H., Yoshida M., Asano M., et al. Synthesis of low-molecular-weight copoly(L-lactic acid/s -caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers, Polymer, 1990, 31(8): 2006-2014
    [31] 宋存先,陈惠英,冯新德,己内酯与D,L丙交酯嵌段共聚物的合成及其作为生物降解性恒定释放药物的高分子载体的评价,高分子通讯,1983, 3, 177~183.
    [32] 王身国,邱波,高家武,段跃新,聚己内酯—聚乙二醇嵌段共聚物:Ⅱ.组成,结晶性同降解性间关系,高分子学报,1995, 5, 560~565
    [33] 王身国,邱波,生物降解性聚己丙酯—聚醚嵌段共聚物的合成及表征,高分子学报,1993, 5,620~623
    [34] Heller J., Baker R. W., Gale E. M., et al. Controlled drug release by polymer dissolution. I. Partial esters of maleic anhydride copolymers - properties and theory,J. Appl. Polym. Sci., 1978, 22(7): 1991-2009
    [35] N. S. Choi, J. Heller. Synthesis of poly(ortho esters), USP 4180646, December 25, 1979
    [36] Borlakoglu J. T. , J. P. G. Wilkins, Correlations between the molecular structures of polyhalogenated biphenyls and their metabolism by hepatic microsomal monooxygenases, Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1993, 105, ( 1):113-117
    [37] Heller J. P., Pratap G., Mustafa S. A., A new bifunctional initiator for living carbocationic polymerization of isobutylene: Synthesis of linear telechelic polyisobutylene by the 1,4-di(2-propyl-2-hydroxy) cyclohexane/bci3/tert-amine initiating systems, J. Polym. Sci. Part A: Polym. Chem., 1993, 31(9): 2387-2391
    [38] Heller J. P., Pratap G., Electron-pair donors in carbocationic polymerization: Synthesis of linear living ,-di(tert-chloro)polyisobutylenes, J. Polym. Sci. Part A: Polym. Chem., 1992, 30(1): 163-168
    [39] Heller J., Ng S. Y., Penhale D. W. H., et al. Use of poly(ortho esters) for the controlled release of 5-fluorouracyl and a LHRH analogue, J. Controlled Release, 1987, 6(1):217~224
    [40] Heller J. P., Dandge D. K., Taylor C., Associative organotin polymers. I. Symmetric trialkyltin fluorides: Synthesis and properties, J. Polym. Sci. Part A: Polym. Chem., 1989, 27(3):1053~1063
    [41] Acemoglu M., Bautle S., Mindt T., et al. Novel Bioerodible Poly(hydroxyalkylene carbonates)s: A Versatile Class of Polymers for Medical and Pharmaceutical Applications, Macromolecules, 1995, 28(9):3030~3037
    [42] J. Kohn, R. Langer. Poly(iminocarbonates) as potential biomaterials, Biomaterials, 1986, 7(3):176-182
    [43] M. Hedayatullah. Synthesis of biodegradable poly(iminocarbonates), Bull. Sco. Chim. France, 1967, 416.
    [44] H. D. Schminke, W. Gobel, E. Gright,Novel biodegradable poly(iminocarbonates)et al. USP 3491060, July 23,1971
    [45] A. J. Domb, R. Langer. Polyanhydrides. I. Preparation of high molecular weight polyanhydrides, J. Polym. Sci., 1987, 25(12):3373-3386
    [46] K. . Urich, A. Gupta, T. T. K.EThomas. Synthesis and Characterization of Degradable Poly(anhydride-co-imides) , Macromolecules, 1995, 28(7): 2184-2193
    [47] F. Lescure, R. Greny, E. Doelker. The Effect of Local Controlled Release of Sodium Fluoride on the Stimulation of Bone Growth, J .Biomed. Mat. Res, 1989, 23(3):1299-1304
    [48]丘小琳,李国明,药库型微型胶囊囊材研究进展,安徽化工,2004,1,10~13
    [49] Behan N, Birkinshaw C and Clarke N., Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerization and particle formation. Biomaterials, 2001 (22):1335-1344
    [50] Gelperina S. E., Khalansky A. S., and Skidan I. N., Toxicological studies of doxorubicin bound to polysorbate 80-coated poly (butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicology Letters, 2002, (126): 131-141.
    [51] Penzek S., Lapienis G.. Pure Appl. Chem., Enzyme-Catalyzed Regioselective Synthesis of Sucrose Esters, 1984, 56, 833-909.
    [52] Yu C., Mielewczyk S. S. and Kohn J., Tyrosine-PEG-derived poly (ether carbonate)s as new biomaterials: Part II: Study of inverse temperature transitions. Biomaterials, 1999, (20): 265~272
    [53] Andrianov A. K., and Payne L. G., Protein release from polyphosphazene matrices. Advanced drug delivery reviews, 1998, (31): 185 ~ 196
    [54] Caliceti P., Veronese F. M. and Lora S. Polyphosphazene microspheres for insulin delivery. International Journal of Pharmaceutics, 2000, (211):57-65.
    [55] Zhang T. H., Marchant R. E., Novel Polysaccharide Surfactants: Synthesis of Model Compounds and Dextran-Based Surfactants, Macromolecules, 1994, 27(25) 7302~7308
    [56] F. Bignotti, P. Sozzani, E. Ranuci, P. Ferruti., NMR Studies, Molecular Characterization, and Degradation Behavior of Poly(amido amine)s. 1. Poly(amido amine) Deriving from the Polyaddition of 2-Methylpiperazine to 1,4-Bis(acryloyl)piperazine ,Macromolecules, 1994, 27 (5) : 7171~7178
    [57] Y. S. Sohn, Y. H. Cho, H. Baek, et al. Synthesis and Properties of Low Molecular Weight Polyphosphazenes, Macromolecules, 1995, 28 (22) : 7566~7568
    [58] N. D. Miller, D. F. Williams. On the biodegradation of poly-β-hydroxybutyrate (PHB) homopolymer and poly-β-hydroxybutyrate-hydroxyvalerate copolymers , Biomaterials, 1987, 8 (2):129-137
    [59] G. Scholz, S. Wolk, R. W. Lenz. Growth and polyester production by Pseudomonas oleovorans on branched octanoic acid substrates , Macromolecules, 1994, 27(22):6358-6362
    [60] S. Nakamura, Y. Doi, M. Scandola. New approach to block copolymerizations of ethylene with alkyl methacrylates and lactones by unique catalysis with organolanthanide complexes, Macromolecules, 1992, 25(19):5115-5116
    [61] Y. Doi, M. Kunioka, Y. Nakamura, et al. Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate, Macromolecules, 1988, 21(9):2722-2727
    [62] Y. B. Kim, R. W. Lenz, R. C. Fuller. Poly(hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans, Macromolecules, 1992,25(7): 1852-1857
    [63] Y. B. Kim, R. W. Lenz, R. C. Fuller. Preparation and characterization of poly(.beta.-hydroxyalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids, Macromolecules, 1991, 24(19): 5256-5260
    [64] G. Scholz, R. C. Fuller, R. W. Lenz. Growth and Polymer Incorporation of Pseudomonas oleovorans on Alkyl Esters of Heptanoic Acid, Macromolecules, 1994, 27(10): 2886-2889
    [65] E. Shimamra, M. Scandola, Y. Doi. Microbial Synthesis and Characterization of Poly(3-hydroxybutyrate-co-3-hydroxypropionate), Macromolecules, 1994, 27, 4429~4435
    [66] 喻龙宝,张宏放,聚(β—羟基丁酸酯)/聚双酚A羟基醚共混体系相容性及结构的研究,高分子学报,1995, 5, 528~534
    [67] 谢红卫,刘淑莹,聚β—羟基烷酸酯热分解行为的直接裂解质谱研究,高分子学报,1995, 5, 648~652
    [68] Peracchia M. T., Gref R., Minaraitake Y., et al, PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics , J Controlled Release, 1997, 46(3):223-231.
    [69] 姚日生,董岸杰,刘永琼.药用高分子材料.北京:化学工业出版社,2003,186~193.
    [70] 朱振峰,杨菁, 药物纳米控释系统的最新研究进展, 国外医学生物医学工程分册,1998,21(6):327~332.
    [71] Park I. K , Kim T. H. , Park Y. H. , et al . , Galactosylated chitosan-graft-poly(ethylene glycol) as hepatocyte-targeting DNA carrier , J. Controlled Release,2001,76(3):349-362.
    [72] Nagasaki Y., Okada T., Scholz C., et al. The reactive polymeric micelle based on an aldehyde-ended poly(ethylene glycol)/poly(lactide) block copolymer. Macromolecules, 1998, 31: 1473 - 1479.
    [73] Scholz C., Lijima M., Nagasaki Y., et al. A novel reactive polymeric micelles. Polymeric micelle with aldehyde groups on its surface. Macromolecules, 1995, 28:7295~7297.
    [74] Chen D. R., Bei J. Z. and Wang S. G., Polycaprolactone microparticles and their biodegradation. Polymer degradation and stability, 2000, (67): 455~459
    [75] Kweon H. Y., Yoo M. K., and Park I. K., A novel degradable polycaprolactone networks for tissue engineering. Biomaterials, 2003, (24): 801~808.
    [76] Kim C., Cho K. Y., and Park J., Grafting of glycidyl methacrylate onto polycaprolactone: preparation and characterization. Polymer, 2001, (42): 5135 ~ 5142.
    [77] Kim, Y. D., P.; Christian, D. A.; Discher, D. E. Polymeric worm micelles as nano-carriers for drug delivery. Nanotechnology, 2005, 16, 484~491.
    [78] Torchilin, V. P. Targeted polymeric micelles for delivery of poorly soluble drugs. Cellu. Mol. Life Sci., 2004, 61, 2549~2559.
    [79] Kwon, G. S. Polymeric micelles for delivery of poorly water-soluble compounds. Crit. Rev. Therap. Drug Carrier Syst., 2003, 20, 357~403.
    [80] Brigger, I. D., C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. DrugDeliv. Rev., 2002, 54, 631~651.
    [81] Tarr B. D., Sambandau T. G., Yalkowsky S. H., A new parenteral emulsion for the administration of taxol. Pharmceutical Research, 1987, 4, 162~165
    [82] Shama A, Mayhew E., Straubinger R. M., Antitumor effect of taxol-containing liposomes in a taxol-resistant murine tumor model. Cancer Research, 1993, 53: 5877~5881
    [83] Balasubramanian S. V., Straubinger R. M., Taxol-lipid interactions: taxol dependent effects on the physical properties of model membranes. Biochemistry, 1994,33: 8941~8947.
    [84] Sharma A., Sharma U. S., Straubinger R. M., Paclitaxel-lipsomes for intracavitary therapy of intraperitoneal P338 leukemia. Cancer Letter, 1996, 107: 265~272.
    [85] Needham D., Sarpal R. S., Binding of taxol to lipid interfaces: correlations with interface compliance. J. Liposome Research, 1998, 8: 147~164.
    [86] Perkins W. R., Ahmad I., Li X. G., et al. Novel therapeutic nano-particles (lipcores): trapping poorly water soluble compounds. International Journal of Pharmaceuticals, 2000, 200: 27~39.
    [87] Crosasso P., Ceruti M., Brusa P., et al., Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. Journal of Controlled Release, 2000, 63: 19~30.
    [88] Sharma U. S., Balasubramanian S. V., Straubinger R. M., Pharmaceutical and physical properties of paclitaxel (taxol) complexes with cyclodextrins. Journal of Pharmaceutical Science, 1995, 84: 1223 ~ 1230.
    [89] Sharma A., Straubinger R. M., Novel taxol formulation: preparation and characterization of taxol-containing liposomes. Pharmaceutical Research, 1994, 11: 889~898.
    [90] Pendri A., Conover C. D., Greenwald R. B., Antitumor activity of paclitaxel-2-glycinate conjugated to poly(ethylene glycol): a water-soluble prodrug. Anti-cancer Drug Des, 1998, 13:387~395.
    [91] Ke S., Milas L., Charnsangavej C., Potentiation ofr adioresponse by polymer-drug conjugates. Journal of Controlled Release, 2001,74:237~242.
    [92] Dordunoo S. K., Jackson J. K., Arsenault L. A., et al. Taxol encapsulation in poly( ε -caprolactone) microspheres. Cancer Chemother Pharmacol, 1995, 36:279~282
    [93] Liggins R. T., Burt H. M., Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Int J Pharm, 2001,222: 19~33
    [94] Feng S. S., Huang G. F., Efects of emulsifiers on the controlled release of paclitaxel(Taxol) from nanospheres of biodegradable polymers. Journal of Controlled Release, 2001, 71: 53~69.
    [95] Zhang X. C., Burt H. M., Hoff D. V., et al. An investigation of the antitumour activity and biodistribution of polymeric micellar paclitaxel. Cancer Chemother. Pharmacol, 1997, 40:81~86
    [96] Ramaswamy M., Zhang X., Burt H. M., Human plasma distribution of free paclitaxel and paclitaxel associated with diblock copolymers. J Pharm Sci, 1997, 86(4):460~464
    [97] Burt H. M., Zhang X., Toleikis P., et al. Development of copolymers of poly(D,L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids and surfaces B :biointerfaces,1999,16 :161~171.
    [98] Kim S. C., Kim D. W., Shim Y. H., et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and eficacy. Journal of Controlled Release, 2001, 72 :191~202.
    [99] Allen C., Maysinger D., Eisenberg A., Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B :Biointerfaces, 1999, 16:3~27
    [100] Zhao B., Brittain W. J., Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci, 2000, 25 :677~710
    [101] Yokoyama M., Satoh A., Sakurai Y., et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Rel, 1998,55: 219~229
    [102] Otsuka H., Nagasaki Y., Kataoka K., Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications. Current Opinion in Colloid&Interface Science, 2001, 6 :3 ~10.
    [103] Kataoka K., Design of nanoscopic vehicles for drug targeting based on micellization of amphiphilic block copolymers. J. Macromol. Sci. Pure Appl. Chem, 1994, A31:1759~1769
    [104] Yokoyama M., OkanoT., SakuraiY., et al., Selective delivery of Adriamycin to a solid tumor using a polymeric carrier system. J. Drug Targeting, 1999,7 :171~ 186.
    [105] Kim S Y, Ha J C, Lee Y M. , Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(ε-caprolactone) (PCL) amphiphilic block copolymeric nanospheres: II. Thermo-responsive drug release behaviors, J Controlled Release, 2000, 65(3): 345-358
    [106] Shin I. G., Kim S. Y. , Lee Y. M., et al. , Methoxy poly(ethylene glycol)/ε-caprolactone amphiphilic block copolymeric micelle containing indomethacin.: I. Preparation and characterization , J. Controlled Release, 1998, 51(1): 1 ~ 11
    [107]GrefR, QueHec P, Sanehez A, et al. Application of Poly(ethylene glycol)/ ε-caprolactone in New Drug Preparations , Euro J. Pharm. Biopharm, 2000, 51(2): 111~118
    [108] Yoo H. S., Park T.G., Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer, J. Controlled Release, 2001, 70(1): 63~70
    [109] Veronese F. M. , Peptide and protein PEGylation: a review of problems and solutions , Biomaterials, 2001, 22(5): 405~417
    [110] Kinstler O., Molineux G., Treuheit M., et al. , Mono-N-terminal poly(ethylene glycol)-protein conjugates , Adv. Drug Deli. Rev., 2002, 54(4): 477~485.
    [111] Monfardini C. S., A Branched Monomethoxypoly(ethylene glycol) for Protein Modification, Bioconjug. Chem, 1995, 6(1): 62~67
    [112] Nucci M. L., Shorr R., Abuchowshi A., The therapeutic value of poly(ethylene glycol)-modified proteins, Adv. Drug Deli. Rev., 1991, 6: 133 ~ 151
    [113] 姜忠义,高蓉,许松侍,等, 药物蛋白的聚乙二醇修饰, 中国药学杂志,2002,37(6):409~412.
    [114] Zeuzem S., Heathcote J. E., Martin N., et al . , Novel poly(ethylene glycol)-modified α -IFN, Expert Opin. Investig Drugs, 2001, 10: 2201~2213
    [115] Katre N. V., Knauf M. J., Laird W. J., Chemical modification of recombinant inte rleukin 2 by poly(ethylene glycol) derivatives, in vivo and in vitro, Proc. Natl Acad Sci USA, 1987, 84, 1487
    [116] Tsutsumi Y., Kilira T., Tsunoda S., et al. Molecular design of hybrid tumour necrosis factor alpha with poly(ethylene glycol) increseases its antitumour potency , Br. J. Cancer, 1995, 71, 963~968
    [117] Bekturov E. A., et al. Synthetic Water-Soluble Polymers in Solution, Huthig & Wepf Verlag Basel. Heideib erg New York, 1986,126
    [118] 史凌洋,魏东芝, 用活化的单甲氧基聚乙二醇修饰L-天冬酰胺酶, 华东理工大学学报,2001,27(6):601~604
    [119] 周炳喜, 唐芙爱, 杨玉秀,等, 聚乙二醇干扰素联合利巴韦林治疗慢性丙型肝炎的研究, 实用诊断与治疗杂志, 2006, 20 (9):628~632
    [120] 陈莉,张奕华, 前药原理在非甾体抗炎药中的应用, 中国药师,2003,6(1):50~52
    [121] Greenwald R. B., Pendfi A., Bolikal D., et al., Synthesis of PEGylated paclitaxel as PEG prodrugs and their drug release properties in mice, Bioorg. Med. Chem. Lett, 1994, 4: 2465~2470
    [122] Zacchigna M., Di Luca G., Maurich V., et al, Research on PEG prodrugs with Acyclovir and Valacvclovir and their drug release properties, Farmareo, 2002, 57(3): 207~214
    [123] Yamaoka T., Tabata Y., J. Pharm. Sci., Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice, 1994, 83: 601~606
    [124] Greenwald R B., PEG drugs: an overview, J Controlled Release, 2001, 74: 159~171
    [125] 李金亮,冯霞,元英进,等, 水溶性紫杉醇前药研究进展, 有机化学,2001,21(6):428~435
    [126] 冯霞,梁世乐,李晓锋,等, 聚乙二醇支载紫杉醇给药系统的制备与抗癌活性, 化工学报,2003,54(2):209~214
    [127] Li H., Song J. H., Park J. S., et al, Polyethylene glycol-coated liposomes for oral.delivery of.recombinant.human epidermal growth factor, International Journal of Pharmaceutics, 2003,258(2): 11~19
    [128] Katayama K., Kato Y., Onishi H. et al., Preparation of novel double liposomes using the glass-filter method, International Journal of Pharmaceutics, 2002, 248(1): 93~99
    [129] Charman S. A., Charman W. N., Rogge M. C., et al., Self-emulsifying drug delivery system: formulation and biopharmaceutic evaluation of an investigational lipophilic compound, Pharmacological Research, 1992, 9(1):87~93
    [130] Yang Yi Yan, Shi Meng, Goh S. H., et al., POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres, Journal of Controlled Release, 2003,88 (2) :201~ 213
    [131] El-Gibaly, Ibrahim, Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres, International Journal of Pharmaceutics, 2002, 249(1): 7~12
    [132] Olivieri L., Seiller M., Bromberg L., et al. Optimization of a thermally reversible W/O/W multiple emulsion for shear-induced drug release. Journal of Controlled Release. 2003, 88 (3): 401~412
    [133] Storm G., Belliot O. S., Daemen T., et al. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte systems, Adv. Drug Deliver. Rev, 1995,17(1):31~ 48
    [134] Brigger I., Dubemet C., Couvreur P. Nanoparticles in cancer therapy and diagnosis, Adv. Drug Deliver. Rev., 2002, 54 (5): 631 ~651
    [135] SledgeG., Miller K., Exploiting the hallmarks of cancer: the future conquest of breast cancer, Eur. J. Cancer, 2003, 39(12): 1668~1675
    [136] Teicher B. A. Molecular targets and cancer therapeutics: discovery, development and clinical validation. Drug Resist. Update, 2000, 3 (2) :67~73
    [137] Abou-Jawde R., Choueiri T., Alemany C., et a l. An overview of targeted treatments in cancer. Clin. Ther., 2003, 25(8): 2121~2137
    [138] Glennie M. J., Winkel J . Renaissance of cancer therapeutic antibodies. Drug Discov.Today, 2003, 8(11):503~510
    [139] TorchilinV. P., Lakoubov L. Z., Estrov Z., Therapeutic potential of antinuclear autoantibodies in cancer. Cancer Ther., 2003, 1 (1): 179~190
    [140] RIhovb B., Receptor-mediated targeted drug or toxin delivery. Adv. Drug Deliver. Rev., 1998, 29(3):273~289
    [141] Chari R. V. J., Targeted delivery of chemotherapeutics: tumor activated prodrug therapy. Adv. Drug Deliver. Rev., 1998, 3l(l-2):89~104
    [142] Suzawa T., Nagamura S., Saito H., et al. Enhanced tumor cell selectivity of adriamycin-monoclonal antibody conjugate via a poly(ethylene glycol)-based cleavable linker. J. Controlled. Release, 2002, 79(l-3):229~242
    [143] Brannon-Peppas L., Blanchette O. J., Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliver. Rev, 2004, 56 (12): 1649~1659
    [144] Chen Q. R., Zhang L., Gasper W., et al. Targeting tumor angiogenesis with gene therapy. Mol. Genet. Metab., 2001, 74 (1-2): 120~127
    [145] Reynolds R. A., Moghimi M. S., Hodivala-Dilke K., Nanoparticle-mediated gene delivery to tumor vasculature. Trends Mol. Med, 2003, 9 (1), 2~4
    [146] Hood D. J., Bednarski M., Frausto R., et al. Tumor regression by targeted gene delivery to the neovasculature. Science, 2002, 296(55 77) : 2404~2407
    [147] Pasqualini R., Vascular targeting with phage peptide libraries. Q. J. Nucl. Med., 1999, 43(2):159~162
    [148] Arap W., Pasqualini R., Ruoslahti E., Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model, Science, 1998, 279 (5349): 377~380
    [149] Otsuka, H., Y. Nagasaki, and K. Kataoka, PEGylated NPs for biological and pharmaceutical applications. Advanced Drug Delivery Reviews, 2003. 55: 403~419
    [150] Otsuka, H., Y. Nagasaki, and K. Kataoka, Self-assembly of poly ethylene glycol -based block copolymers for biomedical applications. Current Opinion in Colloid & Interface Science, 2001. 6: 3 ~ 10
    [151] Junko Matsumoto, Yuichiro Nakada, Kazuo Sakurai, et al, Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro, International Journal of Pharmaceutics 1999. 185: 93 ~ 101
    [152] Fresta, M., et al., Pefloxacin mesilate- and ofloxacin-loaded polyethylcyanoacrylate nanoparticles; characterization of the colloidal drug carrier formulation. J. Pharm. Pharmacol. Sci., 1995. 84: 895~901
    [153] Allemann, E., et al., Invitro extended-release properties of drug-loaded poly(D,L-lactic) acid nanoparticles produced by a salting-out procedure. Pharm. Res., 1993. 10: 1732~1737
    [154] Deng, L. D., Methoxy Poly(ethylene glycol)-b-Poly(L-lactic acid) Copolymer Nanoparticles as Delivery Vehicles for Paclitaxel, Journal of Applied Polymer Science, 2005. 98: 2116~2122
    [155] Deng, L. D., Sun D X, Yao F L, Huo J Z, and Dong A J, China J of Appl. Chemistry, 2004. 21:247
    [156] Zhang Y T, Dong A J, Deng L D, Yuan Y J, In vitro release kinetics of amphiphilic block copolymer nano-micelles loaded with paclitaxel, J of Chemical Industry and Engineering(China), 2004. 55: 952
    [157] Avgoustakis K., Beletsi A., Panagi Z., et al., PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties, Journal of Controlled Release 2002, 79:123 ~ 135
    [158] Gang R., Feng S., Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel, Biomaterials 2003. 24: 5037~5044.
    [159] Li L., Chen X., Li X., et al, Biodegradable Polylactide/Poly(ethylene glycol)/Polylactide Triblock Copolymer Micelles as Anticancer Drug Carriers, Journal of Applied Polymer Science, 2001. 80: 1976~1982.
    [160] Black, D. B. and Loverng, E.G., Estimation of the degree of crystallinity in digoxin by X-ray and infrared methods. J. Pharm. Pharmacol., 1977, 29, 684~ 687.
    [161] Soppimath, K.S., T.M. Aminabhavi, and A.R. Kulkarni, Biodegradable polymeric nanoparticles as drug delivery devices. J Control Rel, 2001. 70: 1~20.
    [162] Niwa, T., et al., Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with D,L-lactide / glycolide copolymer by a novel spontaneous emulsification solvent diffusion method and the drug release behavior. J. Control. Rel, 1993. 25: 89-98
    [163] Magenheim, B., M.Y. Levy, and S. Benita, A new in vitro technique for the evaluation of drug release profiles from colloidal carriers-ultrafiltration technique at low pressure. Int. J. Pharm., 1993. 94: 115 ~ 123
    [164] Rodrigues Jr, J.M., et al., Premaquine-loaded poly(lactide) nanoparticles: physicochemical study and acute tolerance in mice. Int. J. Pharm., 1995. 126: 253-260.
    [165] Khandare, J., and Minko, T. Polymer-drug conjugates: Progress in polymeric prodrugs. Prog. Polym. Sci. 2006, 31, 359-397.
    [167] Haag, R. K., F. Polymer therapeutics: concepts and applications. Angew. Chem Int. Ed, 2006, 45, 1198-1215
    [168] Sawa, T. S., S. K.; Maeda, H. Water soluble polymers in medicine: polymer-drug conjugates in chemotherapy. PBM Series 1 (Introduction to Polymeric Biomaterials), 2003, 233~261.
    [169] Greish, K. F., J.; Inutsuka, T.; Nagamitsu, A.; Maeda, H. Macromolecular therapeutics: Advantages and prospects with special emphasis on solid tumor targeting. Clin. Pharmacokinet. 2003, 42, 1089-1105.
    [170] Rowinsky, E. K. R., J.; Ochoa, L.; Takimota, C. H.; Forouzesh, B.; Schwartz, G.; Hammond, L. A.; Patnaik, A.; Kwiatek, J.; Goetz, A.; Denis, L.; McGuire, J.; Tolcher, A. W. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J. Clin. Oncol. 2003, 21, 148-157.
    [171] Nori, A. K., J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Delv. Rev. 2005, 57, 609-636.
    [172] Duncan, R., Vicent, M. J., Greco, F., and Nicholson, R. I. Polymer-drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocrine-Related Cancer, 2005, 12, 189-199.
    [173] Nan, A. G., H.; Hebert, C.; Siavash, H.; Nikitakis, N.; Reynolds, M.; Sauk, J. J. Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck. J. Drug Targeting, 2005, 13, 189-197.
    [174] Hamann, P. R. H., L. M.; Beyer, C. F.; Greenberger, L. M.; Lin, C.; Lindh, D.; Menendez, A. T.; Wallace, R.; Durr, F. E.; Upeslacis, J. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjugate Chem. 2005, 16, 346~353
    [175] Singer, J. W. D. V., P.; Bhatt, R. T., J.; Klein, P. L., C.; Milas, L.; Lewis, R. A.; Wallace, S. Conjugation of camptothecins to poly(L-glutamic acid). Ann. New YorkAcad. Sci. 2000, 922, 136-150
    [176] Li, C. Poly(L-glutamic acid)-anticancer drug conjugates. Adv. Drug Deliv. Rev. 2002, 54, 695-713
    [177] Ye, F. K., T.; Jeong, E.-K.; Wang, X.; Sun, Y.; Johnson, M.; Lu, Z.-R. Noninvasive visualization of in vivo drug delivery of poly(L-glutamic acid) using contrast-enhanced MRI. Mol. Pharm. 2006, 3, 507~515
    [178] Greupink, R. B., H. I.; Bouma, W.; Reker-Smit, C.; Meijer, D. K. F.; Beljaars, L.; Poelstra, K. The antiproliferative drug doxorubicin inhibits liver fibrosis in bile duct-ligated rats and can be selectively delivered to hepatic stellate cells in vivo. . J. Pharm. Exp. Therap. 2006, 317, 514-521
    [179] Ibrahim, N. K. S., B.; Page, R.; Doval, D.; Patel, K. M.; Rao, S. C.; Nair, M. K.; Bhar, P.; Desai, N.; Hortobagyi, G. N. Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J. Clin. Oncol. 2005, 23, 6019-6026
    [180] Mansour, A. M. D., J.; Esser, N.; Hamada, F. M.; Badary, O. A.; Unger, C.; Fichtner, I.; Kratz, F. Enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug designed to be cleaved by matrix metalloproteinase 2. Cancer Res. 2003, 63, 4062-4066.
    [181] Gillies, E. R. G., A. P.; Frechet, J. M. J. Acetals as pH-sensitive linkages for drug delivery. Bioconjugate Chemistry, 2004, 15, 1254~1263.
    [182] Hovorka, O. E., T.; Subr, V.; Strohalm, J.; Ulbrich, K.; Rihova, B. N-(2-Hydroxypropyl)methacrylamide based macromolecular therapeutics: internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition. J. Drug Targeting, 2006, 14, 391~403.
    [183] Gao, S.-Q. L., Z.-R.; Petri, B.; Kopeckova, P.; Kopecek, J. Colon-specific 9-aminocamptothecin-HPMA copolymer conjugates containing a 1,6-elimination spacer. J. Control. Release, 2006, 110, 323-331.
    [184] Vicent, M. J., Manzanaro, S., de la Fuente, J. A., and Duncan, R. HPMA Copolymer-1,5-Diazaanthraquinone Conjugates as Novel Anticancer Therapeutics. J. Drug Targeting, 2004, 12, 503-515
    [185] Ulbrich, K. E., T.; Chytil, P.; Jelinkova, M.; Rihova, B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Targeting, 2004, 12, 477-489
    [186] Gianasi, E. C., F.; Uchegbu, I. F.; Florence, A. T.; Duncan, R. Pharmaceutical and biological characterization of a doxorubicin-polymer conjugate (PK1) entrapped in sorbitan monostearate span 60 niosomes. Int. J. Pharm., 1997, 148, 139~148
    [187] Vicent, M. J., Tomlinson, R., Brocchini, S., and Duncan, R. Polyacetal-diethylstilbestrol: A polymeric drug designed for pH-triggered activation. J. Drug Targeting, 2004, 12, 491~501.
    [188] Gillies, E. R. F., J. M. J. Designing macromolecules for therapeutic applications: Polyester dendrimer-poly(ethylene oxide) \"Bow-Tie\" hybrids with tunable molecular weight and architecture. J. Am. Chem. Soc., 2002, 124, 14137~14146
    [189] Yu, D., Peng, P., Dharap, S. S., Wang, Y., Mehlig, M., Chandna, P., Zhao, H., Filpula, D., Yang, K., Borowski, V., Borchard, G., Zhang, Z., and Minko, T. Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: The inhibition of tumor growth in vivo. J. Control. Release, 2005, 110, 90~102
    [190] Dharap, S. S. Q., B.; Williams, G. C.; Sinko, P.; Stein, S.; Minko, T. Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LH-RH peptides. Journal of Controlled Release, 2003, 91, 61-73
    [191] Veronese, F. M., Schiavon, O., Pasut, G., Mendichi, R., Andersson, L., Tsirk, A., Ford, J., Wu, G., Kneller, S., Davies, J., and Duncan, R. PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity. Bioconjugate Chem., 2005, 16, 775~784
    [192] Pechar, M. B., A.; Ulbrich, K.; Jelinkova, M.; Rihova, B. Poly(ethylene glycol)-doxorubicin conjugates with pH-controlled activation. J. Bioact. Compat. Polym., 2005, 20, 319-341
    [193] Rodrigues, P. C. A. B., U.; Schumacher, P.; Roth, T.; Fiebig, H. H.; Unger, C.; Messori, L.; Orioli, P.; Paper, D. H.; Mulhaupt, R.; Kratz, F. Acid-sensitive polyethylene glycol conjugates of doxorubicin: preparation, in vitro efficacy and intracellular distribution. Bioorgan. Med. Chem., 1999, 7, 2517~2524.
    [194] Schoenmakers, R. G. v. d. W., P.; Elbert, D. L.; Hubbell, J. A. The effect of the linker on the hydrolysis rate of drug-linked ester bonds. J. Control. Release 2004, 95,291-300.
    [195] Riebeseel, K. B., E.; Loeser, R.; Breiter, N.; Hanselmann, R.; Muelhaupt, R.; Unger, C.; Kratz, F. Polyethylene glycol conjugates of methotrexate varying in their molecular weight from MN 750 to MN 40000: Synthesis, characterization, and structure-activity relationships in vitro and in vivo. Bioconjugate Chem., 2002, 13,773-785.
    [196] Khandare, J. J., Jayant, S., Singh, A., Chandna, P., Wang, Y., Vorsa, N., and Minko, T. Dendrimer versus linear conjugate: Influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjugate Chem., ACS ASAP. 2006
    [197] Caldwell, G. N., E. W.; Van Rensburg, C. E. J. Cytotoxicity of selected water-soluble polymer-cis-diamminedichloroplatinum(II) conjugates against the human HeLa cancer cell line. Journal of Inorganic and Organometallic Polymers 1997,7,217-231.
    [198] Simone, T., Ranieri, B., Roberto, S., and Emo, C. Poly (ester-sulfide) from oligo(oxyethylene) dithiols and bis(acrylates). journal of bioactive and compatible polymers, 2002, 17,3-21.
    [199] 程能林, 溶剂手册 (第二版), 北京: 化学工业出版社, 2001.
    [200] Sudimack J, Lee R J. Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews,2000,41(2):147~162.
    [201] Reddy, J.A.; Clapp, D W; Low, P S. Retargeting of viral vectors to the folate receptor endocytic pathway. Journal of Controlled Release. 2001,74(l-3):77~82
    [202] Lu,Yingjuan; Low, Philip S. Immunotherapy of folate receptor-expressing tumors review of recent advances and future prospects. Journal of Controlled Release. 2003,91(l):17~29.
    [203] Leamon, Christopher P.; Low, Philip S. Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today. 2001,6(l):44~52
    [204] Holm J, Hansen S L, Heier M M, et al. High-Affinity Folate Receptor in Human Ovary, Serous Ovarian Adenocarcinoma, and Ascites: Radioligand Binding Mechanism, Molecular Size, Ionic Properties, Hydrophobic Domain, and Immunoreactivity.A rchives of Biochemistry and Biophysics. 1999, 366(2):183~ 191.
    [205] Holme,Kevin R, Perlin,Arthur S .Chitosan N-sulfate.A water-soluble polyelectrolyte,Carbohydrate Research, 1997,30 2(l-2):,7~12.
    [206] Melnyk S, Pogribna M,Miller B J. et al., Uracilm is incorporation, D NA strand breaks, and gene amplification are associated with tumorigenic cell transformation in folate deficient/repleted Chinese hamster ovary cells, Cancer Leters 1999,146(1):35~44.
    [207] Yaral H, Aybar F, Kabakc G et al., Diastolic dysfunction and increased serum homocysteine concentrations may contribute to increased cardiovascular risk in patients with polycystic ovary syndrome, Fertility and Sterility, 2001,76(3):511~ 516
    [208] Vlastos A T, Schottenfeld D, Follen M, Biomarkers and their use in cervical cancer chemoprevention, Critical Reviews in Oncology/Hematology 2003,46(3):261~273.
    [209] Vallet J L, Smith T P, Sonstegard T S et al., Structure of the genes for porcine endometrial secreted and membrane folate binding proteins, Domestic Animal Endocrinology,2001,21(l):55~72.
    [210] Raghunathan K, Priest D G, Modulation of fluorouracil antitumor activity by folic acid in a murine model system Biochemical Pharmacology, 1999,58(5): 835~839.
    [211] Raghunathan, K, Schmitz J C, Priest D G, Impact of schedule on leucovorin potentiation of fluorouracil antitumor activity in dietary folic acid deplete mice Biochemical Pharmacology,1997,53(8):1 197~1202.
    [212] Ma J. The role of folate in colon cancer, Food and Chemical Toxicology, Volume:, Issue:, July, 1997,35(7):735~736.
    [213] Joseph S L, Lenore A, Nutritional status of folate and colon cancer risk: evidence from NHANES I epidemiologic follow-up study, Annals of Epidemiology, 2001,ll(l):65~72.
    [214] Ishikawa J, Okano oJ ,Ohki K. et al ., Phagocytosis of dictyostelium discoideum studied by the particle-tracking method, Experimental Cell Research, 2003,288(2):268~276.
    [215] Akoglu B, Faust D, Milovic V et al, Folate and chemoprevention of colorectal cancer: is 5-methyl-tetrahydrofolate an active antiproliferat -ive agent in folate-treated colon-cancer cells. Nutrition, 2001,17(7-8):652~653.
    [216] van Steenis J H, van Maarseveen E M, Verbaan F J et al., Preparation and characterization of folate-targeted PEG-coated PDMAEMA-based polyplexes Journal of Controlled Release, 2003, 87(1-3):6167~176.
    [217] Mislick K A, Baldeschwieler J D, Kayyem J F et al., Transfection of folate-polylysine DNA complexes: Evidence for lysosomal delivery, Bioconjugat. Chemistry, 1995,(6):512~515.
    [218] C. P. Leamon, D.Weigl, R. W. Hendren, Folate copolymer mediated transfection of cultured cells, Bioconjugate Chemistry, 1999(10):947~957.
    [219] Guo W, Lee R J, Receptor-targeted gene delivery via folate conjugated polyethylenimine, AAPS Pharmsci. 1999(1): 19.
    [220] Benns J M, Maheshwari A, Furgeson D Y et al, Folate-PEG-folate-graftpolyethylenimine-based gene delivery, Journal of Drug Target, 2001(9): 123-139.
    [221] Benns J M, Mahato R 1, Kim S W, Optimization of factors influencing the transfection efficiency of folate-PEG-folate-polygraft-polyethyenimine, Journal of Controlled Release, 2002(79):255~269.
    [222] Choi Y H, Liu F, Kim J S et al., Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier, Journal of Controlled Release, 1998(54):39~148.
    [223] Ogris M, Brunner S, Schuller S et al., PEGylated DNA/ transferrin-PEI complexes: reduced inter-action with blood components, extended circulation in blood and potential for systemic gene delivery, Gene Therapy, 1999,(6):595~605
    [224] Erbacher P, Bettinger T, Belguise V P et al ., Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI), Journal of Gene Medicine,1999(l):210~222
    [225] C .P.Leamon, P.S.Low, Cytotoxicity of mornordin-folate conjugates in cultured human cells, J. Biol. Chem. 1992,267:24966-24971.
    [226] K.A. Mislick, J.D. Baldeschwieler, J.F. Kayyem, T.J. Meade, Transfection of folate-polylysine DNA complexes: evidence for lysosomal delivery, Biocornjug. Chem. 1995,6: 512-515.
    [227] J.A. Reddy, P.S. Low, Folate-mediated targeting of therapeutic and imagi agents to cancers,Drug Carrier Syst.1998.15 :587~627
    [228] C.P.Leamon, D.Weigl, R.W.Hendren, Folate copolymer-mediated transfection of cultured cells, Bioconjug. Chem. 1999,10 :947~957
    [229] Benns J M, Mahato R I, Kim S W Optimization of factors influencing the trmsfection efficiency of folate-PEG-folate-graft-polyethylenimine,Joumal of Controlled Release ,2002,79(l-3):255~269
    [230] Ono, Y.; Shikata, T., Hydration and dynamic behavior of poly(N-isopropylacrylamide)s in aqueous solution: A sharp phase transition at the lower critical solution temperature. J. Am. Chem. Soc. 2006, 128, 10030~10031
    [231] Okada, Y.; Tanaka, F., Cooperative hydration, chain collapse, and flat LCST behavior in aqueous poly(N-isopropylacrylamide) solutions. Macromolecules 2005, 38, 4465-4471
    [232] Schild, H. G., Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163-249.
    [233] Maeda, Y.; Higuchi, T.; Ikeda, I., Change in hydration state during the coil-globule transition of aqueous solutions of poly(N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 2000, 16, 7503-7509.
    [234] Heskins, M.; Guillet, J. E., Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. Chem. 1968, A2, 1441-1455.
    [235] Kujawa, P.; Aseyev, V.; Tenhu, H.; Winnik, F. M., Temperature-sensitive properties of poly(N-isopropylacrylamide) mesoglobules formed in dilute aqueous solutions heated above their demixing point. Macromolecules 2006, 39, 7686-7693.
    [236] Galaev, I. Y.; Mattiasson, B., 'Smart' polymers and what they could do in biotechnology and medicine. Trends Biotech. 1999, 17, 335-340.
    [237] Jeong, B.; Gutowska, A., Lessons from nature: stimuliresponsive polymers and their biomedical applications. Trends Biotech. 2002, 20 305-311.
    [238] Chilkoti, A.; Dreher, M. R.; Meyer, D. E.; Raucher, D., Targeted drug delivery by thermally responsive polymers. Adv. Drug Delivery Rev. 2002, 54, 613-630.
    [239] Osada, Y.; Gong, J. P.; Tanaka, Y., Polymer Gels. J. Macromol. Sci., Polym. Rev. 2004, C44, 87-112.
    [240] Qiu, Y.; K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Delivery Rev. 2001, 53 321-339.
    [241] Wang, J.; Chen, Z.; Mauk, M.; Hong, K.-S.; Li, M.; Yang, S.; Bau, H. H., Self-actuated, thermo-responsive hydrogel valves for lab on a chip. Biomed. Microdev. 2005, 7, 313-322.
    [242] Yoshida, R.; Sakai, K.; Okano, T.; Sakurai, Y., Pulsatile drug delivery systems using hydrogels. Adv. Drug Delivery Rev. 1993, 11, 85-108.
    [243] Nolan, C. M.; Gelbaum, L. T.; Lyon, L. A., 1H NMR Investigation of Thermally Triggered Insulin Release from Poly(N-isopropylacrylamide) Microgels. Biomacromolecules 2006, 7, (10), 2918-2922.
    [244] Na, K.; Park, J. H.; Kim, S. W.; Sun, B. K.; Woo, D. G.; Chung, H.-M.; Park, K.-H., Delivery of dexamethasone, ascorbate, and growth factor (TGF b-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes. Biomaterials 2006, 27, (35), 5951-5957.
    [245] Berndt, I.; Pedersen, J. S.; Lindner, P.; Richtering, W., Structure of doubly temperature sensitive core-shell microgels based on poly-N-isopropylacrylamide and poly-N-isopropylmethacrylamide. Progress in Colloid and Polymer Science 2006, 133, 35-40.
    [246] Jeong, B.; Kim, S. W.; Bae, Y. H., Thermosensitive sol-gel reversible hydrogels. Adv. Drug Delivery Rev. 2002, 54, 37-51.
    [247] Kono, K.; Takagishi, T., Temperature-sensitive liposomes. Meth. Enzymol. 2004, 387, 73-82.
    [248] Kono, K., Thermosensitive polymer-modified liposomes. Adv. Drug Delivery Rev. 2001,53,307-319.
    [249] Grassi, G.; Farra, R.; Caliceti, P.; Guarnieri, G.; Salmaso, S.; Carenza, M.; Grassi, M., Temperature-sensitive hydrogels: potential therapeutic applications. Am. J. Drug Delivery 2005, 3, 239-251.
    [250] Ichijo, H.; Kishi, R., Thermo-responsive polymer gels. Springer Series in Materials Science 1999, 35, (Macromolecular Science and Engineering), 71-83.
    [251] Nakayama, M.; Okano, T.; Miyazaki, T.; Kohori, F.; Sakai, K.; Yokoyama, M., Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release 2006, 115, 46-56.
    [252] Nakayama, M.; Okano, T., Intelligent thermoresponsive polymeric micelles for targeted drug delivery. J. Drug Delivery Sci. Techn. 2006, 16, 35-44.
    [253] Zheng, P.; Jiang, X.; Zhang, X.; Zhang, W.; Shi, L., Formation of gold@polymer core-shell particles and gold particle clusters on a template of thermoresponsive and pH-responsive coordination triblock copolymer. Langmuir 2006, 22, 9398-9401.
    [254] Stocker, G.; Vandevyver, C.; Hilbrig, F.; Freitag, R., Purification of RT-PCR competent poly(A) mRNA from crude cell lysate by affinity precipitation. Biotechn. Prog. 2006, ACS ASAP.
    [255] Lokuge, I.; Wang, X.; Bohn, P. W., Temperature-Controlled Flow Switching in Nanocapillary Array Membranes Mediated by Poly(N-isopropylacrylamide) Polymer Brushes Grafted by Atom Transfer Radical Polymerization. Langmuir, ACS ASAP.
    [256] Cheng, N.; Liu, W.; Cao, Z.; Ji, W.; Liang, D.; Guo, G.; Zhang, J., A study of thermoresponsive poly(N-isopropylacrylamide)/polyarginine bioconjugate non-viral transgene vectors. Biomaterials 2006, 27, 4984-4992.
    [257] Shibata, T.; Kanaoka, S.; Aoshima, S., Quantitative synthesis of star-shaped poly(vinyl ether)s with a narrow molecular weight distribution by living cationic polymerization. J. Am. Chem. Soc. 2006, 128, 7497-7504.
    [258] Guemuesderelioglu, M.; Kesgin, D., Release kinetics of bovine serum albumin from pH-sensitive poly(vinyl ether) based hydrogels. International Journal of Pharmaceutics 2005, 288, (2), 273-279.
    [259] Sugihara, S.; Hashimoto, K.; Okabe, S.; Shibayama, M.; Kanaoka, S.; Aoshima, S., Stimuli-responsive diblock copolymers by living cationic polymerization: Precision synthesis and highly sensitive physical gelation. Macromolecules 2004, 37, 336-343.
    [260] Gumusderelioglu, M.; Karakecili, A. G., Uses of thermoresponsive and RGD/insulin-modified poly(vinyl ether)-based hydrogels in cell cultures. Journal of Biomaterials Science, Polymer Edition 2003, 14, (3), 199-211.
    [261] Hegewald, J.; Schmidt, T.; Eichhorn, K.-J.; Kretschmer, K.; Kuckling, D.; Arndt, K.-F., Electron beam irradiation of poly(vinyl methyl ether) films. 2. Temperature-dependent swelling behavior. Langmuir 2006, 22, 5152-5159.
    [262] Loozen, E.; Nies, E.; Heremans, K.; Berghmans, H., The influence of pressure on the lower critical solution temperature miscibility behavior of aqueous solutions of poly(vinyl methyl ether) and the relation to the compositional curvature of the volume of mixing. J. Phys. Chem. B 2006, 110, 7793-7802.
    [263] Bhattacharjee, R. R.; Chakraborty, M.; Mandal, T. K., Reversible association of thermoresponsive gold nanoparticles: Poly electrolyte effect on the lower critical solution temperature of poly(vinyl methyl ether). J. Phys. Chem. B 2006, 110, 6768-6775.
    [264] Chee, C. K.; Rimmer, S.; Soutar, I.; Swanson, L., Fluorescence investigations of the conformational behaviour of poly(N-vinylcaprolactam). React. Funct. Polym. 2006,66, 1-11.
    [265] Bronstein, L. M.; Kostylev, M.; Tsvetkova, I.; Tomaszewski, J.; Stein, B.; Makhaeva, E. E.; Okhapkin, I.; Khokhlov, A. R., Core-shell nanostructures from single poly(N-vinylcaprolactam) macromolecules: Stabilization and visualization. Langmuir 2005, 21, 2652-2655.
    [266] Vihola, H.; Laukkanen, A.; Valtola, L.; Tenhu, H.; Hirvonen, J., Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 2005, 26, 3055-3064.
    [267] Laukkanen, A.; Valtola, L.; Winnik, F. M.; Tenhu, H., Formation of colloidally stable phase separated poly(N-vinylcaprolactam) in water: A study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules 2004, 37, 2268-2274.
    [268] Lutz, J.-F.; Hoth, A., Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 2006, 39, 893-896.
    [269] Lutz, J.-F.; Akdemir, O.; Hoth, A., Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: Is the age of poly(NIPAM) over? J. Am. Chem. Soc. 2006, 128, 13046-13047.
    [270] Hua, F.; Jiang, X.; Li, D.; Zhao, B., Well-defined thermosensitive, water-soluble polyacrylates and polystyrenics with short pendant oligo(ethylene glycol) groups synthesized by nitroxide-mediated radical polymerization. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 2454-2467.
    [271] Li, D.; Jones, G. L.; Dunlap, J. R.; Hua, F.; Zhao, B., Thermosensitive hairy hybrid nanoparticles synthesized by surface-initiated atom transfer radical polymerization. Langmuir 2006, 22, 3344-3351.
    [272] Zhao, B.; Li, D.; Hua, F.; Green, D. R., Synthesis of thermosensitive water-soluble polystyrenics with pendant methoxyoligo(ethylene glycol) groups by nitroxide-mediated radical polymerization. Macromolecules 2005, 38, 9509-9517.
    [273] Gnanou, Y.; Hild, G.; Bastide, J., Hydrophilic polyurethane networks exhibiting anisotropic swelling behaviour. J. Polym. Mater. 1987, 4, 123-130
    [274] Roberts, M. J.; Bentley, M. D.; Harris, J. M., Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 2002, 54, 459-476.
    [275] Wang, N.; Dong, A. J.; Kirk, E. A. V.; Tang, H.; Murdoch, W. J.; Radosz, M.; Shen, Y., Synthesis of degradable functional linear poly(ethylene glycol) as water-soluble drug delivery carriers. Macro. Biosci. 2006.
    [276] Mao, H.; Li, C.; Zhang, Y.; Furyk, S.; Cremer, P. S.; Bergbreiter, D. E., High-throughput studies of the effects of polymer structure and solution components on the phase separation of thermoresponsive polymers. Macromolecules 2004, 37, 1031-1036.
    [277] Silverstein S C, Steinmann R M, Cohn Z A. Endocytosis.A nnualR eview of Biochemistry, 1977,46:669-722
    [278] 翟中和主编.细胞生物学.北京:高等教育出版社,1995, 139
    [279] Marcusson E G Bhat B, Manoharan M, et al. Phosphorothioate Oligo deoxyribonucleotides Dissociate from Cationic Lipids before Entering the Nucleus. N ucleic Acids Research, 1998, 26(8):2016-2023
    [280] Hu Q, Bally M B, Madden T D. Subcellular Trafficking of Antisense Oligonucletides and Down-regulation of bcl-2 Gene Expression in Human Melanoma Cells using a Fusogenic Liposome Delivery System. N ucleic Acids Research, 2002, 30 (16):3632-3641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700