玉米秸秆的改性及其对六价铬离子吸附性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着农村经济的发展,农民生活水平的提高,秸秆产量逐年增多。玉米秸秆作为我国三大农业废弃物之一,其产量尤其惊人,从根本上解决秸秆的综合利用问题已经迫在眉睫。因此,探索有效的农作物秸秆的资源化利用途径有着十分重要的意义。
     近年来,电镀、冶金、制革和纺织印染等行业排出的重金属离子废水已成为生态环境的重要污染源,并直接或间接地对人类健康造成极大的危害。因此,选择合理方法治理重金属离子废水,对控制重金属污染和保证人类健康具有极大的意义。目前,重金属离子废水的处理多采用吸附法,该方法因具有设备简单、适应范围广、处理效果好、吸附剂可再生使用等优点而被广泛采用。常用的吸附剂为活性炭,尽管活性炭有很好的吸附效果但由于其价格昂贵,再生困难,所以不少学者把目光投向原料来源广泛、价格廉价的农业废弃物,用其制备纤维素类吸附剂,处理重金属离子污染废水,从而达到“以废治废”,实现社会效益、经济效益及环境效益的统一。因此,如何有效地利用农作物秸秆来解决水体重金属污染的问题将会成为研究的热点。
     针对以上问题,本论文通过对玉米秸秆纤维结构进行改性,将纤维素分子链中的结合键打开,引入新的官能团,改变纤维素固有的特性,制备了具有较高吸附容量的纤维素类吸附剂,并将其用于对模拟Cr(Ⅵ)废水的吸附研究。通过静态吸附实验和动态柱吸附实验考察了改性玉米秸秆对模拟废水中Cr(Ⅵ)的吸附性能,并对其去除机理进行了探讨。主要研究内容及结果如下:
     1.采用二乙烯三胺(DETA)交联化以及三乙胺接枝共聚对玉米秸秆改性,优化合成条件,制备了改性玉米秸秆吸附剂。改性研究结果表明,改性玉米秸秆对Cr(Ⅵ)离子的吸附能力相较于原玉米秸秆得到了大大提高。结合元素分析、扫描电镜、BET比表面积和热重分析发现,改性玉米秸秆的N元素含量增加,热稳定性提高,纤维表面变得光滑有序,比表面积变小。红外分析和拉曼光谱分析表明,改性使玉米秸秆纤维表面基团结构发生了变化,成功引入了季胺基团,吸附去除水中Cr(Ⅵ)过程以离子交换机制为主。
     2.研究了不同交联剂对玉米秸秆改性效果的影响,结果表明,交联剂在玉米秸秆改性过程中起着非常重要的作用,交联度越大,改性玉米秸秆的吸附能力越大。但是采用DETA作为交联剂改性的玉米秸秆具有更好的热稳定性。
     3.静态吸附实验结果表明,随着改性玉米秸杆投加量增大,对溶液中Cr(Ⅵ)离子的去除率也随之提高,当固液比为1.5g/L时,改性玉米秸秆对溶液Cr(Ⅵ)具有较好的吸附效果,去除率达99.8%,此时玉米秸秆对Cr(Ⅵ)的去除率仅为34.5%。改性玉米秸秆对Cr(Ⅵ)的吸附是一个快速吸附的过程。溶液的pH能够影响改性玉米秸秆的吸附效果,其主要原因是pH改变了Cr(Ⅵ)离子存在形态以及吸附剂表面的荷电性。Langmuir吸附等温模型和Freundlich吸附等温模型能够较好地描述改性玉米秸秆对Cr(Ⅵ)的吸附行为,其最大吸附量发生在323K为227.27mg/g,优于文献报道的其它类型吸附剂对Cr(Ⅵ)的最大吸附容量。改性玉米秸秆对水溶液中Cr(Ⅵ)的吸附符合伪二级动力学模型,吸附过程受颗粒内扩散过程和膜扩散等过程的控制。热力学参数表明,改性玉米秸秆对Cr(Ⅵ)的吸附是一个自发吸热过程,升高温度有利于吸附的进行。
     4.动态柱吸附实验结果表明,较大的流速、较高的初始浓度和较短的填料层高度将使吸附柱床层穿透加快,穿透时间缩短。与静态吸附实验相一致,改性玉米秸秆对较低的金属离子浓度具有很好的去除效果。Thomas模型和Yoon-Nelson模型能够很好地描述改性玉米秸秆动态吸附Cr(Ⅵ)的行为,其模型拟合参数以及穿透曲线能够为改性玉米秸秆的工厂化应用提供可靠的设计参数信息。改性玉米秸秆动态柱吸附Cr(Ⅵ)性能稳定,与文献报道的其它吸附剂对Cr(Ⅵ)的动态吸附能力相比具有很大的优势。
     综上所述,本文制备的改性玉米秸秆在Cr(Ⅵ)废水净化处理中的有着良好的应用前景。
With the rural economic developed and the standard of people living improved, the agricultural by-products increased year by year. Corn stalks (CS) as one of the three major agricultural wastes in China, its production of waste amount was the particularly alarming. From the fundamental solution to the comprehensive use of CS has been extremely urgent. Therefore, exploring the effective way of the industrialization of agricultural by-products has the very vital significance.
     Pollution by heavy metals ion considered as a major pollutant in ecological environment pollution has caused directly or indirectly great hazards to the human health. And there has been a great increase and accumulation in environment due to the rapid industrialization over the years. Sources of heavy metal ions waste include electroplating, metallurgy, leather tanning and textile dyeing industries, resulting in a large quantity of heavy metal ions being discharged into effluent industrial wastewaters. Therefore, choose a reasonable method for effective treatment of heavy-metal-containing wastewater has great significance to control the metal ions pollution and guarantee human health. The widely adopted method in removal of heavy metal ions from wastewaters was adsorption, due to its equipment simple, comprehensive application, effective treatment and sustainable use of regeneration absorbent. The most generally used adsorbent is activated carbon. Although activated carbon is effective in removal of heavy metal ions from wastewaters, it is expensive cost and difficult regeneration limited its use. For this reason, many scholars were looking at the wide-source and low-cost agricultural wastes to prepare efficient cellulosic-based adsorbent, to treatment with heavy metal ions pollution wastewaters. In order to achieve waste treat waste, realizing the social, economic and environmental benefits unity. Therefore, how to effectively use the agricultural wastes to solve the problem of heavy metal ions in the water will become the research focus.
     For the above question, this paper through modification of CS fiber cellulose structure, open the key link of the cellulose molecules chain and graft new functional group, to change the fiber intrinsic character and prepare the higher capacity absorbent. Then applied the modified corn stalk (MCS) to study the adsorption of the simulate Cr(VI) waste water. The MCS was tested for its ability to remove Cr(VI) from aqueous solution by batch static adsorption and dynamic column adsorption, and the mechanism of the adsorption process was determined.
     1. A new adsorbent modified from CS was synthesized after cross-linking with diethylenetriamine (DETA) and graft copolymerization with triethylamine. Modification results showed that the Cr(VI) anion-adsorbing capacity of MCS has been greatly improved than that of raw CS. The performance of the MCS characterized by element analysis, SEM, BET and TG analysis founded that the N element content increased, thermal stability improved, fiber surface became smooth and orderly, specific surface area reduced of MCS. The results of FTIR and Raman spectrum analysis founded that the group structure of MCS surface has been changed and successfully introduced a large number of amino groups. And the mechanism of adsorption Cr (VI) was mainly ion exchange.
     2. The effect of different cross-linking agents on the modification of CS showed that cross-linking agent in the modification of CS process plays a very important role, the greater cross-linking degree, the bigger adsorption ability of MCS. But using DETA as cross-linking agent modified CS has better thermal stability.
     3. Batch static adsorption results showed that the removal efficiency of Cr(VI) ions increased significantly with the dosage of MCS. When the adsorption concentration was1.5g/L, MCS has the best removal on Cr(VI) of99.8%, which was higher than that of CS (34.5%). The adsorption process of Cr (VI) onto modified corn straw is very fast. The initial pH value of solution is an important controlling parameter in the Cr (VI) adsorption process, due to its affect on the Cr(VI) ionic state and the charge of the functional group on the adsorbent surface. The batch equilibrium data fitted well to the Langmuir and Freundlich isotherms. Maximum adsorption capacity of MCS for Cr(VI) was200.00mg/g at303K which was relatively large compared to some adsorbents as reported. Kinetic data were best fitted with the pseudo-second-order kinetic model. The adsorption process was controlled by the intra-particle diffusion and membrane diffusion process. The thermodynamic parameters showed that the adsorption of Cr(VI) onto MCS was an spontaneous and endothermic process. As the temperature rise, the adsorption process proceeded faster.
     4. Continuous fixed-bed column studies showed that the exhaustion time decreased with decrease of bed depth, increase of flow rate and influent concentration. Consistent with batch static adsorption experiment, MCS states the excellent adsorption capacity for the removal of low Cr(VI) concentration. The Thomas and Yoon-Nelson models were good applied to the adsorption of Cr(VI). The predicted breakthrough curves and evaluated the model parameters of the fixed-bed column are useful for process design. MCS dynamic column has stable performance of adsorption Cr(VI), and compared to other absorbents reported in the literature, MCS exhibits high adsorption ability of Cr(VI) ion.
     These results showed that MCS could be considered as a potential and effective adsorbent for the removal of Cr(VI) ions from aqueous solution.
引文
[1]韩鲁佳,刘向阳,巧娟,等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002,18:87-91.
    [2]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2000:125-136.
    [3]《非常规饲料资源的开发与利用》研究组.非常规饲料资源的开发与利用[M].北京:中国农业出版社,1996:14-18.
    [4]中国农业统计年鉴2000[M].北京:中国农业出版社,2000:52.
    [5]Wang Y. B. The most promising energy in the 21 century-hydrogen[J]. Energy Research Infromation,2003,19:63-68.
    [6]高志坚.玉米秸秆厌氧消化试验研究[D].北京:北京化工大学,2004.
    [7]Chen H. Z., Liu L. Y. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction[J]. Bioresource Technology,2007,98:666-676.
    [8]Zhu S. D., Wu Y. X., Yu Z. N., et al. Production of ethanol from microwave-assisted alkali pretreated wheat straw[J]. Process Biochemistry,2006,4:869-873.
    [9]刘俊峰,易平贵,金一粟.稻草、麦秆等农作物秸秆资源再利用研究[J].资源科学,2001,23:46-48.
    [10]欧阳平凯,韩祖国.木质纤维素物质水解新技术及应用[J].化工进展,1992,1:42-45.
    [11]国家统计局.中国统计年鉴1999[M].北京:中国统计出版社,1999.9:395.
    [12]Fan Y. T., Zhang Y. H., Zhang S. F., et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost[J]. Bioresource Technology,2006,97:500-505.
    [13]张明明,蔡同锋.试论秸秆污染及其综合利用技术进展[J].北方环境,2010,22:79-81.
    [14]Prasad S., Singh A., Joshi H.C. Ethanol as an alternative fuel from agricultural, industrial and urban residues[J]. Resources, Conservation and Recycling,2007,50:1-39.
    [15]詹怀宇,李志强,蔡再生.纤维化学与物理[M].北京:科学出版社,2005.
    [16]杨军,余木火,陈惠芳.秸秆纤维复合材料的发展概况[J].材料导报,1999,13:50-522.
    [17]陈慧清.大米草生产生物柴油和燃料乙醇的初步研究[D].四川成都:西南交通大学,2006.
    [18]Coughlan M. P. The properties of fungal and bacterial cellulases with comment on their production and application[J]. Biotechnology & Genetic Engineering Reviews,1985,3: 39-109.
    [19]赵炜.农作物秸秆在亚/超临界醇中的液化[D].江苏徐州:中国矿业大学,2009,5.
    [20]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999,2:24-25.
    [21]王宇.利用农业秸秆制备阴离子吸附剂及其性能的研究[D].山东济南:山东大学,2007.
    [22]晏飞来.基于玉米秸秆乙醇化的氨化预处理与酶解工艺研究[D].四川重庆:西南大学,2010.
    [23]Sun R. C., Lawther J. M., Banks W. B. Isolation and characterization of hemicellulose B and cellulose from pressure refined wheat straw[J], Industrial Crops and Products,1998,7: 121-128.
    [24]Davin L. B., Lewis N. G.Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in ligin biosynthesis [J]. Plant physiology,2000,123: 453-461.
    [25]Hatfield R., Vermerris W. Ligin formation in plants:the dilemma of linkage specificity[J]. Plant physiology,2001,126:1351-1357.
    [26]王少光,武书彬,郭秀强,等.玉米秸秆木素的化学结构及热解特性[J].华南理工大学学报,2006,34:39-42.
    [27]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工,2005,22:249-252.
    [28]蒋挺大.木质素[M].北京:化学工业出版社,2003.
    [29]邱卫华,陈洪章.木质素的结构、功能及高值化利用[J].纤维素科学与技术,2006,14:52-59.
    [30]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11:42-55.
    [31]谢建军,罗迎社.木质素的结构及其改性研究进展[J].功能材料,2007,38:3296-3299.
    [32]曹国量,张小曳,王丹,等.秸秆露天焚烧排放的TSP等污染物清单[J].农业环境科学学报,2005,24:800-804.
    [33]刘天学,常加忠,李敏,等.秸秆焚烧土壤提取液对小麦种子萌发和幼苗生长的影响[J].农业环境学报,2005,24:252-255.
    [34]曹国良,张小曳,郑方成,等.中国大陆秸秆露天焚烧的量的估算[J].资源科学,2006,28:9-13.
    [35]刘建设.禁烧秸秆的环境效益[J].中国环境管理,2004,12:54-55.
    [36]郝红英,邵自强,何孟常.植物秸秆纤维素物理化学改性及其吸附机理研究[J].农业环境科学学报,2007,26:1138-1141.
    [37]李健,徐栩梧,董世华.利用硫化棉纤维的吸附选择性回收金属离子[J].湖北工学院学报,1994,9:15-17.
    [38]陈中兰,汪模辉,苏庆平.苯基硫脲新型螯合纤维的合成及吸附性能研究[J].高分子学报,1998,3:368-371.
    [39]吕瑶姣,刘跃龙,张季爽.螯合纤维的合成及其吸附重金属离子的研究[J].现代化工,2001,16:60-65.
    [40]Li Q., Zhai J. P., Zhang W. Y, et al. Kinetic studies of adsorption of Pb(Ⅱ), Cr(Ⅲ) and Cu(Ⅱ) from aqueous solution by sawdust and modified peanut husk[J]. Journal of Hazardous Materials,2007,141:163-167.
    [41]Rahman M. S., Islam M. R. Effects of pH on isotherms modeling for Cu(Ⅱ) ions adsorption using maple wood sawdust[J]. Chemical Engineering Journal,2009,149:273-280.
    [42]Parab H., Joshi S., Shenoy N., et al. Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith[J]. Process Biochemistry, 2006,41:609-615.
    [43]李荣华,张增强,孟昭福,等.玉米秸秆对Cr(Ⅵ)的生物吸附及热力学特征研究[J].环境科学学报,2009,29:1434-1441.
    [44]张继义,蒲丽君.小麦秸秆对含铜废水的吸附性能和动力学特征[J].兰州理工大学学报,2011,37:65-70.
    [45]Malkoc E., Nuhoglu Y. Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(Ⅵ) onto waste acorn of Quercus ithaburensis[J]. Chemical Engineering and Processing,2007,46:1020-1029.
    [46]谢红梅,贺 毅,许尊炼,等.农业有机废弃物对废水中Cr6+吸附效果的研究[J].云南农业大学学报,2010,25:178-182.
    [47]功靓,卓小龙,沈青.纤维素功能化研究的新进展Ⅰ.氧化功能化改性[J].纤维素科学与技术,2009,17:67-77.
    [48]张智峰.纤维素改性研究进展[J].化工进展,2010,29:1493-1501.
    [49]Zhang W., Liang M., Lu C. H. Morphological and structural development of hardwood cellulose during mechanochemical. pretreatment in solid state through pan-milling[J]. Cellulose,2007,14:447-456.
    [50]苏茂尧,由利丽,杨爽.液氮预处理对纤维素可及度和反应性的影响[J].纤维素科学与技术,1998,6:44-51.
    [51]Sreekala M. S., Kumaran M. G, Joseph S., et al. Oil palm fiber reinforced phenol formaldehyde composites:Influence of fiber surface modifications on the mechanical performance[J]. Applied Composite Materials,2000,7:295-329.
    [52]Bommarius A. S., Katona A., Cheben S. E., et al. Cellulase kinetics as a function of cellulose pretreatment[J]. Metabolic Engineering,2008,10:370-381.
    [53]Frollini E., Leao A. L., Mattoso L. H. C. Natural Polymers and Agrofibers Composites [M]. Sao Carlos:Embrapa Instrumentacao Agropecuaria,2000.
    [54]Morrison W. H., Archibald D. D., Sharma H. S. S., et al. Chemical and physical characterization of water-and dew-retted flax fibers[J]. Industrial Crops and Products,2000, 12:39-46.
    [55]Mishra S., Misra M., Tripathy S. S., et al. The influence of chemical surface modification on the performance of sisal-polyester biocomposites[J]. Polymer Composites,2002,23:164-170.
    [56]孙倩云,侯晓坤.纤维素改性技术及其在环境保护中的应用[J].四川环境,2011,30:108-111.
    [57]王金霞,刘温霞.纤维素的化学改性[J].纸和造纸,2011,30:31-37.
    [58]功靓,卓小龙,沈青.纤维素功能化研究的新进展Ⅲ.纤维素的功能化方法[J].纤维素科学与技术,2010,18:61-85.
    [59]代瑞华,刘会娟,曲久辉,等.醋酸纤维素吸附剂的制备及其性能表征[J].环境科学,2005,26:111-113.
    [60]尚秀丽,孙林,胡中爱.导电聚吡咯/醋酸纤维素复合膜的合成及性能研究[J].化工新型材料,2008,36:62-63.
    [61]Berglund L., Johansson K. A., Sundberg K. Process for the manufacture of methyl cellulose ether:US,7504498[P].2009.
    [62]何永炳,孟令芝,陈富偈,等.棉杆纤维素的改性Ⅰ:棉杆纤维含氮衍生物的制备及其 吸附性能[J].应用化学,1998,15:94-96.
    [63]杨扬,康燕,蔡志楠,等.纤维素接枝反应的研究进展[J].纤维素科学与技术,2009,17:53-58.
    [64]赵艳锋.纤维素的改性技术及进展[J].天津化工,2006,20:11-14.
    [65]Dahou W., Ghemati D., Oudia A., et al. Preparation and biological characterization of cellulose graft copolymers[J]. Biochemical Engineering Journal,2010,48:187-194.
    [66]单鑫,隋坤艳,高耸,等.以羟乙基纤维素为骨架的环境敏感共聚物的合成及性能研究[J].应用化工,2009,38:352-356.
    [67]刘明华,林春香,黄建辉,等.一种新型球形纤维素吸附剂的制备Ⅱ:纤维素/AMPS接枝共聚物的合成[J].纤维素科学与技术,2006,14:23-26.
    [68]Zhu J., Wang W. T., Wang X. L., et al. Green synthesis of a novel biodegradable copolymer base on cellulose and poly(p-dioxanone) in ionic liquid[J]. Carbohydrate Polymers,2009,76: 139-144.
    [69]Hassan M. L., El-Wakil N. A. Heavy metal ion removal by amidoximated bagasse[J]. Journal of Applied Polymer Science,2003,87:666-670.
    [70]Low K. S., Lee C. K., Liew S. C. Sorption of cadmium and lead from aqueous solutions by spent grain[J]. Process Biochemistry,2000,36:59-64.
    [71]Raji C., Anirudhan T. S. Batch Cr(VI) removal by polyacrylamide-grafted sawdust:Kinetics and Thermodynamics[J], Water research,1998,32:3772-3780,
    [72]Eberhardt T. L., Min S. H. Biosorbents prepared from wood particles treated with anionic polymer and iron salt:Effect of particle size on phosphate adsorption. Bioresource Technology[J].2008,99:626-630.
    [73]Orlando U. S., Okuda T., Baes A. U., et al. Chemical properties of anion-exchangers prepared from waste natural materials[J]. Reactive & Functional Polymers,2003,55:311-318.
    [74]Sharma N., Kaur K., Kaur S. Kinetic and equilibrium studies on the removal of Cd2+ions from water using polyacrylamide grafted rice (Oryza sativa) husk and (Tectona grandis) saw dust[J], Journal of Hazardous Materials,2009,163:1338-1344.
    [75]Anirudhan T. S., Unnithan M. R. Arsenic(Ⅴ) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery [J]. Chemosphere,2007,66:60-66.
    [76]Chen S. H., Yue Q. Y., Gao B. Y., et al. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(Ⅵ) using modified wheat residue [J].Journal of Colloid and Interface Science,2010,349:256-264.
    [77]Chen S. H., Yue Q. Y., Gao B. Y., et al. Removal of Cr(Ⅵ) from aqueous solution using modified corn stalks:Characteristic, equilibrium, kinetic and thermodynamic study[J]. Chemical Engineering Journal,2011,168:909-917.
    [78]Leyva-Ramos R., Bernal-Jacome L. A., Acosta-Rodriguez I. Adsorption of cadmium(Ⅱ) from aqueous solution on natural and oxidized corncob [J]. Separation and Purification Technology, 2005,45:41-49.
    [79]Shukla S. R., Pai R. S. Adsorption of Cu(Ⅱ), Ni(Ⅱ) and Zn(Ⅱ) on modified jute fibres [J]. Bioresource Technology,2005,96:1430-1438.
    [80]Feng N. C, Guo X. Y, Liang S. Kinetic and thermodynamic studies on biosorption of Cu(Ⅱ) by chemically modified orange peel[J]. Transation of Nonferrous Metals Society of China, 2009,19:1365-1370.
    [81]Villaescusa I., Fiol N., Martinez M., et al. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes[J]. Water Research,2004,38:992-1002.
    [82]王格慧,宋湛谦.多胺型螯合棉纤维的制备与吸附性能研究[J].林产化学与工业,2000,20:9-12.
    [83]尹小红,常建华,徐家业.纤维素强阴离子交换剂对Cr(Ⅵ)的吸附性能[J].西安石油学院学报,2003,18:33-35.
    [84]Wing R. E., Rayford W. E., Doane W. M., et al. Preparation of insoluble cationic starches and their use in heavy metal an ion removal[J]. Journal of Applied Polymer Science,1978,22: 1405-1416.
    [85]Nakanmura S., Amano M., Saegusa Y, et al. Preparation of am inoalkyl cellulose and their adsorption and desorption of heavy metal ions[J]. Journal of Applied Polymer Science,1992, 45:265-271.
    [86]刘传富,孙润仓,叶君.纤维素类吸附剂的研究进展[J].中国造纸学报,2005,20:207-210.
    [87]Morita M., Higuchi M.,Sakata I. Binding of heavy metal ions by chemically modified woods[J].Journal of Applied Polymer Science,1987,34:1013-1023.
    [88]Miky J. A., Abdel-Mohdy F. A. Preparation and characterization of cellulose ion-exchangers bearing dimethyl/diethylamino hydroxyl chloropropane groups [J]. Journal of the Textile Association,1999,60:35-40.
    [89]Unnithan M. R., Vinod V. P., Anirudhan T. S. Synthesis, characterization, and application as a chromium(VI) adsorbent of amine-modified polyacrylamide-grafted coconut coir pith[J]. Industrial & Engineering Chemistry Research,2004,43:2247-2255.
    [90]王格慧,宋湛谦.含杀菌、吸附双功能基棉纤维的制备与性能[J].应用化学,2001,18:831-833.
    [91]Lehrfeld J. Conversion of agricultural residues into cation exchange materials[J]. Journal of Applied Polymer Science,1996,61:2099-2105.
    [92]Gellerstedt F, Gatenholm P. Surface properties of lignocellulosic fibers bearing carboxylic groups[J]. Cellulose,1999,6:103-121.
    [93]Nada A. M. A., Hassan M. L. Ion Exchange Properties of Carboxylated Bagasse[J]. Journal of Applied Polymer Science,2006,102:1399-1404.
    [94]谭龙华,闫凌,丁抒,等.TBP纤维棉对Cr (VI)的吸附性能及其应用研究[J].纤维素科学与技术,1997,5:29-34.
    [95]Soldatov V. S., Shunkevich A. A., Sergeev G I. Synthesis, Structure and Properties of NewFibrous Ion Exhangers[J]. Reactive Polymer,1988,7:159-172.
    [96]傅伟昌,王继徽.两性化螯合棉纤维的合成与吸附性能研究[J].林产化工通报,2002,36:9-11.
    [97]崔志敏,朱锦瞻,罗儒显.两性甘蔗渣纤维素的合成及应用研究[J].离子交换与吸附,2002,18:232-240.
    [98]闻海峰,路荣春,施文健.两性纤维素的研制、表征及性能研究[J].水资源与水工程学报,2011,22:30-37.
    [99]姜玉,黄彩结,庞浩,等.纤维素基离子吸附剂的研究进展[J].化学通报,2008,12:891-899.
    [100]Hassan M. L., Nahla A. E. W. Heavy Metal Ion Removal by Amidoximated Bagasse[J]. Journal of Applied Polymer Science,2003,87:666-670.
    [101]陈观展,染镰銮,钟佩珩.球状再生纤维素偕胺肟螯合树脂的制备及性能研究[J].离子交换与吸附,1992,8:111-116.
    [102]徐羽梧,李健董,世华.整合树脂研究xx.聚硫醚型离子交换纤维的合成及其吸附性 能[J].高分子学报,1993,10:576-582.
    [103]雷国元.重金属离子吸附剂的研究进展[J].国外金属矿选矿,2000,10:2-6.
    [104]黄金阳,王伟艺.蔗渣改性吸附剂对Cr(Ⅵ)的吸附研究[J].中国资源综合利用,2010,28:26-28.
    [105]施文健,彭孟成.巯基纤维素处理重金属废水的研究[J].林产化学与工业,2004,24:65-68.
    [106]董绮功,张军平,李亚荣,等.新型含氮、硫纤维素螯合树脂的合成及其吸附性能[J].高等学校化学学报,2003,24:719-723.
    [107]Ogiwara Y, Kubota H. Combination of cellulosic materials ions[J]. Journal of Polymer Science Part A-1:Polymer Chemistry,1969,7:2087-2095.
    [108]Anirudhan T. S., Jalajamony S. Cellulose-based anion exchanger with tertiary amine functionality for the extraction of arsenic(V) from aqueous media[J]. Journal of Environmental Management,2010,91:2201-2207.
    [109]Han R. P., Zhang L. J., Song C, et al. Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode[J]. Carbohydrate Polymers,2010,79:1140-1149.
    [110]Tian Y, Wu M., Liu R. G, et al. Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment[J]. Carbohydrate polymers,2011,83:743-748.
    [111]林春香,刘明华,黄建辉,等.一种新型球形纤维素吸附剂对水中Ni2+的吸附行为[J].纤维素科学与技术,2006,14:22-26.
    [112]罗均,葛静微,杨晓波,等.改性柚皮纤维素对Pb2+的吸附动力学研究[J].食品科学,2010,31:87-90.
    [113]Hwang M. C., Chen K. M. The removal of color from effluents using polyamide-epichlorohydrin-cellulose polymer. I. Preparation and use in direct dye removal[J]. Journal of Applied Polymer Science,1993,48:299-311.
    [114]Ong S. T., Lee C. K., Zainal Z. Removal of basic and reactive dyes using ethylenediamine modified rice hull[J]. Bioresource Technology,2007,98:2792-2799.
    [115]Gong R. M., Jin Y B., Sun J., et al. Preparation and utilization of rice straw bearing carboxyl groups for removal of basic dyes from aqueous solution[J]. Dyes and Pigments,2008,76: 519-524.
    [116]Gong R. M, Zhong K. D., Hu Y, et al. Thermochemical esterifying citric acid onto lignocellulose for enhancing methylene blue sorption capacity of rice straw[J]. Journal of Environmental Management,2008,88:875-880.
    [117]党子建,黄惠华.改性菠萝皮渣纤维素染料吸附剂的性质研究[J].现代食品科技,2011,27:747-750.
    [118]Sun X. F., Sun R. C., Sun J. X. Acetylation of Rice Straw with or without Catalysts and Its Characterization as a Natural Sorbent in Oil Spill Clean up[J]. Journal of Agricultural and Food Chemistry,2002,50:6428-6433.
    [119]Sun R. C., Sun X. F., Sun J. X., et al. Effect of tertiary amine catalysts on the acetylation of wheat straw for the production of oil sorption-active materials[J]. Comptes Rendus Chimie, 2004,7:125-134.
    [120]马希晨,宋辉,王春俏,聂新卫.改性纤维素合成高吸油树脂的工艺条件及吸油效果[J].大连轻工业学院学报,2003,22:256-258.
    [121]杨锟.植物纤维原料改性制备吸油材料的研究[D].江苏南京:南京林业大学,2007.
    [122]张永江.蛋壳膜生物材料和粉末活性炭对砷、铬的吸附及其应用研究[D].重庆:西南大学,2010.
    [123]耿兵.壳聚糖稳定纳米铁的制备与修复地表水中六价铬污染的研究[D].天津:南开大学研究生院,2009.
    [124]Wang J. H., Zhang X., Zhang B., et al. Rapid adsorption of Cr (VI) on modified halloysite nanotubes[J]. Desalination,2010,259:22-28.
    [125]谢瑞文.含Cr(Ⅵ)电镀废水处理研究进展[J].生态科学,2006,25:285-288.
    [126]廖亮.含铬废水治理技术的应用[J].环境技术,2002,1:19-24.
    [127]张小庆,王文洲,王卫.含铬废水的处理方法[J].环境科学与技术,2004,27:111-113.
    [128]吕康乐.壳聚糖改性及其对重金属离子的吸附性能研究[D].甘肃兰州:兰州大学,2009.
    [129]Dakiky M., Khamis M., Manassra A., et al. Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents [J]. Advances in Environmental Research,2002,6:533-540.
    [130]Hu J., Chen G. H., Lo I. M. C. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles[J].Water Research,2005,39:4528-4536.
    [131]Wartelle L. H., Marshall W. E. Chromate ion adsorption by agricultural by-products modified with dimethyloldihydroxyethylene urea and choline chloride[J]. Water Research, 2005,39:2869-2876.
    [132]Hameed B. H., Chin L. H., Rengaraj S. Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust[J]. Desalination,2008,225:185-198.
    [133]Song X. L., Liu H. Y., Cheng L., et al. Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption[J]. Desalination,2010, 255:78-83.
    [134]Chowdhury S., Mishra R., Saha P., et al. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk[J]. Desalination, 2011,265:159-168.
    [135]Ahmad A., Rafatullah M., Sulaiman O., et al. Removal of Cu(Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by adsorption on sawdust of Meranti wood[J].Desalination,2009,247: 636-646.
    [136]Orlando U. S., Baes A. U., Nishijima W., et al. Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity[J]. Chemosphere,2002,48: 1041-1046.
    [137]Park D., Yun Y., Park J. M. Comment on "Chromate ion adsorption by agricultural by-products modified with dimethyloldihydroxylethylene urea and choline chloride" by Wartelle and Marshall[J]. Water Research,2006,40:1501-1504.
    [138]Zheng L. C,. Dang Z., Zhu C. F., et al. Removal of cadmium(Ⅱ) from aqueous solution by corn stalk graft copolymers[J]. Bioresource technology,2010,101:5820-5826.
    [139]T. Vaughan, C. W. Seo, W. E. Marshall, Removal of selected metal ions from aqueous solution using modified corncobs[J]. Bioresource technology,2001,78:133-139.
    [140]Zhu Y., Chen Y. X., Ye M. L., et al. Preparation and applications of weak acid cation exchanger based on monodisperse poly(ethylvinylbenzene-co-divinylbe-zene) beads[J]. Journal of Chromatography A,2005,1085:18-22.
    [141]Orlando U. S., Baes A. U., Nishijima W., et al. Comparative effectivity of different types of neutral chelating agents for preparing chelated bagasse in solvent-free conditions[J].Journal of Cleaner Production,2004,12:753-757.
    [142]Conrad K., Hanseir H. C. B., Sorption of zinc and lead on coir[J]. Bioresource Technology, 2007,98:89-97.
    [143]Xu X., Gao B. Y., Wang W. Y., et al. Effect of modifying agents on the preparation and properties of the new adsorbents from wheat straw[J]. Bioresource Technology,2010,101: 1477-1481.
    [144]张莹,张教强,亢新梅,等.一种多胺型纤维素吸附剂的制备[J].材料开发与应用,2011,26:56-59.
    [145]谭 婷,许秀成,杨晨,等.胺基稻草纤维的制备及对电镀废水中Fe3+、Ni2+、Cu2+、 Zn2+的吸附[J].现代化工,2011,31:45-47.
    [146]岳文文,王宇,高宝玉,等.改性麦草秸秆对水中磷酸根吸附效果的研究[J].环境科学学报,2006,26:1983-1986.
    [147]李明勇,陈正国.聚环氧氯丙烷-三乙胺季铵盐的合成与表征[J].日用化学工业,2011,41:247-249.
    [148]陈育翔.二苯碳酰二肼分光光度法测定电镀废水中六价铬的改进研究[J].化学工程与装备,2008,6:109-111.
    [149]Monteiro M. I. C., Fraga I. C. S., Yallouz A. V, et al. Determination of total chromium traces in tannery effluents by electrothermal atomic absorption spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometric methods[J]. Talanta,2002,58: 629-633.
    [150]Balasubramanian S., Pugalenthi V. Determination of total chromium in tannery waste water by inductively coupled plasma-atomic emission spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometric methods[J]. Talanta,1999,50:457-467.
    [151]Gupta S., Babu B. V. Utilization of waste product (tamarind seeds) for the removal of Cr(VI) from aqueous solutions:Equilibrium, kinetics, and regeneration studies[J], Journal of Environmental Management,2009,90:3013-3022.
    [152]Xu X., Gao B. Y, WangW. Y., et al. Adsorption of phosphate from aqueous solutions onto modified wheat residue:Characteristics, kinetic and column studies[J]. Colloids and Surfaces B:Biointerfaces,2009,70:46-52.
    [153]许醒,高宝玉,岳文文,等.麦草阳离子型吸附剂的合成及对硝酸根的去除[J].精细化工,2008,25:273-276.
    [154]Cengeloglu Y., Torb A., Kir E., et al. Transport of hexavalent chromium through anion-exchange membranes[J]. Desalination,2003,154:239-246.
    [155]Miretzky P., Cirelli A. F. Cr(Ⅵ) and Cr(Ⅲ) removal from aqueous solution by raw and modified lignocellulosic materials:a review[J]. Journal of Hazardous Materials,2010,180: 1-19.
    [156]Zhang R. H., Wang B., Ma H. Z. Studies on Chromium (Ⅵ) adsorption on sulfonated lignite[J]. Desalination,2010,255:61-66.
    [157]Namasivayam C., Sureshkumar M. V. Removal of chromium(VI) from water and wastewater using surfactant modified coconut coir pith as a biosorbent[J]. Bioresource Technology,2008,99:2218-2225.
    [158]Chen S. H., Yue Q. Y, Gao B. Y, et al. Preparation and characteristics of anion exchanger from com stalks[J]. Desalination,2011,274:113-119.
    [159]Donia A. M., Atia A. A., Al-amrani W. A., et al. Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica[J]. Journal of Hazardous Materials,2009,161:1544-1550.
    [160]周文兵.凤眼莲秸秆堆肥与钾素回收及其纤维改性材料的特性研究[D].湖北武汉:华中农业大学,2007.
    [161]晏得珍.天然高分子的改性及其在重金属离子废水处理中的应用[D].甘肃兰州:西北师范大学,2010.
    [162]Li J. P., Lin Q. Y, Zhang X. H., et al. Kinetic parameters and mechanisms of the batch biosorption of Cr(Ⅵ) and Cr(Ⅲ) onto Leersia hexandra Swartz biomass[J]. Journal of Colloid and Interface Science,2009,333:71-77.
    [163]Yoon I. H., Meng X. G, Wang C, et al.Perchlorate adsorption and desorption on activated carbon and anion exchange resin[J]. Journal of Hazardous Materials,2009,164:87-94.
    [164]Hu J., Chen G H., Lo I. M. C., Removal and recovery of Cr(Ⅵ) from wastewater by maghemite nanoparticles[J]. Water Research,2005,39:4528-4536.
    [165]Iqbal M., Saeed A., Zafar S. I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste[J], Journal of Hazardous Materials,2009,164:161-171.
    [166]Lagergren S. Zur theorie der sogenannten adsorption geloester stoffe[J]. Kungliga Svenska, Vetenskapsakad Handl,1898,24:1-39.
    [167]Zhang T., Li Q. R., Liu Y, et al. Equilibrium and kinetics studies of fluoride ions adsorption on CeO2/Al2O3 composites pretreated with non-thermal plasma[J]. Chemical Engineering Journal,2011,168:665-671.
    [168]孙小莉,曾庆轩,冯长根.多胺型阴离子交换纤维吸附铬(Ⅵ)的动力学[J].物理化学学报,2009,25:1951-1957.
    [169]Weber Jr.W. J., Morris J. C. Kinetics of adsorption on carbon from solution[J]. Journal of the Sanitary Engineering Division, American Society of Civil Engineers,1963,89:31-59.
    [170]Yousef R. I., El-Eswed B., Al-Muhtaseb A. H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions:Kinetics, mechanism, and thermodynamics studies[J]. Chemical Engineering Journal,2011,171:1143-1149.
    [171]Liu Q. S., Zheng T., Wang P., et al. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers [J]. Chemical Engineering Journal,2010, 157:348-356.
    [172]Langmuir I. The constitution and fundamental properties of solids and liquids[J]. Journal of the American Chemical Society,1916,38:2221-2295.
    [173]Freundlich H. M. F., Uber die adsorption in lasungen[J]. The Journal of Chemical Physics, 1906,57:385-470.
    [174]Tempkin M. J., Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts[J]. Ada Physiochim URSS,12 (1940) 217-222.
    [175]Hu X. J., Wang J. S., Liu Y. G, et al. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin:Isotherms, kinetics and thermodynamics[J]. Journal of Hazardous Materials,2011,185:306-314.
    [176]Lin J. W., Zhan Y. H., Zhu Z. L., et al. Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite[J]. Journal of Hazardous Materials,2011,193:102-111.
    [177]徐建宽,何炳林.一种新型低密度脂蛋白吸附剂的制备[J].高等化学学报,2002,23:1421-1424.
    [178]Ofomaja A. E., Naidoo E. B., Modise S. J. Removal of copper(II) from aqueous solution by pine and base modified pine cone powder as biosorbent[J].Journal of Hazardous Materials, 2009,168:909-917.
    [179]Pillay K., Cukrowska E. M., Coville N. J. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution [J]. Journal of Hazardous Materials,2009,166:1067-1075.
    [180]Huang G. L., Shi J. X., Langrish T. A. G. Removal of Cr(Ⅵ) from aqueous solution using activated carbon modified with nitric acid[J]. Chemical Engineering Journal.2009,152: 434-439.
    [181]Ramos R. L., Jacome L. A. B., Rodriguez I. A. Adsorption of cadmium(Ⅱ) from aqueous solution on natural and oxidized corncob[J]. Separation and Purification Technology,2005, 45:41-49.
    [182]Oliveira W. E., Franca A. S., Oliveira L. S., et al. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions[J]. Journal of Hazardous Materials,2008, 152:1073-1081.
    [183]Malkoc E. Ni(Ⅱ) removal from aqueous solutions using cone biomass of Thuja orientalis[J]. Journal of Hazardous Materials,2006, B137:899-908.
    [184]Baral S. S., Das S. N., Chaudhury G.R., et al. Adsorption of Cr(Ⅵ) using thermally activated weed Salvinia cucullata[J]. Chemical Engineering Journal,2008,139:245-255.
    [185]Yusof A. M., Malek N. A. N. N. Removal of Cr(Ⅵ) and As(Ⅴ) from aqueous solutions by HDTMA-modified zeolite Y[J]. Journal of Hazardous Materials,2009,162:1019-1024.
    [186]Baral S. S., Das N., Chaudhury G.R., et al. A preliminary study on the adsorptive removal of Cr(Ⅵ) using seaweed, Hydrilla verticillata[J]. Journal of Hazardous Materials,2009,171: 358-369.
    [187]Anirudhan T. S., Jalajamony S., Suchithra P. S. Improved performance of a cellulose-based anion exchanger with tertiary amine functionality for the adsorption of chromium(Ⅵ) from aqueous solutions[J].Colloids and Surfaces A,2009,335:107-113.
    [188]Gupta S., Babu B. V. Removal of toxic metal Cr(Ⅵ) from aqueous solutions using sawdust as adsorbent:Equilibrium, kinetics and regeneration studies[J]. Chemical Engineering Journal,2009,150:352-365.
    [189]Anandkumar J., Mandal B. Removal of Cr(Ⅵ) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent[J]. Journal of Hazardous Materials,2009,168: 633-640.
    [190]Hosseini-Bandegharaei A., Hosseini M. S., Sarw-Ghadi M., et al. Kinetics, equilibrium and thermodynamic study of Cr(Ⅵ) sorption into toluidine blue o-impregnated XAD-7 resin beads and its application for the treatment of wastewaters containing Cr(Ⅵ) [J]. Chemical Engineering Journal,2010,160:190-198.
    [191]Wan M. W., Kan C. C, Rogel B. D., et al. Adsorption of copper (Ⅱ) and lead (Ⅱ) ions from aqueous solution on chitosan-coated sand[J]. Carbohydrate Polymers,2010,80:891-899.
    [192]Wang L., Xing R., Liu S., et al. Studies on adsorption behavior of Pb(Ⅱ) onto a thiourea-modified chitosan resin with Pb(Ⅱ) as template[J]. Carbohydrate Polymers,2010,81: 305-310.
    [193]Pehlivan E., Cetin S. Sorption of Cr(Ⅵ) ions on two Lewatit-anion exchange resins and their quantitative determination using UV-visible spectrophotometer[J]. Journal of Hazardous Materials,2009,163:448-453.
    [194]Gulay B., Arica M. Y. Adsorption of Cr(Ⅵ) onto PEI immobilized acrylate-based magnetic beads:isotherms, kinetics and thermodynamics study[J]. Chemical Engineering Journal,2008, 139:20-28.
    [195]Huang G. L., Shi J. X., Langrish T. A. G.Removal of Cr(Ⅵ) from aqueous solution using activated carbon modified with nitric acid[J]. Chemical Engineering Journal,2009,152: 434-439.
    [196]Wang X. S., Li Z. Z., Sun C. Removal of Cr(Ⅵ) from aqueous solutions by low-cost biosorbents:marine macroalgae and agricultural by-products[J]. Journal of Hazardous Materials,2008,153:1176-1184.
    [197]Wang X. S., Tang Y. P., Tao S. R. Kinetics, equilibrium and thermodynamic study on removal of Cr(Ⅵ) from aqueous solutions using low-cost adsorbent Alligator weed[J]. Chemical Engineering Journal,2009,148:217-225.
    [198]Ucun H., Bayhan Y. K., Kaya Y, et al. Biosorption of chromium(Ⅵ) from aqueous solution by cone biomass of Pinus sylvestris[J].Bioresource Technology,2002,85:155-158.
    [199]Boddu V. M., Abburi K., Talbott J. L., et al. Removal of Hexavalent Chromium from Wastewater Using a New Composite Chitosan Biosorbent[J]. Environmental science & technology,2003,37:4449-4456.
    [200]成芳芳.海藻酸纤维对重金属离子的吸附性能研究[D].山东青岛:青岛大学,2010.
    [201]Vieira M. G. A., Oisiovici R. M., Gimenes M L, et al. Biosorption of chromium(VI) using a Sargassum sp. packed-bed column[J]. Bioresource Technology,2008,99:3094-3099.
    [202]Song J Y, Zou W. H., Bian Y. Y, et al. Adsorption characteristics of methylene blue by peanut husk in batch and column modes[J]. Desalination,2011,265:119-125.
    [203]杨雪静,刘谋盛,杨亚玲,等.丁二酸酐改性玉米芯对钯(Ⅱ)的动态吸附性能研究[J].稀有金属,2010,34:606-609.
    [204]卢玉栋,叶琳,吴宗华,等.芭蕉芋渣对亚甲基蓝的动态吸附研究[J].福建师范大学学报(自然科学版),2011,27:67-71.
    [205]陈霜艳.改性ACF对重金属离子的动态吸附研究[D].江苏南京:南京理工大学,2006.
    [206]Kundu S., Kavalakatt S. S., Pal A., et al. Removal of arsenic using hardened paste of Portland cement:batch adsorption and column study[J]. Water Research,2004,38: 3780-3790.
    [207]Han R. P., Zou L. N., Zhao X., Yanfang Xu, Feng Xu, Yinli Li, Yu Wang, Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column[J]. Chemical Engineering Journal,2009,149:123-131.
    [208]Aksu Z., Gonen F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed:prediction of breakthrough curves[J]. Process Biochemistry,2004,39:599-613.
    [209]Oguz E., Ersoy M. Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and Neural Network Modelling[J]. Chemical Engineering Journal,2010,164:56-62.
    [210]Netpradit S., Thiravetyan P., Towprayoon S. Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed-bed column system[J]. Water Research,2004,38:71-78.
    [211]Baral S. S., Das N., Ramulu T. S., et al. Removal of Cr(Ⅵ) by thermally activated weed Salvinia cucullata in a fixed-bed column[J]. Journal of Hazardous Materials,2009,161: 1427-1435
    [212]Ahmad A. A., Hameed B. H. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste[J], Journal of Hazardous Materials,2010,175: 298-303.
    [213]Gupta S., Babu B. V, Modeling, simulation, and experimental validation for continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent[J]. Bioresource Technology,2009,100:5633-564
    [214]Kumar P. A., Chakraborty S. Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber[J]. Journal of Hazardous Materials,2009,162:1086-1098.
    [215]Kundu S., Gupta A. K. Analysis and modeling of fixed bed column operations on As(V)
    .-removal by adsorption onto iron oxide-coated cement (IOCC) [J], Journal of Colloid and Interface Science,2005,290:52-60.
    [216]Maji S. K., Pal A., Pal T., et al. Modeling and fixed bed column adsorption of As(III) on laterite soil[J]. Separation and Purification Technology,2007,56:284-290.
    [217]Vinodhini V., Das N. Packed bed column studies on Cr (VI) removal from tannery wastewater by neem sawdust[J]. Desalination,2010,264:9-14.
    [218]Aguayo-Villarreal I. A., Bonilla-Petriciolet A., Hernandez-Montoya V., et al. Batch and column studies of Zn2+removal from aqueous solution using chicken feathers as sorbents[J]. Chemical Engineering Journal,2011,167:67-76.
    [219]Yan G., Viraraghavan T. Heavy metal removal in a biosorption column by immobilized M. rouxii biomass[J]. Bioresource Technology,2001,78:243-249.
    [220]Uddin M. T, Rukanuzzaman M., Khan M. M. R., et al. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder:A fixed-bed column study[J]. Journal of Environmental Management,2009,90:3443-3450.
    [221]Gupta S., Babu B. V. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent:equilibrium, kinetics, and regeneration studies[J]. Chemical Engineering Journal,2009,150:352-365.
    [222]Bohart G. S., Adams E. Q. Behavior of charcoal towards chlorine[J]. Journal of the American Chemical,1920,42:523-529.
    [223]Aksu Z., Gonen F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed:prediction of breakthrough curves[J], Process Biochemistry,39 (2004) 599-613.
    [224]Thomas H. C. Heterogeneous ion exchange in a flowing system [J]. Journal of the American Chemical,1944,66:1466-1664.
    [225]Yoon Y. H., Nelson J. H. Application of gas adsorption kinetics I. A theorical model for respirator cartridge service life[J], The American Industrial Hygiene Association,1984,45: 509-516.
    [226]Calero M., Hernainz F., Blazquez G, et al. Study of Cr (Ⅲ) biosorption in a fixed-bed column[J]. Journal of Hazardous Materials,2009,171:886-893.
    [227]Bowers A. R., Huang C. P. Activated carbon processes for the treatment of Cr(VI)-containing industrial wastewater[J]. Water Science and Technology,1981,13: 625-650.
    [228]Malkoc E., Nuhoglu Y, Abali Y. Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds:Prediction of breakthrough curves[J]. Chemical Engineering Journal,2006,119: 61-68.
    [229]Park D., Yun Y, Lee D. S., et al. Column study on Cr(Ⅵ)-reduction using the brown seaweed Ecklonia biomass[J]. Journal of Hazardous Materials,2006, B137:1377-1384
    [230]Malkoc E., Nuhoglu Y, Dundar M. Adsorption of chromium(VI) on pomace-An olive oil industry waste:Batch and column studies[J]. Journal of Hazardous Materials,2006, B138: 142-151.
    [231]Suksabye P., Thiravetyan P., Nakbanpote W. Column study of chromium(VI) adsorption from electroplating industry by coconut coir pith[J]. Journal of Hazardous Materials,2008, 160:56-62
    [232]Gupta V. K., Rastogi A., Nayak A. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material [J]. Journal of Colloid and Interface Science,2010,342:135-141.
    [233]Chauhan D., Sankararamakrishnan N. Modeling and evaluation on removal of hexavalent chromium from aqueous systems using fixed bed column [J]. Journal of Hazardous Materials, 2011,185:55-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700