放射性核素~(60)Co在固—液界面上的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
60C0是一种比较常见的放射性核素,在工业、农业、医学等方面有广泛的应用。60Co可以放出很强的伽玛射线,导致脱发、再生性障碍贫血症和白血病等疾病。因此,去除水体中的放射性核素60Co对水资源的保护和人类的健康具有重要意义。
     本文采用宏观静态吸附法研究放射性核素60Co在高岭石、蒙脱石、针铁矿、氧化钛和鸡蛋壳衍生物上的吸附行为,着重考察不同环境条件(接触时间、pH值、离子强度、温度、竞争离子和腐殖酸)对放射性核素60Co在以上几种材料上吸附的影响,并通过动力学、热力学研究以及模型拟合阐明60Co的吸附机理。
     研究结果表明:
     60Co在高岭石和蒙脱石这两种粘土上的吸附受pH、离子强度和竞争离子的影响很大。在低pH下,60Co在两种粘土上的吸附随离子强度的增大而减小;在高pH下,60Co在两种粘土上的吸附不受离子强度的影响。在同一pH下,60Co在两种粘土上的吸附顺序表现为:Li+>Na+>K+,说明竞争离子可以改变粘土表面的性质,从而影响粘土对60Co的吸附。在低pH下,富里酸的存在促进了60Co在两种粘土上的吸附;在高pH下,富里酸对60Co在两种粘土上的吸附起抑制作用。在低pH下,60C0在两种粘土上的吸附主要通过离子交换和外层络合共同作用实现;在高pH下,60Co在两种粘土上的吸附主要通过内层络合作用实现。
     离子强度对60Co在二氧化钛和针铁矿两种氧化物上吸附的影响效果不同。在低pH下,60Co在针铁矿上的吸附随离子强度的增大而减小;在高pH下,60Co在针铁矿上的吸附不受离子强度的影响。然而,在任何pH下,60Co在二氧化钛上的吸附都不受离子强度的影响。在低pH下,富里酸的存在促进了60Co在两种氧化物上的吸附;在高pH下,富里酸的存在抑制了60Co在两种氧化物上的吸附。60Co在针铁矿和二氧化钛上的吸附机理不同:在针铁矿上的吸附主要通过离子交换和表而络合共同作用实现;在二氧化钛上的吸附主要通过内层络合作用实现。
     pH、离子强度和竞争离子对60Co在羟基磷灰石上吸附的影响与在两种粘土上的情况相似。但是,富里酸对60Co在羟基磷灰石上吸附的影响与在以上几种材料上的情况不同:在低pH下,富里酸的存在抑制了60Co在羟基磷灰石上的吸附;在高pH下,富里酸对60Co在羟基磷灰石上的吸附没有影响。在低pH下,60Co在羟基磷灰石上的吸附主要通过离子交换和外层络合共同作用实现;在高pH下,60Co在羟基磷灰石上的吸附主要通过内层络合作用实现。
     高岭石、蒙脱石、针铁矿、二氧化钛和鸡蛋壳衍生物均价格低廉,对放射性核素60Co都有较强的吸附能力,在处理放射性核素60co污染废水领域有广阔的实际应用前景。
60Co, one of the most common radionuclides, is widely utilized in industrial, agriculture and medical applications.60Co is characterized by emission of high gamma energy which can cause alopecia, reproducibility obstacle of anemia and leukemia. Therefore, the removal of60Co from wastewater is of great significance for human health and environment protection.
     This work contributes to the sorptions of60Co on kaolinite, montmorillonite, goethite, titanium dioxide and eggshell derivative as a function of contact time, pH, ionic strength, temperature and foreign ions in the absence and presence of humic acid using a batch technique. Sorption mechanisms of60Co on materials above are determined through the dynamics data, thermodynamics research and model fitting. The results show that:
     The effects of pH, ionic strength and foreign ions on sorptions of60Co on kaolinite and montmorillonite are obvious. The sorptions of60Co on the two clays above decrease with increasing ionic strength at low pH values. However, the sorptions of60Co on the two clays above are independent of ionic strength at high pH values. The sorptions of60Co on the two clays above under the same pH values are in the following sequence:Li+>Na+>K+, indicating that the cations can alter the surface properties of the two clays and thus influence the sorptions of60Co. The presence of FA enhances60Co sorptions on the two clays above at low pH, but suppresses60Co sorptions at high pH. Outer-sphere surface complexation and/or ion exchange are the main mechanisms of60Co sorptions on the two clays above at low pH values, whereas inner-sphere surface complexation is the main adsorption mechanism at high pH values.
     The effects of ionic strength on sorptions of60Co on goethite and titanium dioxide are different. The sorption of60Co on goethite decreases with increasing ionic strength at low pH values, and is independent of ionic strength at high pH values. However, the sorption of60Co on titanium dioxide is independent of ionic strength at any pH values. The presence of FA enhances60Co sorptions on goethite and titanium dioxide at low pH values, but reduces60Co sorptions at high pH values. The sorption mechanisms of60Co on goethite and titanium dioxide are different. Surface complexation and/or ion exchange are the main mechanisms of60Co sorption on goethite, whereas inner-sphere surface complexation is the single sorption mechanism of60Co sorption on titanium dioxide.
     The effects of pH, ionic strength and foreign ions on sorption of60Co on hydroxyapatite are similar to that on the two clays above. However, the effect of FA on sorption of60Co on hydroxyapatite is different from that on other materials above. The presence of FA suppresses60Co sorption on hydroxyapatite at low pH, but has no effect on60Co sorption at high pH. Outer-sphere surface complexation and/or ion exchange are the main mechanisms of60Co sorption on hydroxyapatite at low pH values, whereas inner-sphere surface complexation is the main sorption mechanism at high pH values.
     Kaolinite, montmorillonite, goethite, titanium dioxide and eggshell derivative can be used to remove60Co from wastewater on a large scale, due to their low cost and better sorption capacity of60Co.
引文
[1]游全程。钴的危害[J]。冶金劳动卫生。1980,S1:35-36.
    [2]王永利,徐国栋。钴资源的开发和利用[J]。河北北方学院学报(自然科学版)。2005,21:18-21.
    [3]谈辉明,杨启文。重金属废水处理技术的现状与展望[J]。环境科学与技术。1997,1:35-37.
    [4]唐熹霖。弱碱性阴离子交换树脂去除低放废水中痕量核素研究[硕士论文]。北京:北京林业大学。2007.
    [5]陈勇生,孙启俊等。重金属的生物吸附技术研究[J]。环境科学进展。1997,5:34-43.
    [6]王黎,孔昌俊。重金属生物治理的新技术[J]。辽宁城乡环境科。1999,19:5-10.
    [7]吴涓,李清彪。重金属生物吸附的研究进展[J]。离子交换与吸附。1998,14:180-187.
    [8]叶力佳,杜玉成。非金属矿物材料吸附重金属离子的研究进展[J]。中国非金属矿工业导刊。2002,6:27-28.
    [9]陈晋阳,黄卫。用低成本的粘土矿物吸附水溶液中镉离子的研究[J]。应用科技。2002,29:41-43.
    [10]周平,王寻,姚礼。利用天然矿物处理造纸黑液[J]。地学前缘。2000,7:541-545.
    [11]Wagner, J. Use of cationic surfactants to modify surfaces to promote sorption and migration of hydrophobic organic compounds [J]. Environ Sci Technol.1994,28:231-237.
    [12]戴劲草,肖子敬,叶玲,黄继泰。纳米多孔粘土材料[J]。非金属矿。1998,4:1-2.
    [13]张立德,解思深。纳米材料和纳米结构[M]。北京:化学工业出版社。2005.
    [14]王东升,杨小芳,孙中溪。铝氧化物-水界面化学及在水处理中的应用[J]。环境科学学报。2007,27:353-362.
    [15]王峰,张昱,杨敏,崔建云。活性氧化铝对饮用水中氟离子的吸附行为[J]。中国农业大学学报。2003,8:63-65.
    [16]Rabung T., Stumpf T., Geckeis H., Klenze R., Kim J.I. Sorption of Am(Ⅲ) and Eu(Ⅲ) onto γ-alumina:experiment and modeling [J]. Radiochim. Acta.2000,88:711-716.
    [17]Naveau A., Monteil-Rivera F., Dumonceau J., Boudesocque S. Sorption of europium on a goethite surface:influence of background electrolyte [J]. J. Contam. Hydrol.2005,77:1-16.
    [18]Gao Y., Kan A.T., Falkner J.C., Colvin V.L., Tomson M.B. Adsorption of cadmium on anatase nanoparticles-effect of crystal size and pH [J]. Langmuir.2004,20:9585-9593.
    [19]Kolen'ko Y.V., Churagulov B.R., Kunst M., Mazerolles L., Justin C.C. Photocatalytic properties of titania powders prepared by hydrothermal method [J]. Appl. Catal. B.2004, 54:51-58.
    [20]Mattigod S.V., Fryxell G.E., Alford K., Gilmore T., Parker K., Serne J., Engelhard M. Functionalized TiO2 nanoparticles for use for in situ anion immobilization [J]. Environ. Sci. Technol.2005,39:7306-7310.
    [21]薛力。蛋壳的综合利用现状[J]。中国农村小康科技。2007,7:9-90.
    [22]皮钰珍,王淑琴,李秋红。鸡蛋壳膜资源的开发与应用前景[J]。食品科技。2006,4:128-130.
    [23]宾冬梅,马美湖,易诚。蛋壳资源综合利用现状与对策[J]。食品研究与开发。2006,27:212-216.
    [24]张瑞宇。废弃蛋壳的利用价值及其资源化途径与技术[J]。重庆工商大学学报:自然科学版。2006,23:551-555.
    [25]谢新媛。煤燃烧过程固硫剂的研究进展[J]。化工进展。2004,23:1062-1066.
    [26]Tao Z.Y., Zhang J., Zhai J.J. Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy [J]. Anal. Chim. Acta.1999,395:199-203.
    [27]Tao S., Lin B. Water soluble organic carbon and its measurement in soil and sediment [J]. Water Res.2000,34:1751-1755.
    [28]汤鸿霄,微界面水质过程的理论与模式应用[J]。环境科学学报。2001,20:3-9.
    [29]Combes J.M., Chisholm-Brause C.J., Brown Jr G.E., Parks G.A. EXAFS spectroscopic study of neptunium(V) sorption at the a-FeOOH/water interface [J]. Environ. Sci. Technol.1992, 26:376-382.
    [30]Walter M., Arnold T., Reich T., Bernhard G. Sorption of Uranium(Ⅵ) onto ferric oxides in sulfate-rich acid waters [J]. Environ. Sci. Technol.2003,37:2898-2904.
    [31]Bradbury M.H., Baeyens B. Sorption of Eu on Na- and Ca-montmorillonites:experimental investigation and modeling with cation exchange and surface complexation [J]. Geochim. Cosmochim. Acta.2002,66:2325-2334.
    [32]Geckeis H., Rabung Th., Ngo Manh T., Kim J.I., Beck H.P., Humic colloid-borne natural polyvalent metal ions:dissociation experiment [J]. Environ. Sci. Technol.36 (2002) 2946-2952.
    [33]Coppin F., Castet S., Berger G., Loubet M. Microscopic reversibility of Sm and Yb sorption onto smectite and kaolinite:Experimental evidence [J]. Geochim. Cosmochim. Acta.2003, 67:2515-2527.
    [34]Pokhrel D., Viraraghavan T. Arsenic removal from aqueous solution by iron oxide-coated biomass:common ion effects and thermodynamic analysis [J]. Sep. Sci. Technol.2008, 43:3545-3562.
    [1]章燕豪。吸附作用[M]。上海:上海科学技术文献出版社。1989.
    [2]杨智宝,韦进宝。污染控制化学[M]。湖北:武汉大学出版社。1998.
    [3]Sposite G. The surface Chemistry of soils [M]. New York:Oxford University press.1984.
    [4]Hayes K.E., Leckie J.O. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interface [J]. J.Collide Interface Sci.1987,115:564-572.
    [5]Chen C.L., Wang X.K. Adsorption of Ni(Ⅱ) from aqueous solution using oxidized multiwall carbon nanotubes [J]. Ind. Eng. Chem. Res.2006,45:9144-9149.
    [6]Wang X.K., Chen C.L., Hu W.P., Ding A.P., Xu D., Zhou X. Sorption of 243Am(Ⅲ) to multiwall carbon nanotubes [J]. Environ. Sci. Technol.2005,39:2856-2860.
    [7]Chen C.L., Li X,L., Zhao D.L., Tan X.L., Wang X.K. Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes [J]. Colloids Surf. A.2007, 302:449-454.
    [8]Chen C.L., Wang X.K. Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type [J]. Appl. Radiat. Isot.2007,65:155-163.
    [9]Chen C.L., Wang X.K. Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(IV) onto y-Al2O3 [J]. Appl. Geochem.2007,22:436-445.
    [10]Tan X.L., Wang X.K., Fang M., Chen C.L. Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods [J]. Colloids Surf. A.2007, 296:109-116.
    [11]Chen C.L., Li X.L., Wang X.K. Application of oxidized multi-wall carbon nanotubes for Th(IV) adsorption [J]. Radiochim. Acta.2007,95:261-266.
    [12]Xu D., Chen C.L, Tan X.L., Hu J., Wang X.K. Sorption of Th(IV) on Na-rectorite:Effect of HA, ionic strength, foreign ions and temperature [J]. Appl. Geochem.2007,22:2892-2906.
    [13]Xu D, Tan X.L., Chen C.L., Wang X.K. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes [J]. J. Hazard. Mater.2008,154:407-416.
    [14]Murray D.J., Healy T.W. The inteaction of metal ions at the manganes dioxide-solution interface [J]. Geochim. Cosmochim. Acta.1975,39:505-519.
    [15]Hansen A.M., Maya P. Adsorption-desorption behaviors of Pb and Cd in lake chapala [J]. Mexio. Environment International.1997,23:554-564.
    [16]李光林,魏世强。腐殖酸对铜的吸附与解吸特征[J]。生态环境。2003,12:4-7.
    [17]郭亮天,史英霞。超铀元素络合行为研究进展[J]。辐射防护通讯。2003,23:16-23.
    [18]杨月娥,江洪,姜凌。90Sr、237Np、238Pu和241Am在水平土柱中迁移的实验场示[J]。同位素。2003,16:65-69.
    [19]Hu J., Chen C.L., Zhu X.X., Wang X.K. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes [J]. J. Hazard. Mater.2009,162:1542-1550.
    [20]Hu J., Sheng G.D., Ren X.M., Chen C.L., Wang X.K. Removal of 1-naphthylamine from aqueous solution by β-cyclodextrin plasma grafted multiwall carbon nanotubes/iron oxides [J]. J. Hazard. Mater.2011,185:463-471.
    [21]Ho Y.S. Adsorption of heavy metals from waste steams by peat [Ph.D. Thesis]. Birmingham UK:University of Birmingham.1995.
    [22]Srivastava V.C., Mall I.D., Mishra I.M. Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA [J]. J. Hazard. Mater.2006, 134:257-267.
    [23]Weber W.J., Morris J.C. Kinetics of adsorption on carbon from solution [J]. J. Sanit. Eng. Div. Am. Soc. Civ. Eng.1963,89:31-60.
    [24]Bertell F.E., Thomas T.L., Fu Y. Thermodynamics of adsorption from solutions. IV. temperature dependence of adsorption [J]. J. Phys. Chem.1951,55:1456-1462.
    [25]赵振国,赵子建,顾惕人。自溶液中的吸附Ⅻ.活性炭自水中吸附芳香化合物的热力学研究[J]。化学学报。1985,43:813-818.
    [26]傅献彩,沈文霞等。物理化学(下)[M]。北京:高等教育出版社。1990.
    [27]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc.1918,40:1361-1403.
    [28]Choudary N.V., Jasra R.V., Bhat S.G.T., An improved Langmuir approach for prediction of binary gas mixture adsorption equilibria [J]. Separation Science and Technology.1995, 30:2337-2348.
    [29]赵旭,王毅力,郭瑾珑,韩海荣,解明曙。颗粒物微界面吸附模型的分形修止—朗格缪尔(Langmuir)、弗伦德利希(Freundlich)和表面络合模型[J]。环境科学学报。2005,25:52-57.
    [30]Freundlich H., Kapillarchemie:eine Darstellung der Chemie der Kolloide and verwandter Gebiete. Leipzig:Akademische Verlagsge-sellschaf.1909.
    [31]Dubinin M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface [J]. Chem. Rev.1960,60:235-266.
    [32]Adnan O., Mine O.E., Safa O.A. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite [J]. Colloids Surf. A.2006, 277:90-97.
    [33]Altin O. Ozbelge H.O., Dogu T., Use of general purpose adsorption isotherms for heavy metal-clay mineral interactions [J]. J. Colloid Interf. Sci.1998,198:130-140.
    [34]Kinnilburgh G.D. General purpose adsorption isotherms [J]. Environ. Sci. Technol.1986, 20:895-904.
    [35]Aksoyoglu S. Sorption of U(VI) on granite [J]. J. Radioanal. Nucl. Chem.1989,134:393-403.
    [36]Donat R., Akdogan A., Erdem E., Cetisli H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions [J]. J. Colloid Interface Sci.,2005(286),43-52.
    [37]Ozcan A., Oncu E.M., Ozcan A.S. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite [J]. Colloids and Surfaces A.2006,277:90-97.
    [38]Stamm W. Chemistry of the solid-water interface:Processes at the mineral-water and particle-water interface in natural systems [M]. Stumm W.(eds.). New York:Wiley.1992.
    [39]Fletcher P.W., Sposito G. The chemical modeling of clay/electrolyte interactions for montmorillonites [J]. Clay Miner.1989,24:375-391.
    [40]Stumn W., Huang C.P., Jenkins S.R. Specific chemical interaction afecting the stability of dispersed systems [J]. Croat. Client. Acta.1970,42:223-244.
    [41]Schindler P.W., Gamsjager H. Acid-base-reactions TiO2 (anatase)-water interface and the point of zero charge of TiO2 suspensions [J]. Kolloid-Z Z Polym.1972,250:759-763.
    [42]Tessier A., Fortin T., Belzile N., Devitre R.R., Leppard G.G. Metal sorption to diagenic iron and manganese oxyhydroxides and associated organic matter:narrowing the gap between field and laboratory measurements [J]. Geochimica et Cosmochimica Act.1996,60:387-404.
    [43]Manning B.A., Goldberg S. Adsorption and stability of arsenic(111) at the clay mineral-water interface [J]. Environ. Sci. Technol.1997,31:2005-2011.
    [44]Angove M.J., Johnson B.B., Wells J.D. The influence of temperature on the adsorption of cadmium(Ⅰ) and cobalt(Ⅱ) on kaolinite [J]. J. Colloid Interface Sci.1998,204:93-103.
    [45]Westall J., Hohl H. A comparison of electrostatic models for the oxide/solution interface [J]. J. Colloid Interface Sci.1980,12:265-294.
    [46]Yates D.E, Levine S., Healy T.W. Site-binding model of the electrical double layer at theoxide/water interface [J]. Journal of the Chemical Society, Faraday Transactions Ⅰ.1974, 70:1807-1818.
    [47]Davis J.A., James R.O., Leckie J.O. Surface ionization and complexation at the oxide/water interface. Ⅰ. Computation of electrical double layer properties in simple electrolytes [J]. J. Colloid Interface Sci.1978,63:480-499.
    [48]Sahai N., Sverjensky D.A. Evaluation of internally consistent parameters for triple layer model by the systematic analysis of oxide surface titration data [J]. Geochim Cosmochim Acta, 1997,61:2801-2826.
    [49]Charmas R., Piasechi W., Rudzinsi W. Four layer complexiation model for ion adsorption at electrolyte/oxide interface:theoretical foundations [J]. Langmuir 1995,11:3199-3210.
    [50]Charmas R., Piasechi W. Four layer complexiation model for ion adsorption at electrolyte/oxide interface:Interrelation of model parameters [J]. Langmuir 1996,12:5458-5465.
    [51]Davis J.A., Kent D.B. Surface complexation modeling in aqueous geochemistry. In:Hochella M F, White A F,eds. Mineral-Water Interface Geochemistry:Reviews in Mineralogy, Vol 23 (C) [M]. Washington, D C:Miner Soc Am.1990.177-259.
    [52]Wen X.H., Du Q., Tang H.X. Surface complexation model for the heavy metal adsorption on natural sediment [J]. Environ. Sci. Technol.1998,32:870-875.
    [1]叶力佳,杜玉成。非金属矿物材料吸附重金属离子的研究进展[J]。中国非金属矿工业导刊。2002,6:27-28.
    [2陈晋阳,黄卫。用低成本的粘土矿物吸附水溶液中镉离子的研究[J]。应用科技。2002,29:41-43.
    [3]周平,王寻,姚礼。利用天然矿物处理造纸黑液[J]。地学前缘。2000,7:541-545.
    [4]Wagner J. Use of cationic surfactants to modify surfaces to promote sorption and migration of hydrophobic organic compounds [J].Environ Sci Technol.1994,28:231-237.
    [5]戴劲草,肖子敬,叶玲,黄继泰。纳米多孔粘土材料。非金属矿。1998,4:1-2.
    [6]Kannan N., Rengasamy G. Comparison of cadmium ion adsorption on various activated carbons [J]. Water Air Soil Pollut.2005,163:185-201.
    [7]Wang X.K., Chen C.L., Du J.Z., Tan X.L., Xu D., Yu S. M. Effect of pH and aging time on the kinetic dissociation of 243Am(III) from humic acid-coated γ-Al2O3:a chelating resin exchange study [J]. Environ. Sci. Technol.2005,39:7084-7088.
    [8]Lee S., Anderson P. R., Bunker G. B., Karanfil C. EXAFS study of Zn sorption mechanisms on montmorillonite. Environ. Sci. Technol.2004,38:5426-5432.
    [9]Ho Y.S., Wase D.A.J., Forster C.F. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat [J]. Environ.Technol.1996,17:71-77.
    [10]Sheng G.D., Shao D.D., Ren X.M., Wang X.Q., Li J.X., Chen Y.X., Wang X.K. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes [J]. J. Hazard. Mater.2010,178:505-516.
    [11]Kowal-Fouchard A., Drot R., Simoni E., Ehrhardt J.J. Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling [J]. Environ. Sci. Technol.2004, 38:1399-1407.
    [12]Yiizer H., Kara M., Sabah E., Celik M.S. Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems [J]. J. Hazard. Mater.2008,151:33-37.
    [13]Yang ST., Sheng G.D., Tan X.L., Hu J., Du J.Z., Montavon G., Wang X.K. Determination of Ni(Ⅱ) uptake mechanisms on mordenite surfaces:A combined macroscopic and microscopic approach [J]. Geochim Cosmochim Acta.2011,75:6520-6534.
    [14]Chen C.L., Wang X.K. Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type [J]. Appl. Radiat. Isot.2007,65:155-163.
    [15]Sheng G.D., Wang S.W., Hu J., Lu Y., Li J.X., Dong Y.H., Wang X.K. Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature [J]. Colloids Surf. A. 2009,339:159-166.
    [16]Hayes K.F., Leckie J.O. Modeling ionic strength effects on ation adsorption at hydrous oxide/solution interfaces [J]. J. Colloid Interace Sci.1987,115:564-572.
    [17]Pathak P.N., Choppin G.R. Nickel(Ⅱ) sorption on hydrous silica:A kinetic and thermodynamic study [J]. J. Radioanal. Nucl. Chem.2006,268:467-473.
    [18]Saeki K., Kunito T. Estimating sorption affinities of heavy metals on humic acid and silica using a constant capacitance model [J]. Commun. Soil Sci. Plant Anal.2009,40:3252-3262.
    [19]Chen C.L., Wang X.K., Nagatsu M. Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid [J]. Environ Sci Technol.2009, 43:2362-2367.
    [20]Tan X.L., Fan Q.H., Wang X.K., Grambow B. Eu(Ⅲ) sorption to TiO2 (anatase and rutile): Batch, XPS, and EXAFS studies [J]. Environ Sci Technol.2009,43:3115-3121.
    [21]Reddad Z., Gerente C., Andres Y., Cloirec L.P. Adsorption of several metal ions onto a low cost biosorbent:kinetic and equilibrium studies [J]. Environ Sci Technol.2002,36:2067-2073.
    [22]Harter R.D., Naidu R. An assessment of environmental and solution parameter impact on trace-metal sorption by soil [J]. Soil Sci Soc Am J.2001,65:597-612.
    [23]Shukla A., Zhang Y.H., Dubey P., Margrave J.L., Shukla S.S. The role of sawdust in the removal of unwanted materials from water [J]. J Hazard Mater.2002,95:137-152.
    [24]Benaissa H., Benguella B. Effect of anions and cations on cadmium sorption kinetics from aqueous solutions by chitin:experimental studies andmodeling [J]. Environ. Pollut.2004, 130:157-163.
    [25]Esmadi F., Simm J. Sorption of cobalt(Ⅱ) by amorphous ferric hydroxide [J]. Colloids Surf. A.1995,104:265-270.
    [26]Collins C.R., Vala R.K., Sherman D.M. Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite [J]. Geochim Cosmochim Acta.1999,63:2989-3002.
    [27]Buerge-Weirich B., Hari R., Xue H. Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands [J]. Environ Sci Technol.2002,36:328-336.
    [28]Boily J.F., Sjoberg S., Persson P. Structures and stabilities of Cd(II) and Cd(II)-phthalate complexes at the goethite/water interface [J]. Geochim Cosmochim Acta.2005,69:3219-3235.
    [29]Yan W.L., Bai R.B. Adsorption of lead and humic acid on chitosan hydrogel beads [J]. Water Res.2005,39:688-698.
    [30]Yang K., Xing B.S. Adsorption of fulvic acid by carbon nanotubes from water [J]. Environ. Pollut.2009,157:1095-1100.
    [31]Davis J.A. Complexation of trace metals by adsorbed natural organic matter [J]. Geochim. Cosmochim. Acta.1984,48:679-691.
    [32]Christl I., Kretzschmar R. Interaction of copper and fulvic acid at the hematite-water interface [J]. Geochim. Cosmochim. Acta.2001,65:3435-3442.
    [33]Huang J.H., Liu Y.F., Wang X.G. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay [J]. J Hazard Mater.2008,160:382-387.
    [34]Bhattacharyya K.G., Gupta S.S. Adsorption of Fe(Ⅲ), Co(Ⅱ) and Ni(Ⅱ) on ZrO-kaolinite and ZrO-montmorillonite surfaces in aqueous medium [J]. Colloids Surf A.2008,317:71-79.
    [35]Partey F., Norman D., Ndur S., Nartey R. Arsenic sorption onto laterite iron concretions: temperature effect [J]. J Colloid Interface Sci.2008,321:493-500.
    [36]Genc-Fuhrman H., Tjell J.C., McConchie D. Adsorption of arsenic from water using activated neutralized red mud [J]. Environ Sci Technol.2004,38:2428-2434.
    [37]Tan X.L., Fang M., Chen C.L., Yu S.M., Wang X.K. Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution [J]. Carbon.2008,46:1741-1750.
    [38]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc.1918,40:1361-1403.
    [39]Freundlich H. Kapillarchemie:eine Darstellung der Chemie der Kolloide and verwandter Gebiete [M]. Leipzig:Akademische Verlagsge-sellschaf.1909.
    [40]Dubinin M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface [J]. Chem. Rev.1960,60:235-266.
    [41]Adnan O., Mine O.E., Safa O.A. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite [J]. Colloids Surf. A.2006, 277:90-97.
    [42]Bertell F.E., Thomas T.L., Fu Y. Thermodynamics of adsorption from solutions. IV. temperature dependence of adsorption [J]. J. Phys. Chem.1951,55:1456-1462.
    [43]赵振国,赵子建,顾惕人。自溶液中的吸附Ⅻ.活性炭自水中吸附芳香化合物的热力学研究[J]。化学学报。1985,43:813-818.
    [44]Tahir S.S., Rauf N. Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution [J]. J Chem Thermodyn.2003,35:2003-2009.
    [45]Yu Y., Zhuang Y.Y., Wang Z.H. Adsorption of water-soluble dye onto functionalized resin [J]. J. Colloid Interf. Sci.2001,242:288-293.
    [46]Zhao G.X., Zhang H.X., Fan Q.H., Ren X.M., Li J.X., Chen Y.X., Wang X.K. Sorption of copper(Ⅱ) onto super-adsorbent of bentonite-polyacrylamide composites [J]. J Hazard Mater. 2010,173:661-668.
    [47]Scheckel K.G., Sparks D.L. Temperature effects on nickel sorption kinetics at the mineral-water interface [J]. Soil Sci. Soc. Am. J.2001,65:719-728.
    [48]张立德,解思深。纳米材料和纳米结构[M]。北京:化学工业出版社。2005.
    [49]Yuan P., Fan M.D., Yang D., He H.P., Liu D., Yuan A.H., Zhu J.X., Chen T.H. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium[Cr(VI)] from aqueous solutions [J]. J. Hazard. Mater.2009,166:821-829.
    [50]Zhao D.L., Yang X., Zhang H., Chen C.L., Wang X.K. Effect of environmental conditions on Pb(Ⅱ) adsorption on β-MnO2 [J]. Chem. Eng. J.2010,164:49-55.
    [51]Tan X.L., Fang M., Li J.L., Lu Y., Wang X.K. Adsorption of Eu(Ⅲ) onto TiO2:Effect of pH, concentration, ionic strength and soil fulvic acid [J]. J. Hazard. Mater.2009,168:458-465.
    [52]Fan Q.H., Shao D.D., Lu Y., Wu W.S., Wang X.K. Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(Ⅱ) to Na-attapulgite [J]. Chem. Eng. J.2009, 150:188-195.
    [1]王东升,杨小芳,孙中溪。铝氧化物-水界面化学及在水处理中的应用[J]。环境科学学报。2007,27:353-362.
    [2]王峰,张昱,杨敏,崔建云。活性氧化铝对饮用水中氟离子的吸附行为[J]。中国农业大学学报。2003,8:63-65.
    [3]Rabung T., Stumpf T., Geckeis H., Klenze R., Kim J.I. Sorption of Am(Ⅲ) and Eu(Ⅲ) onto y-alumina:experiment and modeling [J]. Radiochim. Acta.2000,88:711-716.
    [4]Naveau A., Monteil-Rivera F., Dumonceau J., Boudesocque S. Sorption of europium on a goethite surface:influence of background electrolyte [J]. J. Contam. Hydrol.2005,77:1-16.
    [5]Gao Y., Kan A.T., Falkner J.C., Colvin V.L., Tomson M.B. Adsorption of cadmium on anatase nanoparticles-effect of crystal size and pH [J]. Langmuir.2004,20:9585-9593.
    [6]Goldberg S. Chemical modeling of anion competition on goethite using the constant capacitance model [J]. Soil Sci. Soc. Am. J.1985,49:851-856.
    [7]Zhang P., Sparks D.L. Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface [J]. Environ. Sci. Technol.1990,24:1848-1856.
    [8]Manceau A., Charlet L. The mechanism of selenate adsorption on goethite and hydrous ferric-oxide [J]. J. Colloid Interface Sci.1994,168:87-93.
    [9]Bonnissel-Gissinger P., Alnot M., Lickes J.P., Ehrhard J.J., Behra P. Modeling the adsorption of mercury(II) on (hydr)-oxides Ⅱ:alpha-FeOOH (goethite) and amorphous silica [J]. J. Colloid Interface Sci.1999,215:313-322.
    [10]Juang R.S., Wu W.L. Adsorption of sulfate and copper(II) onto goethite in relation to the changes of zeta potentials [J]. J. Colloid Interface Sci.2002,249:22-29.
    [11]He J., Ma W.H., He J.J., Zhao J.C., Yu J.C. Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH [J].Appl. Catal. B.2002,39:211-220.
    [12]He J., Ma W.H., Song W.J.. Zhao J.C., Qian X.H., Zhang S.B., Yu J.C. Photoreaction of aromatic compounds at a-FeOOH/H2O interface in the presence of H2O2:evidence for organic-goethite surface complex formation [J]. Water Res.2005,39:119-128.
    [13]Strawn D.G., Scheidegger A.M., Sparks D.L. Kinetics and mechanisms of Pb(Ⅱ) sorption and desorption at the aluminum oxide-water interface [J]. Environ Sci Technol.1998,32:2596-2601.
    [14]Sheng G.D., Yang S.T., Sheng J., Hu J., Tan X.L., Wang X.K. Macroscopic and microscopic investigation of Ni(Ⅱ) sequestration on diatomite by batch, XPS and EXAFS techniques [J]. Environ Sci Technol.2011,45:7718-7726.
    [15]Scheidegger A.M., Strawn D.G., Lamble G.M., Sparks D.L. The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals:A time-resolved XAFS study [J]. Geochim Cosmochim Acta.1998.62:2233-2245.
    [16]Thompson H.A., Parks G.A., Brown Jr G.E. Dynamic interactions of dissolution, surface adsorption, and precipitation in an aging cobalt(II)-clay-water system [J]. Geochim Cosmochim Acta.1999,63:1767-1779.
    [17]Yuzer H., Kara M., Sabah E., Celik M.S. Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems [J]. J. Hazard. Mater.2008,151:33-37.
    [18]Reddad Z., Gerente C., Andres Y., Le Cloirec P. Adsorption of several metal ions onto a low-cost biosorbent:Kinetic and equilibrium studies [J]. Environ Sci Technol.2002, 36:2067-2073.
    [19]Chen C.L., Wang X.K. Adsorption of Ni(Ⅱ) from aqueous solution using oxidized multiwall carbon nanotubes [J]. Ind Eng Chem Res.2006,45:9144-9149.
    [20]Wang X.S., Huang J., Hu H.Q., Wang J., Qin Y. Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(Ⅱ) from aqueous solutions by Na-mordenite [J]. J Hazard Mater.2007,142:468-476
    [21]Mercer K.L., Tobiason J.E. Removal of arsenic from high ionic strength solutions:Effects of ionic strength, pH, and preformed versus in situ formed HFO [J]. Environ Sci Technol.2008, 42:3797-3802.
    [22]Shao D., Xu D., Wang S., Fan Q., Wu W., Dong Y., Wang X. Modeling of radionickel sorption on MX-80 bentonite as a function of pH and ionic strength [J]. Sci China Ser B-Chem. 2009,52:362-371.
    [23]Yang ST., Li J.X., Shao D.D., Hu J., Wang X.K. Adsorption of Ni(Ⅱ) on oxidized multi-walled carbon nanotubes:effect of contact time, pH, foreign ions and PAA [J]. J Hazard Mater.2009,166:109-116.
    [24]Chang M.Y., Juang R.S. Adsorption of tannin acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. J. Colloid Interface Sci.2004,278:18-25.
    [25]Zhang X., Bai R. Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules [J]. J. Colloid Interface Sci.2003,264:30-38.
    [26]Yan W.L., Bai R.B. Adsorption of lead and humic acid on chitosan hydrogel beads [J]. Water Res.2005,39:688-698.
    [27]Yang K., Xing B.S. Adsorption of fulvic acid by carbon nanotubes from water [J]. Environ. Pollut.2009,157:1095-1100.
    [28]Davis J.A. Complexation of trace metals by adsorbed natural organic matter [J]. Geochim. Cosmochim. Acta.1984,48:679-691.
    [29]Christl I., Kretzschmar R. Interaction of copper and fulvic acid at the hematite-water interface [J]. Geochim. Cosmochim. Acta.2001,65:3435-3442.
    [30]Esmadi F., Simm J. Sorption of cobalt(Ⅱ) by amorphous ferric hydroxide [J]. Colloids Surf. A.1995,104:265-270.
    [31]Collins C.R., Vala R.K., Sherman D.M. Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite [J]. Geochim Cosmochim Acta.1999,63:2989-3002.
    [32]Buerge-Weirich B., Hari R., Xue H. Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands [J]. Environ Sci Technol.2002,36:328-336.
    [33]Boily J.F., Sjoberg S., Persson P. Structures and stabilities of Cd(Ⅱ) and Cd(Ⅱ)-phthalate complexes at the goethite/water interface [J]. Geochim Cosmochim Acta.2005,69:3219-3235.
    [34]Partey F., Norman D., Ndur S., Nartey R. Arsenic sorption onto laterite iron concretions: temperature effect [J]. J Colloid Interface Sci.2008,321:493-500.
    [35]Genc-Fuhrman H., Tjell J.C., McConchie D. Adsorption of arsenic from water using activated neutralized red mud [J]. Environ Sci Technol.2004,38:2428-2434.
    [36]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc.1918,40:1361-1403.
    [37]Freundlich H. Kapillarchemie:eine Darstellung der Chemie der Kolloide and verwandter Gebiete [M]. Leipzig:Akademische Verlagsge-sellschaf.1909.
    [38]Dubinin M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface [J]. Chem. Rev.1960,60:235-266.
    [39]Adnan O., Mine O.E., Safa O.A. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite [J]. Colloids Surf. A.2006, 277:90-97.
    [40]Bertell F.E., Thomas T.L., Fu Y. Thermodynamics of adsorption from solutions. IV. temperature dependence of adsorption [J]. J. Phys. Chem.1951,55:1456-1462.
    [41]赵振国,赵子建,顾惕人。自溶液中的吸附Ⅻ.活性炭自水中吸附芳香化合物的热力学研究[J]。化学学报。1985,43:813-818.
    [42]Tahir S.S., Rauf N. Thermodynamic studies of Ni(II) adsorption onto bentonite from aqueous solution [J]. J Chem Thermodyn.2003,35:2003-2009.
    [43]Yu Y., Zhuang Y.Y., Wang Z.H. Adsorption of water-soluble dye onto functionalized resin [J]. J. Colloid Interf. Sci.2001,242:288-293.
    [44]Zhao G.X., Zhang H.X., Fan Q.H., Ren X.M., Li J.X., Chen Y.X., Wang X.K. Sorption of copper(II) onto super-adsorbent of bentonite-polyacrylamide composites [J]. J Hazard Mater. 2010,173:661-668.
    [45]Scheckel K.G., Sparks D.L. Temperature effects on nickel sorption kinetics at the mineral-water interface [J]. Soil Sci. Soc. Am. J.2001,65:719-728.
    [46]Kolen'ko Y.V., Churagulov B.R., Kunst M., Mazerolles L., Justin C.C. Photocatalytic properties of titania powders prepared by hydrothermal method [J]. Appl. Catal. B.2004, 54:51-58.
    [47]Mattigod S.V., Fryxell G.E., Alford K., Gilmore, T., Parker K., Serne, J., Engelhard M. Functionalized TiO2 nanoparticles for use for in situ anion immobilization [J]. Environ. Sci. Technol.2005,39:7306-7310.
    [48]Tel H., Altas Y., Taner M.S. Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide [J]. J. Hazard. Mater.2004,112:225-231.
    [49]Jakobsson A.M. Measurement and modeling of Th sorption onto TiO2. J. Colloid Interface Sci.1999,220:367-373.
    [50]Weng C.H., Wang J.H., Huang C.P. Adsorption of Cr(Ⅵ) onto TiO2 from dilute aqueous solutions [J]. Wat. Sci. Technol.1997,35:55-62.
    [51]Tan X., Wang X., Fang M., Chen C. Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods [J]. Colloid Surf. A.2007,296:109-116.
    [52]E1 Shafei G.M.S., Philip C.A., Moussa N.A. Adsorption of molybdenum on titania from aqueous solutions [J]. J. Colloid Interface Sci.2001,234:142-148.
    [53]Fairhurst A.J., Warwick P., Richardson S. The influence of humic acid on the sorption of europiumonto inorganic colloids as a function of pH [J]. Colloid Surf. A.1995,99:187-199.
    [54]Geckeis H., Rabung Th.., Ngo Manh T., Kim J.I., Beck H.P. Humic colloid-borne natural polyvalentmetal ions:dissociation experiment [J]. Environ. Sci. Technol.2002,36:2946-2952.
    [1]薛力。蛋壳的综合利用现状[J]。中国农村小康科技。2007,7:9-90.
    [2]皮钰珍,王淑琴,李秋红。鸡蛋壳膜资源的开发与应用前景[J]。食品科技。2006,4:128-130.
    [3]宾冬梅,马美湖,易诚。蛋壳资源综合利用现状与对策[J]。食品研究与开发。2006,27:212-216.
    [4]张瑞宇。废弃蛋壳的利用价值及其资源化途径与技术[J]。重庆工商大学学报:自然科学版。2006,23:551-555.
    [5]谢新媛。煤燃烧过程固硫剂的研究进展[J]。化工进展。2004,23:1062-1066.
    [6]Oke I.A., Olarinoye N.O., Adewusi S.R.A. Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell [J]. Adsorption.2008,14:73-83.
    [7]Zheng W., Li X.M., Yang Q., Zeng G.M., Shen X.X., Zhang Y., Liu J.J. Adsorption of Cd(Ⅱ) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste [J]. J Hazard Mater.2007,147:534-539.
    [8]Chojnacka K. Biosorption of Cr(Ⅲ) ions by eggshells [J]. J Hazard Mater.2005,121:167-173.
    [9]Tsai W.T., Yang J.M., Lai C.W., Cheng Y.H., Lin C.C., Yeh C.W. Characterization and adsorption properties of eggshells and eggshell membrane [J]. Bioresour. Technol.2006, 97:488-493.
    [10]Yeddou Mezenner N., Bensmaili A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste [J]. Chem. Eng. J.2009,147:87-96.
    [11]Wang S.W., Dong Y.H., He M.L., Chen L., Yu X.J. Characterization of GMZ bentonite and its application in the adsorption of Pb(Ⅱ) from aqueous solutions [J]. Appl. Clay Sci.2009, 43:164-171.
    [12]Fan Q.H., Shao D.D., Wu W.S., Wang X.K. Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(Ⅱ) to Na-attapulgite [J]. Chem. Eng. J.2009,150:188-195.
    [13]Al-Qunaibit M.H., Mekhemer W.K., Zaghloul A.A. The sorption of Cu(II) ions on bentonite-a kinetic study [J]. J. Colloid Interface Sci.2005,283:316-321.
    [14]Yuzer H., Kara M., Sabah E., Celik M.S. Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems [J]. J. Hazard. Mater.2008,151:33-37.
    [15]Chen C.L., Wang X.K. Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type [J]. Appl. Radiat. Isot.2007,65:155-163.
    [16]Hu J., Xu D., Chen C.L., Wang X.K. Characterization of MX-80 bentonite and its sorption of radionickel in the presence of humic and fulvic acids [J]. J. Radioanal. Nucl. Chem.2009, 279:701-708.
    [17]Yang S.T., Li J.X., Lu Y., Chen Y.X., Wang X.K. Sorption ofNi(Ⅱ) onGMZ bentonite: effects of pH, ionic strength, foreign ions, humic acid and temperature [J]. Appl. Radiat. Isot.2009, 67:1600-1608.
    [18]Kowal-Fouchard A.. Drot R., Simoni E., Ehrhardt J.J. Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling [J]. Environ. Sci. Technol.2004, 38:1399-1407.
    [19]Reddad Z., Gerente C., Andres Y., Cloirec L.P. Adsorption of several metal ions onto a low-cost biosorbent:kinetic and equilibriumstudies [J]. Environ. Sci. Technol.2002, 36:2067-2073.
    [20]Chen C.L., Wang X.K. Adsorption of Ni(II) fromaqueous solution using oxidized multi-walled carbon nanotubes [J]. Ind. Eng. Chem. Res.2006,45:9144-9149.
    [21]Mercer K.L., Tobiason J.E. Removal of arsenic fromhighionic strengthsolutions:effects of ionic strength, pH, and preformed versus in situ formed HFO [J]. Environ. Sci. Technol.2008, 42:3797-3802.
    [22]Benaissa H., Benguella B. Effect of anions and cations on cadmium sorption kinetics from aqueous solutions by chitin:experimental studies and modeling [J]. Environ. Pollut.2004, 130:157-163.
    [23]Shukla A., Zhang Y.H., Dubey P., Margrave J.L., Shukla S.S. The role of sawdust in the removal of unwanted materials from water [J]. J. Hazard. Mater.2002,95:137-152.
    [24]Esmadi F., Simm J. Sorption of cobalt(Ⅱ) by amorphous ferric hydroxide [J]. Colloids Surf. A.1995,104:265-270.
    [25]Ostergren J.D., Brown Jr G.E., Parks G.A., Persson P. Inorganic ligand effects on Pb(Il) sorption to goethite (a-FeOOH). Ⅱ. Sulfate [J]. J. Colloid Interface Sci.2000,225:483-493.
    [26]Matis K.A., Zouboulis A.I., Hancock I.C. Waste microbial biomass for cadmium ion removal: application of flotation for downstream separation [J]. Bioresour. Technol.1994,49:253-259.
    [27]Yan W.L., Bai R.B. Adsorption of lead and humic acid on chitosan hydrogel beads [J]. Water Res.2005,39:688-698.
    [28]Yang K., Xing B.S. Adsorption of fulvic acid by carbon nanotubes from water [J]. Environ. Pollut.2009,157:1095-1100.
    [29]Strathmann T.J., Myneni S.C.B. Effect of soil fulvic acid on nickel(Ⅱ) sorption and bonding at the aqueous-boehmite (y-AIOOH) interface [J]. Environ. Sci. Technol.2005,39:4027-4034.
    [30]Tan X.L., Fan Q.H., Wang X.K., Grambow B. Eu(Ⅲ) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS study [J]. Environ. Sci. Technol.2009,43:3115-3121.
    [31]Huang J.H., Liu Y.F., Wang X.G. Selective sorption of tannin from flavonoids by organically modified attapulgite clay [J]. J. Hazard. Mater.2008,160:382-387.
    [32]Tahir S.S., Rauf N. Thermodynamic studies of Ni(Ⅱ) adsorption onto bentonite from aqueous solution [J]. J. Chem. Thermodyn.2003,35:2003-2009.
    [33]Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc.1918,40:1361-1403.
    [34]Freundlich H. Kapillarchemie:eine Darstellung der Chemie der Kolloide and verwandter Gebiete [M]. Leipzig:Akademische Verlagsge-sellschaf.1909.
    [35]Dubinin M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface [J]. Chem. Rev.1960,60:235-266.
    [36]Adnan O., Mine O.E., Safa O.A. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite [J]. Colloids Surf. A.2006, 277:90-97.
    [37]Zhou Y.T., Nie H.L., Branford-White C., He Z.Y., Zhu L.M. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with a-ketoglutaric acid [J]. J. Colloid Interface Sci.2009,330:29-37.
    [38]Khan S.A., Rehman R., Khan M.A. Adsorption of Cs(Ⅰ), Sr(Ⅱ) and Co(Ⅱ) on Al2O3. J. Radioanal. Nucl. Chem [J].1995,190:81-96.
    [39]Akyil S., Aslani M.A.A., Aytas S. Distribution of uranium on zeolite X and investigation of thermodynamic parameters for this system [J]. J. Alloys Compd.1998,271:769-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700