黑豆蚜内共生菌与可疑柄瘤蚜茧蜂寄主选择和后代发育表现的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
业已明确,蚜虫专性内共生细菌布赫纳什菌Buchnera对于宿主蚜虫的营养代谢具有重要的作用,两者已建立了长期的协同演化关系;而蚜茧蜂是一类专门寄生蚜虫的内寄生蜂,蚜虫与蚜茧蜂亦有着长期的协同演化历史,因此,推测蚜虫共生菌必然与蚜茧蜂存在着某种关系。前期研究已发现,蚜虫次生共生细菌与蚜虫抵抗蚜茧蜂存在着直接关系。而且有研究推测,蚜茧蜂的寄主选择可能与蚜虫专性共生菌动态有关。但迄今尚未见研究报道,直接验证蚜虫初生共生菌—布赫纳什细菌Buchnera aphidicola与蚜茧蜂生活史策略之间的联系。为了探究这一问题,本论文研究比较了可疑柄瘤蚜茧蜂Lysiphlebus ambiguus对有菌和无菌黑豆蚜Aphis fabae各个历期的寄生选择及其子代蜂发育的相关适合度特征。此外,大气变化(如CO2浓度升高)对寄生蜂与寄主的互作生态学研究刚刚开始,急需增加新的研究案例。对此研究了高C02浓度下可疑柄瘤蚜茧蜂对不同历期黑豆蚜的寄生选择及其后代发育表现。获得以下主要研究结果和结论。
     1、进行预备试验,旨在检测供试蚜虫内共生细菌状态以及获得代表蚜茧蜂选择性的产卵器有效针刺数。利用已知的初生共生细菌蚜布赫纳什细菌dnaK基因序列AB159734.1,设计引物进行特异性PCR扩增,检测结果表明,用抗生素处理后的黑豆蚜体内的初生共生菌迅速凋亡。用次生共生细菌Hamiltonella defensa dnaK基因序列AB159735.1设计引物进行特异性PCR扩增,未发现黑豆蚜体内存在抵御蚜茧蜂寄生的次生共生细菌HHamiltonella defensa。所以,在供试蚜虫种群中排除了次生共生细菌对寄生蜂的可能作用。子代蜂在无菌蚜虫体内的存活率低于有菌蚜虫,不同历期蚜虫之间也存在差异,所得到的差异值为后续试验数据分析中计算有效针刺提供了依据。
     2、进行非选择性试验,旨在观察可疑柄瘤蚜茧蜂对不同含菌状态、不同历期寄主蚜虫的寄生选择及其子代蜂表现。采用常用的抗生素利福平处理寄主蚜虫,使蚜虫初生共生菌迅速凋亡,称这些蚜虫为无菌蚜虫,未进行抗生素处理的蚜虫称为有菌蚜虫。在非选择条件下,分别将不同处理的各历期蚜虫暴露给可疑柄瘤蚜茧蜂寄生。结果表明,除1龄蚜虫外,各历期无菌蚜虫的体型显著小于有菌蚜虫。可疑柄瘤蚜茧蜂对2-4龄无菌和有菌寄主黑豆蚜的寄生率(用有效针刺率表示)存在显著差异,显著偏好2龄有菌寄主以及3龄和4龄无菌蚜虫;但在1龄和成蚜中未表现出显著差异。除4龄寄主外,寄生无菌蚜虫的子代蜂羽化率显著低于寄生有菌蚜虫。
     与寄生有菌蚜虫相比,寄生无菌蚜虫的子代蜂发育时间(产卵至成虫羽化)显著延长;在有菌蚜虫中,寄生幼龄和成蚜的子代蜂发育时间短于寄生中间历期蚜虫;但在无菌蚜虫中,子代寄生蜂的发育时间随着寄主历期的增加而缩短。据此推测,蚜茧蜂在去除共生菌的寄主蚜虫中,发育所需营养受到一定限制,导致其表现出较低的适合度。从无菌和有菌寄主黑豆蚜中羽化的子代可疑柄瘤蚜茧蜂,在生殖力上无显著差异,均随寄主蚜虫历期的增长而增大。
     3、进行选择性试验,旨在观察可疑柄瘤蚜茧蜂对有菌和无菌寄主黑豆蚜的选择偏好,并观察其子代蜂发育适合度表现。研究结果表明,在历期相同的无菌和有菌寄主黑豆蚜之间,可疑柄瘤蚜茧蜂对较高历期(4龄和成蚜)的有菌寄主表现出显著偏好,但从子代蜂幼虫存活率和性比看,无菌蚜虫与有菌蚜虫无显著差异;在体型大小相同、但历期和含菌状态不同(2龄有菌和4龄无菌)的寄主黑豆蚜之间,可疑柄瘤蚜茧蜂偏好2龄有菌蚜虫。然而在不同历期的无菌蚜虫之间,可疑柄瘤蚜茧蜂未表现显著偏好。据测推测,可疑柄瘤蚜茧蜂能鉴别出老龄的有菌和无菌黑豆蚜,但是当所提供的蚜虫体型大小相近时,初生共生菌似乎又不是可疑柄瘤蚜茧蜂完成发育的一个必要条件,共生菌缺失仅影响到蚜茧蜂在老龄无菌寄主黑豆蚜中的发育。
     4、进行室内搜寻行为观察试验,旨在比较可疑柄瘤蚜茧蜂对无菌和有菌黑豆蚜斑块的寄主搜寻行为。可疑柄瘤蚜茧蜂对有菌寄主和无菌寄主斑块的选择比例无显著差异,在有菌寄主斑块和无菌寄主斑块上的搜寻时间和滞留时间没有显著差异。这些结果都说明,在室内罩笼的环境下,可疑柄瘤蚜茧蜂不能区分有菌和无菌寄主的斑块。
     5、进行室内试验研究,旨在观察高浓度CO2(750μl/L)对可疑柄瘤蚜茧蜂的寄生选择及其子代蜂发育表现的影响。与在正常浓度CO2环境下相比,在高浓度CO2环境下黑豆蚜体型显著变小。结果表明,可疑柄瘤蚜茧蜂对高浓度CO2环境中的黑豆蚜的寄生率(用僵蚜率表示)随寄主历期增长呈现下降趋势,而羽化率和性比不受寄主历期影响。与正常CO2浓度相比,寄生高CO2浓度蚜虫的子代蜂发育表现为:(ⅰ)4龄和成蚜的寄生率显著降低;(ⅱ)3龄寄主的羽化率显著下降;(ⅲ)1龄寄主的雌性比显著降低;(ⅳ)体型显著增大;(ⅴ)在2龄-4龄寄主中的发育时间显著缩短。这些结果都表明,高浓度CO2对可疑柄瘤蚜茧蜂的僵蚜率、羽化率、性比、子代体型大小和发育时间均有显著的影响。
     6、本论文研究获得以下创新性结论:(ⅰ)首次初步探明了蚜茧蜂生活史特性与蚜虫初生共生菌的关系,发现可疑柄瘤蚜茧蜂在产卵时能够识别出有、无共生菌的高龄黑豆蚜,而且这种选择与后代发育表现存在一定的一致性;(ⅱ)研究表明,高浓度CO2对可疑柄瘤蚜茧蜂的寄生及其后代发育均有显著的影响。丰富了有关大气变化对寄生蜂与寄主互作生态学影响的知识。
Numerous studies indicate that endosymbiontic bacteria Bushnera perform a pivotal function in nutritional physiology of host aphids. While close co-evolution between aphids and their endosymbionts, and between aphids and aphidiine parasitoids have been established, it is assumed that some association between endosymbionts of aphids and higher trophic aphid parasitoids should be susceptible to natural selection. This assumption has been supported by empirical studies that facultative endosymbiotic bacteria of aphids are linked to resistance of host aphids to their parasitoids. Though it was suggested that host-stage selection of parasitoids might be associated with state of endosymbiotic Bushnera of aphids, there has been no empirical studies to address the association between life history of parasitoids and primary endosymbiotic Buchnera aphidicola of host aphids. Accordingly this study was designed to compare parasitism of an aphid parasitoid Lysiphlebus ambiguus in relation to aposymbiotic and symbiotic host Aphis fabae, and developmental performances of progeny parasitoids from attacking the aphid cohorts. In addition, we studied effects of carbon dioxide enrichment on interactions between host A. fabae and its parasitoid L. ambiguus, which would provide us with insights into co-evolution between aphids and their parasitoids as affected by climate changes. The main results and conclusions are summarized as follows.
     1. Exploratory experiments were carried out to diagnose endosymbiotic bacteria of host aphids and to obtain the correction coefficient between mummies and effective stings exercised by mother parasitoids. The experimental stock aphids were screened for the presence of primary endosymbiotic Buchr.era aphidicola and of facultative bacterium Hamiltonella defensa with diagnostic polymerase chain reaction (PCR). The primary endosymbiotic B. aphidicola was detected, but the facultative endosymbiotic H. defense was not found in the A.fabae stock used in our experiments. Therefore, H. defense was excluded in the effects of endosymbions in our experiments. Survival of progeny parasitoids differed between symbiotic and aposymbiotc aphids and between stages, which was used to deduce effective stings made by mother parasitoids.
     2. Non-choice experiments were conducted to observe parasitism of host aphids, and performances of progeny parasitoids, as affected by host stages and endosymbiosis. The aphids were treated using antibiotic rifampicin to obtain aposymbiotic aphids.Aposymbiotic aphids were significantly smaller in body size than corresponding symbiotic aphids at all stages except the first in unparasitized aphids. However, the differences in body size between symbiotic and aposymbiotic aphids did not produce significant variation in parasitism as measured by number of mummies. Eclosion rates of parasitoid progeny from aposymbiotic hosts were significantly lower than from corresponding symbiotic aphids in the1st stage to adult except for the3rd stage. Though female progeny increased with host size of consecutive stages in symbiotic aphids, no significant variation in sex ratio was exhibited across host stages of aposymbiotic aphids. Development time from egg-to-adult of progeny was distinctly prolonged in aposymbiotic aphids, compared to that in the symbiotic. Parasitism of young nymphs and adults of symbiotic aphids produced a shorter development time than intermediate host stages, but development time of progeny decreased in a linear relationship with life stages of aposymbiotic aphids. Our study suggests that differences in mortality rates of male and female wasps during development is likely to have influenced secondary sex ratio in relation to aphid stage for aphid cohorts deprived of symbiotic bacteria, and that bacteria disruption in aposymbiotic aphids can produce deleterious effects on growth and development of progeny parasitoids.
     3. A series of paired-choice experiments was conducted to explore the preference of the parasitoid L. ambiguus for symbiotic and aposymbiotic A. fabae, and the suitability of these hosts for progeny parasitoid development. When given a choice between symbiotic and aposymbiotic aphids of the same stage, the parasitoid significantly preferred the symbiotic over aposymbiotic aphids only for the later stages (L4and adult). The suitability of aposymbiotic aphids for parasitoid development was only significantly lower than that of symbiotic aphids in L1and L4stages. When given a choice between similar-sized symbiotic L2and aposymbiotic L4aphids, the parasitoid preferred the former. No significant differences in preference were demonstrated when the parasitoid was given a choice between different stages of aposymbiotic aphids. For the latter two paired-choice experiments, there was no evidence of differential host suitability as exhibit by adult emergence rate and progeny sex ratio, although sample sizes were small. While lifetime fecundity increased with aphid stage at the time of oviposition, there was no significant influence of previous development from symbiotic versus aposymbiotic aphids. These results suggest that while L. ambiguus can discriminate between symbiotic and aposymbiotic A. fabae during later stages and when the aphids are of a similar size, there is little evidence that the primary symbiont is needed for successful parasitoid development.
     4. Foraging behaviors of L. ambiguus were studied in symbiotic and aposymbiotic black bean aphid patches on plant in a transparent cage. The results showed that symbiotic and aposymbiotic aphid patches were not significantly different in parasitism, number of visits, time of residence, and time of foraging. It suggests that L. ambiguus may not be able to discriminate between patches of symbiotic and aposymbiotic aphids.
     5. Effects of elevated CO2(750μl l-1) on the development of the black bean aphid A. fabae, and on performances of parasitoids L. ambiguus, were studied in incubators. Aphids under elevated CO2were significantly smaller in body size as measured by hind tibia length than corresponding aphids under nomal conditions at all stages.Non-choice experiments showed that L. ambiguus parasitized all stages of A. fabae cohort from the elevated CO2, and mummy production rates decreased with host aphid stages. In comparison with progeny parasitoids attacking aphids from normal CO2, progeny parasitoids in aphids from the elevated CO2performed as that:(i) parasitization rate for the4th stage and adult aphids was significantly low;(ii) wasp emergence rate in the third stage host was low;(iii) female proportion was low in the first stage host;(iv) body size was large;(v) development time in the second to forth stage hosts was reduced. The results suggest that elevated CO2should influence L. ambiguus in parasitism with Aphis fabae and development of progeny parasittoids.
     6. This study has produced innovative findings in following aspects,(i) Association between primary endosymbitoic bacteria of host aphids and parasitoids has being revealed for the first time, which is that Lysiphlebus ambiguus is able to discriminate against aposymbiotic hosts Aphis fabae at higher stages and such preference is inagreement with offspring performances,(ii) Elevated CO2can influence L. ambiguus in parasitism with Aphis fabae and development of progeny parasitoids, which contributes to our understanding of ecological interactions between parasitoids and their hosts, as affected by CO2enrichment with the climate change.
引文
1.曹林,李保平.2006.寄生不同历期黑豆蚜对可疑柄瘤蚜茧蜂发育的影响.生态学杂志,25:1380-1383.
    2.胡淑霞.1997.论植物病毒的传毒介体及传播方式.生物学杂志,14(5):33-34.
    3.李献辉,李保平.2006.温度对黑豆蚜体内共生菌数量及宿主体型大小的影响,昆虫学报,49:428-432.
    4.苗雪霞.2003.黑豆蚜(Aphis craccivora)胞内共生菌的研究.中国科学院上海生命科学研究院植物生理生态研究所(博士学位论文).
    5.赵广琦,王勋陵等.2003.增强UV-B辐射和C02复合作用对蚕豆幼苗生长和光合作用的影响.西北植物学报,23:6-10.
    6. Agrell J, McDonald E P, Lindroth R L.2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos,88:259-272.
    7. Akhtar S, van Emden H F.1994. Ultrastructure of the symbionts and mycetocytes of bird cherry aphid (Rhopalosiphum padi). Tissue and Cell,26:513-522.
    8. Aksoy S.1995. Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. International Journal of Systematic Bacteriology,45:848-851.
    9. Andersson S G E, Zomorodipour A, Andersson J O, et al.1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature,396:133-140.
    10. Arnone J A, Zaller J G, Ziegler C, et al.1995. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2. Oecologia (Berl),104:72-78.
    11. Awmack C S, Harrington R, Leather S R, et al.1996. The impact of elevated CO2 on aphid-plant interaction. Aspects of Applied Biology,45:317-322.
    12. Awmack C S, Harrington R, Lindroth R L.2004. Aphid individual performance may not predict population responses to elevated CO2 or O3. Global Change Biology,10:1414-1423.
    13. Awmack C S, Harrington R.2000. Elevated CO2 affects the interactions between aphid pests and host plant flowering. Agricultural and Forest Entomology,2:57-61.
    14. Awmack C S, Woodcock C M, Harrington R.1997. Climate change may increase vulnerability of aphids to natural enemies. Ecological Entomology,22:366-368.
    15. Ayal Y, Green R.1993. Optimal egg distribution among host patches for parasitoids subject to attack by hyperparasitoids. American Naturalist,141:120-138.
    16. Bale J S.2002. Insects and low temperatures:from molecular biology to distrioutions and abundance. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,357:849-861.
    17. Baumann L, Baumann P, Moran M A, et al.1999. Genetic characterization of plasmids containing genes encoding enzymes of leucine biosynthesis in endosymbionts(Buchnera) of aphids. Journal of Molecular Evolution,48:77-85.
    18. Baumann L, Baumann P.1994. Growth kinetics of the endosymbiont Buchnera aphidicola in the aphid Schizaphis graminum. Applied and Environmental Microbiology,60:3440-3443.
    19. Baumann P, Lai C Y, Rouhbakhsh D, et al.1995. Genetics, physiology and evolutionary relationships of the genus Buchnera:intracellular symbionts of aphids. Annual Review of Microbiology,49:55-94.
    20. Baumann P, Moran N A.1997. Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Antonie van Leeuwenhoek,72:39-48.
    21. Bazzaz FA.1990. Response of natural ecosystems to rising CO2 levels. Annual Review of Ecology,21:167-196.
    22. Begon M, Harper J L, Townsend C R.1990. Ecology. Individuals, populations and communities. Blackwell Scientific Publications, pp.1-945.
    23. Bensaadi-Merchermek N, Salvado J C, Cagnon C, et al.1995. Characterization of the unlinked 16S rDNA and 23S-5S rRNA operon of Wolbachia pipientis, a prokaryotic parasite of insect gonads. Gene,165:81-86.
    24. Berlyn M K B.1998. Linkage map of Escherichia coli K- 212, edition 10:the traditional map. Microbiology and Molecular Biology Reviews,62:814-984.
    25. Bezemer T M, Jones T H, Knight K J.1998. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia,116:128-135.
    26. Bezemer T M, Jones T H.1998. Plant-insect herbivore interactions in elevated atmospheric CO2:quantitative analyses and guild effects. Oikos,82:212-222.
    27. Bezemer T M, Knight K J.2001. Unpredictable responses of garden snail (Helix aspersa) populations to climate change. Acta Oecologica-International Journal of Ecology,22: 201-208.
    28. Blackman R L, Eastop V F.1984. Aphids on the world's crops. Wiley. Chichester, UK.
    29. Borror D J, Triplehorn C A, Johnson N F.1989. An Introduction to the Study of Insects. Harcourt Brace College Publishers.
    30. Bracho A M, Martinez-Torres D, Moya A, et al.1995. Discovery and molecular characterization of a plasmid localized in Buchnera sp., bacterial endosymbiont of the aphid Rhopalosiphum padi. Journal of Molecular Evolution,41:67-73.
    31. Brenner D J.1984. Enterobacteriaceae. In:Bergey's manual of systematic bacteriology (Eds.) Krieg N R and Holt J G. Williams and Wilkins Co. Baltimore, M D.1:408-506.
    32. Buchner P.1965. Endosymbiosis of Animals with Plant Microorganisms. Interscience, NewYork.
    33. Burg S, Ferrari J, Muller C B, Vorburger C.2008. Genetic variation and covariation of susceptibility to parasitoids in the aphid Myzus persicae:no evidence for trade-offs. Proceedings of the Royal Society B,275:1089-1094.
    34. Calvert D J.1973. Experimental host preferences of Monoctonus paulensis (Hymenoptera: Braconidae), including a hypothetical scheme of host selection. Annals of the Entomological Society of America,66:28-33.
    35. Campbell B C, Stefen-Campbell J D, Gill R J.1994. Evolutionary origin of whiteflies (Hemiptera:Sternorrhyncha:Aleyrodidae) inferred from 18S rDNA sequences. Insect Molecular Biology,3:73-88.
    36. Cannon R J C.1998. The implication of predicted climate change for insect pests in the UK, with emphasis on non-indigenous species. Global Change Biology,4:785-796.
    37. Chandler S M, Wilkinson T L, Douglas A E.2008. Impact of plant nutrients on the relationship between a herbivorous insect and its symbiotic bacteria. Proceedings of the Royal Society B,275:565-570.
    38. Charnov E L, Los-den-Hartogh R L, Jones W T, et al..1981. Sex ratio evolution in a variable environment. Naturen (London),289:27-33.
    39. Chau A, Mackauer M.2001. Host-stage selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera:Braconidae, Aphidiinae):assessing costs and benefits. The Canadian Entomology,133:549-564.
    40. Chen D Q, Campbell B C, Purcell A H.1996. A new rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum. Current Microbiology; 33:123-128.
    41. Chen D Q, Montllor C B, Purcell A H.2000. Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomologia Experimentalis et Applicata,95:315-323.
    42. Chen D Q, Purcell A H.1997. Occurrence and transmission of facultative endosymbionts in aphids. Curruent Microbiology,34:220-225.
    43. Chen F J, Ge F, Parajulee M N.2005. Impact of elevated CO2 on triple trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis.Environmental Entomology,34: 37-46.
    44. Chen F J, WU G.2007. Impact of elevated CO2 on the third trophic level:A predator Harmonia axyridis and a parasitoid Aphidius picipes. Biocontrol Science and Technology, 17(3):313-324.
    45. Chow A, Mackauer M.1992. The influence of prior ovipositional experience on host selection in four species of aphidiid wasps (Hymenoptera:Aphidiidae). Journal of Insect Behavior,5:99-108.
    46. Cloutier C, Douglas A E.2003. Impact of a parasitoid on the bacterial symbiosis of its aphid host. Entomologia Experimentalis et Applicata,109:13-19.
    47. Cloutier C, Duperron J, Tertuliano M, et al.2000. Host stage, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomologia Experimentalis et Applicata,97: 29-40.
    48. Cloutier C, Mackauer M.1980. The effect of superparasitism by Aphidius smithi (Hymenoptera:Aphidiidae) on the food budget of the pea aphid, Acyrthosiphon pisum (Homoptera:Aphididae). Canadian Journal of Zoology,58:241-244.
    49. Courtney S P, Chen G K, Gardner A.1989. A general model for individual host selection. Oikos,55:55-65.
    50. Dadd R H, Krieger D L.1968. Dietary requirements of the aphid Myzus persicae. Journal of Insect Physiology,14:741-64.
    51. Daniel R S, Brooks M A.1972. Intracellular bacteroids:electron nicroscopy of Periplaneta americana infected with lysozyme. Journal of Experimental Parasitology,31:232-46.
    52. Degnan P H, Moran N A.2008. Evolutionary genetics of a defensive facultative symbiont of insects:exchange of toxin-encoding bacteriophage. Molecular Ecology,17:916-929.
    53. Douglas A E, Dixon A F G.1987. The mycetocyte symbiosis of aphids:variation with age and morph in virginoparae of Megoura viciae and Acyrthosiphon pisum. Journal of Insect Physiology,33:109-113.
    54. Douglas A E, Price D R G, Minto L B, et al.2006. Sweet problems:insect traits defining the limits to dietary sugar utilisation by the pea aphid, Acyrthosiphon pisum. Journal of Experiment Biology,209:1395-1403.
    55. Douglas A E.1988. Sulfate utilization in an aphid symbiosis. Insect Biochemistry,18: 159-163.
    56. Douglas A E.1989. Mycetocyte symbiosis in insects. Biological Reviews of the Cambridge, 64:409-434.
    57. Douglas A E.1992. Requirement of pea aphids(Acyrthosiphon pisum) for their symbiotic bacteria. Entomologia Experimentalis et Applicata,65:195-198.
    58. Douglas A E.1996. Reproductive failure and the free amino acid pools in pea aphids (Acyrthosiphon pisum) lacking symbiotic bacteria. Journal of Insect Physiology,42: 247-255.
    59. Douglas A E.1998. Nutritional interactions in insectmicrobial symbioses:aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology,43:17-37.
    60. Douglas A E.2000. Reproductive diapause and the bacterial symbiosis in the sycamore aphid Drepanosiphum platanoidis (Schr.). Ecological Entomology,25:256-61.
    61. Douglas A E.2002. The functions of symbiotic micro-organisms in insects. In Symbiosis: Mechanisms and Model Systems (EdS) J. Seckbach. Kluwer Academic Publishers, The Netherlands 675-684.
    62. Driessen G, et al.1995. A count-down mechanism for host search in the parasitoid Venturia canescens. Journal of Animal Ecology,64:117-125.
    63. Dunbar H E et al.2007. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biology,5:96.
    64. Elliot H J, McDonald F J D, Vesk M.1975. Germarial structure and function in a parthenogenetic aphid, Aphis craccivora Koch (Hemiptera:Aphididae). International Journal of Insect Morphology and Embryology,4:341-347.
    65. Falabella P, Tremblay E, Pennacchio F.2000. Host regulation by the aphid parasitoid Aphidius ervi:the role of teratocytes. Entomologia Experimentalis et Applicata,97:1-9.
    66. Febvay G, Rahbe Y, Rynkiewicz M, et al.1999. Fate of dietary sucrose and neosynthesis of amino acids in the pea aphid, Acyrthosiphon pisum, reared on different diets. Journal of Experimental Biology,202:2639-2652.
    67. Fisher D B.2000. Long-distance transport. In Biochemistry and Molecular Biology of Plant (Eds) Buchanan B, Gruissem W, Jones R. Rockville, M D:American Society of Plant Physiologists 730-784.
    68. Frazer B D.1972. Population dynamics and recognition of biotypes in the pea aphid (Homoptera:Aphididae). The Canadian Entomologis,104:1729-1733.
    69. Fukatsu T, Aoki S, Kurosu U, et al.1994. Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls:implications for host-symbiont coevolution and evolution of sterile soldier castes. Zoological Science,11: 613-623.
    70. Fukatsu T, Nikoh N, Kawai R, et al.2000. The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta:Homoptera) Applied and Environmental Microbiology,66:2748-2758.
    71. Fukatsu T, Tsuchida T, Niko h N, et al.2001. Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta:Homoptera). Applied and Environmental Microbiology, 67:1284-1291.
    72. Funk D J, Wernegreen J J, Moran N A.2001. Intraspecific variation in symbiont genomes: Bottlenecks and the aphid-Buchnera association. Genetics,157:477-489.
    73. Gerling D, Roitberg B D, Mackauer M.1990. Stage-specific defense of the pea aphid, Acyrthosiphon pisum:Influence on oviposition success of the parasite Aphelinus asychis (Hymenoptera:Aphelinidae). Journal of Insect Behavior,3:501-514.
    74. Godfray HCJ.1994. Parasitoids. Princeton University Press, Princeton.
    75. Goff A M, Nault L R.1984. Response of the pea aphid parasite Aphidius ervi Haliday (Hymenoptera:Aphidiidae) to transmitted light. Environmental Entomology,13:595-598.
    76. Goverde M, Erhardt A, Niklaus P A.2002. In situ development of a satyrid butterfly on calcareous grassl, exposed to elevated carbon dioxide. Ecology,83:1399-1411.
    77. Gray S M, Banerjee N.1999. Mechanisms of arthropod transmission of plant and animal viruses. Microbiology and Molecular Biology Reviews,63:128-148.
    78. Griffiths D C.1960. The behaviour and specificity of Monoctonus paludum Marshall (H Hymenoptera:Braconidae), a parasite of Nasonovia ribis-nigri (Mosley) on lettuce. Bulletin of Entomological Research,51:303-319.
    79. Griffiths G W, Beck S D.1974. Effect of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum. Cell and Tissue Research,148:287-300.
    80. Hacker S D, Bertnerss M D.1994. A herbivore paradox:Why salt marsh aphids live on poor-quality plants. American Naturalist,145:192-210.
    81. Harada H, Ishikawa H.1993. Gut microbe of aphid closely related to its intracellular symbiont. Biosystems,31:185-191.
    82. Harvey J.2005. Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomologia Experimentalis et Applicata,117:1-13.
    83. Heie O E.1987. Palaeontology and phylogeny. In Aphids, their Biology. Nature Enemies and Control (Eds) Minks A K. and Harrewijn P. World Crop Pest, Elsevier, Amsterdam.367-391.
    84. Henry L M, Gillespie D R, Roitberg B D.2005. Does mother really know best? Oviposition preference reduces reproductive performance in the generalist parasitoid Aphidius ervi. Entomologia Experimentalis et Applicata,116:167-174.
    85. Holler C, Borgemeister C, Haardt H, et al.1993. The relationship between primary parasitoids and hyperparasitoids of cereal aphids:An analysis of field data. Journal of Animal Ecology,62:12-21.
    86. Holopainen J T, Jenkins G J, Ephraums J J.1990. Climatic Change:The IPCC Scientific Assessment. Inter-government Panel on Climate Change, World Meteorological Organization, United Nations Environmental Programme. London:Cambridge University Press,65.
    87. Hoover J K, Newman J A.2004. Tritrophic interactions in the context of climate change:a model of grasses, cereal Aphids and their parasitoids. Global Change Biology,10: 1197-1208.
    88. Hosokawa T, Kikuchi Y, Shimada M, et al.2007. Obligate symbiont involved in pest status of host insect. Proceedings of the Royal Society of London Series B,274:1979-1984.
    89. Houghton J T, Meiro Filho LG, Callander B A, et al. (Eds) 1996. Climate Change 1995:The Science of Climate Change. Contribution of Working Group I to the Second Assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 584.
    90. Houk E J, Griffiths G. W.1980. Intracellular symbiotes of the Homoptera. Annual Reviews of Entomology,25:161-187.
    91. Humphreys N J, Douglas A E.1997. Partitioning of symbiotic bacteria between generations of insect:a quantitative study of a Buchnera sp. in the pea aphid (Acyrthosiphon pisum) reared at different temperatures. Applied and Environmental Microbiology,63:3294-3296.
    92. Hunter M D.2001. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agricultural and Forest Entomology,3:153-159.
    93. Hurlbutt B L.1987. Sexual size dimorphism in parasitoid wasps. Biological journal of the Linnean Society,30:63-89.
    94. Jervis M, Kidd N.1996. Insect Natural Enemies, Practical Approaches to Their Study and Evolution. Chapman & Hall, London.
    95. Johns C V, Hughes A.2002. Interactive effects of elevated CO2 and temperature on the leaf-miner Dialectica scalariella Zeller (Lepidoptera:Gracillariidae) in Paterson's Curse, Echium plantagineum (Boraginaceae). Global Change Biology,8:42-152.
    96. Jousselinl E, Desdevises Y, Coeur d'acier A.2009.Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola:bacterial genome helps define species and evolutionary relationships in aphids. Proceedings of the Royal Society B,276:187-196.
    97. Kehr J, Hustiak F, Walz C, et al.1998. Transgenic plants changed in carbon allocation pattern display a shift in diurnal growth pattern. Plant Journal,16:497-503.
    98. King B H.1989. Host-size dependent sex ratios among parasitoid wasps:Does host growth matter. Oecologia,78:420-426.
    99. King B H.1993. Sex ratio manipulation by parasitoid wasps. In:Evolution and diversity of sex ratio in insect and mites. (Eds.) Wrensch DL and Ebert MA. Chapman and Hall, New York 418-441.
    100. Koga R, Tsuchida T, Fukatsu T.2003. Changing partners in an obligate symbiosis:a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proceedings of the Royal Society of London Series B,270:2543-2550.
    101. Koga R, Tsuchida T, Sakurai M, et al.2007. Selective elimination of aphid endosymbionts: effects of antibiotic dose and host genotype, and fitness consequences. FEMS Microbiology Ecology,60:229-239.
    102. Kouame K L, Mackauer M.1992. Influence ofstarvation on development and reproduction in apterous virginoparae od the pea aphid, Acyrthosiphon pisum. The Canadian Entomologist, 124:87-95.
    103. LaBarbera M.1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics,20:97-117.
    104. Lai C Y, Baumann L, Baumann P. 1994. Amplification of trpEG:adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proceedings of the National Academy of Sciences, USA,91:3819-3823.
    105. Lawton J H.2000. Excellence in Ecology Series:Community Ecology in a Changing World (Eds.) Kinne O. Ecology Institute, Germany.227.
    106. Leonardo T E, Muiru G T.2003. Facultative symbionts are associated with host plant specialization in pea aphid populations. Proceedings of the Royal Society of London Series B, 270:209-212.
    107. Lewis T, Taylor L R.1965. Diurnal periodicity of flight by insects. Transactions of the Royal Entomological Society (London),116:393-479.
    108. Li B, Mills N.2004. The influence of temperature on size as an indicator of host quality for the development of a solitary koinobiont parasitoid. Entomologia Experimentalis et Applicata, 110:249-256.
    109. Liadouze I, Febvay G, Guillaud J, et al.1996. Metabolic fate of energetic amino acids in the aposymbiotic pea aphid Acyrthosiphon pisum (Harris) (Homoptera, Aphididae). Symbiosis, 21:115-127.
    110. Liepert C, Dettner K.1993. Recognition of aphid parasitoids by honeydew-collecting ants: The role of cuticular lipids in a chemical mimicry system. Journal of Chemical Ecology,19: 2143-2153.
    111.Lopanik N, Lindquist N, Target N.2004. Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia,139:131-139.
    112. Mackauer M, Bai B, Chow A, et al.1992. Asymmetric larval competition between two species of solitary parasitoid wasps:The influence of superparasitism. Ecological Entomology,17:233-236.
    113. Mackauer M, Kambhampati S.1988. Parasitism of aphid embryos by Aphidius simithi:Some effects of extremely small host size. Entomologia Experimentalis et Applicata,49:167-173.
    114. Mackauer M, Sequeira R, Otto M.1997. In:Growth and development in parasitoid wasps: adaptation to variable host resources. Vertical Food Web Interactions (Eds.) Dettmer K, Baur G, Volkl W, Springer-Verlag. Berlin,91-203.
    115. Mackauer M, Sequeira R.1993. Patterns of development in insect parasites. Parasites and Pathogens of Insects (Eds.) Beckage N E, Thompson S N, Federici B A. Academic Press, New York, NY, USA 1-20.
    116. Mackauer M, Stary P.1967. World Aphidiidae (Hymenoptera:Ichneumonoidea).Le Francois, Paris.195.
    117. Mackauer M, Volkl W.1993. Regulation of aphid population by aphidiid wasps:Does parasitoid foraging behavior or hyperparasitism limit impact? Oecologia,94:339-350.
    118. Mackauer M.1965. Parasitological data as an aid in aphid classification. The Canadian Entomology,97:1016-1024.
    119. Mackauer M.1990. Host discrimination and larval competition in solitary endoparasitoids. In: Critical Issues in Biological Control (Eds.) Mackauer M and Roland J. Intercept, Andover, Hants.41-62.
    120. Mackauer M.1996. Sexual size dimorphism in solitary parasitoid wasps:Influence of host quality. Oikos,76:265-272.
    121. Mangel M, Clark C W.1988. Dynamic Modeling in Behavioral Ecology. Princeton Univercity Press, Princeton. N J.308.
    122. Martinez-Torres D, Buades C, Latorre A, et al.2001. Molecular systematics of aphids and their primary endosymbionts. Molecular Phylogical Evolution,20:437-449.
    123. McLean D L, Houk E J.1973. Phase contrast and electron microscopy pf the mycetocytes and symbiotes of the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology,19: 625-633.
    124. Miao X, Huang Y, Zhu X, et al.2004. A comparative study on development and reproduction of the parasitoid Lysiphlebus japonicus (Hymenoptera:Aphidiidae) in symbiotic and aposymbiotic host aphids. Applied Entomology and Zoology,39:243-248.
    125. Michaud J P, Mackauer M.1994. The use of visual cues in host evaluation by aphidiid wasps. Ⅰ.Comparison between three Aphidius parasitoids of the pea aphid. Entomologia Experimentalis et Applicata,70:273-283.
    126. Michaud J P, Mackauer M.1995. The use of visual cues in host evaluation by aphidiid wasps. Ⅱ.Comparison between Ephedrus californicus, Monoctonus paulensis, and Praon pequodorum. Entomologia Experimentalis et Applicata,74:265-275.
    127. Miller J R, Strickler K.1984. Finding and accepting host plants. In:Chemical Ecology of Insect (Eds) Bell W J and Carde.. Sinauer Associates, Sunderland M A.127-157.
    128. Mills N J, Wajnberg E.2008. Optimal foraging behavior and efficient biological control. In: Wajnberg E, Bernstein C, van Alphen J. Behavioral Ecology of Insect Parasitoids. London: Blackwell Publishing,3-30.
    129. Miyazaki M.1987. Forms and morphs of aphids. In Aphids, Their Biology, Natural Enemies and Control (Eds) Minks A K and Harrewiji.World Crop Pests. Vol.2A. Elsevier, Amsterdam. 27-50
    130. Montllor C B, Maxmen A, Purcell A H.2002. Facultative bacterial endosymbionts benefit pea aphid Acyrthosiphon pisum under heat stress. Ecological Entomology,27:189-195.
    131. Moran N A, Baumann P.1994. Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends in Ecology and Evolution,9:15-20.
    132. Moran N A, Degnan P H, Santos S R, et al.2005b. The players in a mutualistic symbiosis: Insects, bacteria, viruses and virulence genes. Proceedings of the National Academy of Sciences, USA,102:16919-16926.
    133. Moran N A, Mira A.2001. The process of genome shrinkage in the obligate symbiont, Buchnera aphidicola. Genome Biology,2:1-12.
    134. Moran N A, Munson M A, Baumann P, et al.1993. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proceedings of the Royal Society of London. Series B,253:167-171.
    135. Moran N A, Russell J A., Koga R, Fukatsu T.2005a. Evolutionary Relationships of Three New Species of Enterobacteriaceae Living as Symbionts of Aphids and Other Insects. Applied and environmental microbiology,71:3302-3310.
    136. Munson M A, Baumann L, Baumann P.1993. Buchnera aphidicola (a prokaryotic endosymbiont of aphids) contains a putative 16S rRNA operon unlinked to the 23 S rRNA-encoding gene:sequence determination, and promoter and terminator analysis. Gene, 137:171-178.
    137. Munson M A, Baumann P, Clark M A, et al.1991. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. Journal of Bacteriology,173:6321-6324.
    138. Newman J A, Gibson D J, Hickam E, et al.1999. Elevated carbon dioxide results in smaller populations of the bird cherry-oat aphid Rhopalosiphum padi. Ecological Entomology,24: 486-489.
    139. Newman J A, Gibson D J, Parsons A J, et al.2003. How predictable are aphid population responses to elevated CO2? Journal of Animal Ecology,72:556-566.
    140. Nicol C M Y, Mackauer M.1999. The scaling of body size and mass in a host-parasitoid association:influence of host species and stage. Entomologia Experimentalis et Applicata,90: 83-92.
    141. Ode P J, Hopper K R, Coll M.2005. Oviposition vs. progeny fitness in Aphidius colemani parasitizing different aphid species. Entomologia Experimentalis et Applicata,115:303-310.
    142. Oliver K M, Moran N A, Hunter M S.2005. Variation in resistance to parasitism in aphids is due to symbionts not hose type. Proceedings of the National Academy of Sciences of the United States of America,102:12795-12800.
    143. Oliver K M, Moran N A, Hunter M S.2006. Costs and benefits of a superinfection of facultative symbionts in aphids. Proceedings of the Royal Society of London Series B, 273:1273-1280.
    144. Oliver K M, Russell J A, Moran N A, et al.2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences of the United States of America,100:1803-1807.
    145. Osbrink W L A, Trumble J T, Wagner R E.1987. Host suitability of Phaseolus lunata for Trichoplusia ni (Lepidoptera:Noctuidae) in controlled carbon dioxide atmospheres. Environmental Entomology,16:639-644.
    146. Pennacchio F, Fanti P, Falabella P, et al.1999. Development and nutrition of the braconid wasp, Aphidius ervi in aposymbiotic host aphids. Archives of Insect Biochemistry and Physiology,40:53-63.
    147. Plague G R, Dale C, Moran N A.2003. Low and homogeneous copy number of plasmid-borne symbiont genes affecting host nutrition in Buchnera aphidicola of the aphid Uroleucon ambrosiae. Molecular Ecology,12:1095-1100.
    148. Pritchard J, Griffiths B, Hunt E J.2007. Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted? Global Change Biology,13:1616-1629.
    149. Prosser W A, Douglas A E.1991. The aposymbiotic aphid:an analysis of chlortetracycline-treated pea aphid, Acyrthosiphon pisum Journal of Insect Physiology,37: 713-719.
    150. Quicke D L J.1997. Preimaginal development:from gametogenesis to syngamy. Parasitic Wasps (Eds) Quicke D L J. Chapman and Hall, London,79-101.
    151.Quinn G, Keough M.2002. Experimental Design and Data Analysis for biologists. Cambridge University Press, Cambridge.
    152. R Development Core Team.2007. R:A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
    153. Rahbe Y, Digilio M C, Febvay G, et al.2002. Metabolic and symbiotic interactions in amino acid pools of the pea aphid, Acyrthosiphon pisum, parasitized by the braconid Aphidius ervi. Journal of Insect Physiology,48:507-516.
    154. Rehbe Y, Delobel B, Febvay G, et al.1994. Aphid-specific triglycerides in symbiotic and aposymbiotic Acyrthosiphon pisum. Insect Molecular Biology,24:95-101.
    155. Riegler M, O'Neill S L.2007. Evolutionary dynamics of insect symbiont associations. TRENDS in Ecology and Evolution,22:625-627.
    156. Rivero.2000. The relationship between host selection behaviour and progeny fitness in a koinobiont parasitoid. Ecological Entomology,25:467-472.
    157. Roff D A.1992. The Evolution of Life Histories. Theory and Analysis. Chapman & Hall, New York London,1-535.
    158. Roitberg B D.1990. Variation in behaviour of individual parasitic insects:Bane or boon? (Eds) Mackauer M, Ehler L E and Roland, Critical Issues in Biological Control. Intercept, Andover, Hants.25-39
    159. Roth S K, Lindroth R L.1995. Elevated atmospheric CO2 effects on phytochemistry, insect performance and insect parasitoid interactions. Global Change Biology,1:173-182.
    160. Rouhbakhsh D, Lai C Y, von Dohlen C D, et al.1996. The tryptophan biosynthetic pathway of aphid endosymbionts (Buchnera):genetics and evolution of plasmid-associated anthranilate synthase (trpEG) within the Aphididae. Journal of Molecular Evolution,42: 414-421.
    161. Russell J A, LaTorre A L, Sabater-Munoz B, Moya A, Moran N A.2003. Side-stepping secondary symbionts:widespread horizontal transfer across and beyond the Aphidoidea. Molecular Ecology,12:1061-1075.
    162. Russell J A, Moran N A.2006. Costs and benefits of symbiont infection in aphids:variation among symbionts and across temperatures. Proceedings of the Royal Society B:Biological Sciences,273:603-610.
    163. Sabater-Munoz B, van Ham R C, Moya A, et al.2004. Evolution of the leucine gene cluster in Buchnera aphidicola:insights from chromosomal versions of the cluster. Journal of Bacteriology,186:2646-1654.
    164. Salt D T, Fenwick P, Whittacker J B.1996. Interspecific herbivore interactions in a high CO2 environment:root and shoot aphids feeding on Cardamine. Oikos,77:326-330.
    165. Sandstrom J P, Russell J A, White J P, et al. 2001. Independent origins and horizontal transfer of bacterial symbionts of aphids. Molecular Ecology,10:217-228.
    166. Sandstrom J, Moran N A.1999. How nutritionally imbalanced is phloem sap for aphids? Entomologia Experimentalis et Applicata,91:203-210.
    167. Sandstrom J, Pettersson J.1994. Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid(Acyrthosiphon pisum) performance. Journal of Insect Physiology,40:947-955.
    168. Sandstrom J.1996. Temporal changes in host adaptation in the pea aphid, Acyrthosiphon pisum. Ecological Entomology,21:52-56.
    169. Sasaki T, Aoki T, Hayashi H, et al.1990. Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum. Journal of Insect Physiology, 36:35-40.
    170. Sasaki T, Hayashi H, Ishikawa H.1991. Growth and reproduction of the symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisum. Journal of Insect Physiology,41:41-46.
    171. Sasaki T, Ishikawa H.1995. Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum. Journal of Insect Physiology, 41:41-6.
    172. Saxena K N, Khattar P.1977. Orientation of Papilio demoleus larval in relation to size, distance, and combination patterns of visual stimuli. Proceedings of the Royal Society of London B,122:57-75.
    173. Scarborough C L, Ferrari J, Godfray H C J.2005. Aphid protected from pathogen by endosymbiont. Science,310:1781.
    174. Seneweera S P, Conroy J P.2005. Enhanced leaf elongation rates of wheat at elevated CO2: is it related to carbon and nitrogen dynamics within the growing leaf blade? Environmental and Experimental Botany,54:174-181.
    175. Sequeira R, Mackauer M.1992a. Nutritional ecology of an insect host parasitoid association-the pea aphid Aphidius ervi system. Ecology,73:183-18.
    176. Sequeira R, Mackauer M.1992b. Covariance of adult size and developmental time in the parasitoid wasp Aphidius ervi in relation to the size of its host, Acyrthosiphon pisum. Evolutionary Ecology,6:34-44.
    177. Sequeira R, Mackauer M.1993a. The nutrition ecology of a parasitoid wasp, Ephedrus californicus Baker (Hymenoptera:Aphidiidae). The Canadian Entomologist,125:423-430.
    178. Sequeira R, Mackauer M.1993b. Seasonal variation in body size and offspring sex ratio in field populations of the parasitoid wasp, Aphidius ervi (Hymenoptera:Aphidiidae). Oikos,68: 340-346.
    179. Shaw M R.1994. Parasitoid host ranges. In:Parasitoid Community Ecology (Eds) Hawkins B A. and Sheehan W, Oxford University Press, Oxford.111-144.
    180. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H.2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature,407:81-86.
    181. Simon J C, Carre'S, Boutin M, et al.2003. Host-based divergence in populations of the pea aphid:insights from nuclear markers and the prevalence of facultative symbionts. Proceedings of the Royal Society of London Series B,270:1703-1712.
    182. Skirvin D J, Perry J N, Harrington R.1997. The effect of climate change on an aphid-coccinellid interaction. Global Change Biology,3:1-11.
    183. Smith H.1996. The effects of elevated CO2 on aphids. Antenna,20:109-111.
    184. Smith O H, Yanofsky C.1962. Enzymes involved in the biosynthesis of tryptophan. Methods in Enzymology,5:794-806.
    185. Stacey D A, Fellowes M E.2002. Influence of elevated CO2 on interspecfic interactions at higher trophic levels. Global Change Biology,8:668-678.
    186. Staler B, Mackauer M.1996. Influence of plant quality on interactions between the aphid parasitoid Ephedrus californicus (Hymenoptera:Aphidiidae) and its host, Acyrthosiphon pisum (Homoptera:Aphidae). The Canadian Entomologist,128:27-39.
    187. Staler B, Volkl W.1991. Foraging patterns of two aphid parasitoids, Lysiphlebus testaceipes and Aphidius colemani on banana. Entomologia Experimentalis et Applicata,58:221-229.
    188. Stephens D W, Krebs J R.1986. Foraging Theory. Princeton University Press, Princeton, N.J.
    189. Stiling P, Moon D C, Hunter M D, et al.2003. Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia,134,82-87.
    190. Stiling P, Rossi AM, Hungate B et al.1999. Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecological Applications,9:240-244.
    191. Strand M R, Pech L L.1995. Immunological basis for compatibility in parasitoid-host relationships. Annual Review of Entomology.40:31-56.
    192. Takada H, Hashimoto Y.1985. Association of the root aphid parasitoids Aclitus sappaphis and Paralipsis eikoae (Hymenoptera:Aphidiidae) with the aphid-attending ants Pheidole fervida and Lasius niger (Hymenoptera, Formicidae). Konta,53:150-160.
    193. Tardieux I, Rabasse J M.1986. Host-parasite interrelationships in the case of Aphidius colemani (Eds) Hodek I, Ecology of Aphidophaga, Academia, Prague,125-130.
    194. Thao M L, Baumann L, Baumann P, et al.1998. Endosymbionts(Buchnera) from the aphids Schizaphis graminum and Diuraphis noxia have different copy numbers of the plasmid containing the leucine biosynthetic genes. Current Microbiology,36:238-240.
    195. Thao M L, Baumann P.2004. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha:Aleyrodidae). Current Microbiology,48:140-144.
    196. Thompson J N.1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia Experimentalis etApplicata,47:3-14.
    197. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T.2002. Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Molecular Ecology,11:2123-2135.
    198. Turlings T C J, Tumlinson J H, Lewis W J.1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science,250:1251-1253.
    199. Unterman B M, Baumann P, McLean D L.1989. Pea aphid symbiont relationships established by analysis of 16S rRNAs. Journal of Bacteriology,171:2970-2974.
    200. van Alphen J J M, Bernstein C.2008. Information acquisition, information processing, and patch time allocation in insect parasitoids. In:Wajnberg E, Bernstein C, van Alphen J. Behavioral Ecology of Insect Parasitoids. London:Blackwell Publishing,172-192.
    201. van den Heuvel J F J M, Hogenhout S A, Verbeek M, et al.1998. Azadirachta indica metabolites interfere with the host-endosymbiont relationship and inhibit the transmission of potato leafroll virus by Myzus persicae. Entomologia Experimentalis et Applicata,86: 253-260.
    202. van den Heuvel J F J M, Verbeek M, van der Wilk F.1994. Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. Journal of General Virology,75:2559-2565.
    203. van Emden H F.1995. Host plant-aphidophaga interactions. Agriculture, Ecosystems & Environment,52:3-11.
    204. van Ham R C, Kamerbeek J, Palacios C, et al..2003. Reductive genome evolution Buchnera aphidicola. Proceedings of the National Academy of Sciences, USA,100:581-586.
    205. Vet L E M, Lewis W J, Papaj D R, et al..1990. A variable response model for parasitoid foraging behavior. Journal of Insect Behaviour,3:471-490.
    206. Vinson S B, Iwantsch G F.1980. Host regulation by insect parasitoids. Quarterly Review of Biology,55:145-165.
    207. Vinson S B.1990. How parasitoids deal with the immune system of their host:An overview. Archives of Insect Biochemistry and Physiology,13:3-27.
    208. Volkl W, Kraus W.1996. Foraging behaviour and resource utilization of the aphid parastoid Pauesia unilachni:Adaptation to host distribution and mortality risk. Entomologia Experimentalis et Applicata,79:101-109.
    209. Volkl W, Mackauer M.1990. Age-specific pattern of host discrimination by the aphid parasitoid Ephedrus californicus Baker (Homoptera, Aphididae). The Canadian Entomology, 122:349-361.
    210. Volkl W, Mackauer M.1993. Interactions between ants and parasitoid wasps foraging for Aphis fabae ssp. Cirsiiacanthoidis on thistles. Journal of Insect Behavior,6:301-312.
    211. Volkl W, Stadler B.1996. Colony orientation and successful defense behaviour in the conifer aphid, Schizolachnus pineti. Entomologia Experimentalis et Applicata,78:197-200.
    212. Volkl W.1994. The effect of ant-attendance on the foraging behavior of the aphid parasitoid Lysiphlebus cardui. Oikos,70:149-155.
    213. Waage J K.1979. Foraging for patchily-distributed hosts by the parasitoid Nerneritis canescens. Journal of Animal Ecology,48:353-371.
    214. Wardle A R, Borden J H.1991. Effect of prior experience in the response of Exeristes roborator (Hymenoptera, Ichneumonidae) to a natural host and microhabitat in a seminatural environment. Environmental Entomology,20:889-898.
    215. Weeks A R, Velten R, Stouthamer R 2003. Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proceedings of the Royal Society of London B, 270:1857-1865.
    216. Weisser W W, Houston A I, Voelkl W.1994. Foraging strategies in solitary parasitoids:The trade-off between female and offspring mortality risks. Evolutionary Ecology,8:587-597.
    217. Weisser W W.1994. Age-dependent foraging behaviour and host-stage preference of the aphid parasitoid Lysiphlebus cardui. Entomologia Experimentalis et Applicata,70:1-10.
    218. Wernegreen J J, Moran N A.2000. Decay of mutualistic potential in aphid endosymbionts through silencing of biosynthetic loci:Buchnera of Diuraphis. Proceedings of the Royal Society of London B,267:1423-1431.
    219. Werren J H, O'Neil S L.1997. The evolution of heritable symbionts. In Influential passengers:inherited micro-organisms and arthropod reproduction (Eds.). O'Neill S L, Hoffman A A & Werren J H. Oxford, UK:Oxford University Press,2-10.
    220. Wharton D R, Lola J E.1969. Lysozyme action on the cockroach Periplaneta Americana and its intracellular symbionts. Journal of Insect Physiology,15:1647-58.
    221. Whitehead L F, Douglas A E.1993. Populations of Symbiotic Bacteria in the Parthenogenetic Pea Aphid(Acyrthosiphon pisum) Symbiosis. Proceedings of the Royal Society of London Series B,254:29-32.
    222. Wilkinson T L.1998. The elimination of intracellular microorganisms from insects:an analysis of antibiotictreatment in the pea aphid (Acyrthosiphon pisum). Comparative Biochemistry and Physiology A,119:871-881
    223. Wilkinson T L, Douglas A E.1995. Aphid feeding, as influenced by disruption of the symbiotic bacteria:an analysis of the pea aphid (Acyrthosiphon pisum). Journal of Insect Physiology,41:635-640.
    224. Wilkinson T L, Adams D, Minto L B, et al.2001. The impact of host plant on the abundance and function of symbiotic bacteria in an aphid. Journal of Experimental Biology,204: 3027-3038.
    225. Wilkinson T L, Fukatsu T, Ishikawa H.2003. Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera:Aphidoidea). Arthropod Structure and Development,32:241-245.
    226. Wilkinson T L, Koga R, Fukatsu T.2007. Role of host nutrition in symbiont regulation: Impact of dietary nitrogen on proliferation of obligate and facultative bacterial endosymbionts of the Pea Aphid Acyrthosiphon pisum. Applied and Environmental Microbiology,73:1362-1366.
    227..Xu Q H, Meng L, Li B P, Mills N.2008. Influence of host-size variation on the development of a koinobiont aphid parasitoid, Lysiphlebus ambiguus Haliday (Braconidae, Hymenoptera). Bulletin of Entomological Research,98:389-395.
    228. Zchori-Fein E, Brown J K.2002. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae). Annals of the Entomological Society of America,95, 711-718.
    229. Ziska L H.1998. The influence of root zone temperature on photosynthetic acclimation to elevated carbon dioxide concentrations. Annals of Botany,81:717-721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700