玫瑰黄链霉菌Men-myco-93-63发酵液防治黄瓜白粉病的效果及作用机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜白粉病是一种潜育期短、再侵染频繁、流行性强的病害,是黄瓜叶部上的主要病害之一,每年都因白粉病的发生造成严重的经济损失。本研究通过测定经发酵液处理黄瓜白粉病的温室药效试验以及与植物抗病相关酶活性变化规律以期揭示其生理生化方面的作用机理。同时利用荧光染色技术、扫描电镜以及透射电镜技术与细胞学相结合的方法探索其对白粉病菌的作用机理,同时揭示白粉菌以及寄主细胞在超微结构上发生的变化,从不同角度深入探讨抗病机理为今后生产使用打下良好基础。
     本研究通过温室药效试验表明玫瑰黄链霉菌Men-myco-93-63发酵液对黄瓜白粉病有良好的防效,其中发酵液保护作用的防效为88.64%,治疗作用的防效为82.26%,表明该发酵液对黄瓜白粉病的防治既有保护作用又有治疗作用。
     通过对喷施发酵液后黄瓜叶片内的抗病相关酶的活性的测定发现,喷施Men-myco-93-63发酵液后黄瓜叶片内POD、CAT、PAL和PPO酶的活性在一定时间内有明显上升的趋势。发酵液用作保护剂时:POD酶活在接菌的2d到3d时即达到峰值,此时酶活为未喷施发酵液时的2.5倍,并且比同时期的清水对照处理的酶活高40%。CAT酶活在接菌第3d时达到最高峰,比对照组高30%。PPO酶活在接菌1d后即升至高峰,比对照组高60%。PAL酶活在第2d到3d达到高峰比同处理的对照组高1.7倍,到第7d时,酶活性和对照组基本相同。发酵液用作治疗剂时:喷施发酵液后,处理组的POD酶活在第1d即达到峰值,此时比清水对照组高约50%。喷药后第1d处理组的CAT酶活上升至最高峰,比同时期的对照处理的酶活性高50%。随后处理组酶活平缓下降,但是始终高于清水对照组。清水对照组的酶活变化不大。接菌1d后,接菌后的处理组PPO酶活上升至高峰,但只比其对照组高20%,随后活性开始下降。喷发酵液后第1d处理组的PAL酶活达到峰值,比同时期其对照组的酶活高47%。
     荧光显微镜和扫描电镜技术研究发现,发酵液能够降低白粉菌的孢子萌发率,延迟其侵染的时间。在一定程度上抑制了菌丝的生长,使寄主体表的菌丝形态发生一系列异常变化,表现为菌丝扭曲变形,菌落比较稀疏变小,延迟其产孢时间约2d。利用透射电镜技术研究了经发酵液处理后,黄瓜植株叶片以及白粉病菌发生的一系列变化。超微结构观察表明,寄主细胞对病原菌的侵入产生了防卫反应结构,表现为寄主细胞壁加厚,染色加深,在寄主细胞壁下产生结构致密的乳突,在寄主细胞壁与质膜之间有黑色沉积物质。黄瓜白粉菌产生吸器的数目明显减少,吸器畸形,吸器壁增厚,细胞器泡囊化解体,最终吸器坏死,不能从寄主细胞中更好的吸取营养,达到防病的目的。
Cucumber powdery mildew is one of the most serious lamina primary disease which is a short delitescence, high frequency intrusion, and strongly epidemic disease on cucumber. It was reported that losing in economy was very seriously because of cucumber powdery mildew. In the research, control effect of the fermentation broth of Stremptomyces roseoflavus Men-myco-93-63 on cucumber powdery mildew were investigated through the efficacy test and several resistance-related enzymatic activities of the leaves of cucumber were detected, which opened out the physiology mechanism. At the same time, I explore the control mechanism of the fermentation broth of Men-myco-93-63 on cucumber powdery by means of fluorescence coloration technique and electronic microscopy as well as cytochemical technology. Ultrastructure changes of the host cell wall and Sphaerothecafuligenea (Schlecht) Poll. were studied. The research will lay the important base work for the production and use of the fermentation broth of Men-myco-93-63 in the future.
     The significant control effect of the fermentation broth of Men-myco-93-63 on cucumber powdery mildew was proofed through the efficacy test. There are two kinds of control effect of the fermentation. One is the protect effect, which was 88.64%in the test. Another is curative effect, which was 82.26%.
     Several resistance-related enzymatic activities of the leaves of cucumber were detected, such as peroxidase (POD), catalase (CAT), phenylalanine ammonia-lyase (PAL), and polyphenol oxidase (PPO). All of the activities of these enzymes in the treated cucumber seedlings were higher than those in the untreated seedlings during the certain periods. When the fermentation broth of Men-myco-93-63 was used as protect medicament, the activities of POD reached its maximum after treatment from two days to three days, which were 2.5 times higher than the fermentation broth untreated and were 40% higher than water comparison at the same time. The activities of CAT reached its maximum after treatment three days, which were 30% higher than unsettled at the same time. The activities of PPO reached its maximum after treatment one day, which were higher 60% than unsettled at the same time. The activities of PAL reached its maximum degree after treatment from two days to three days, which were 1.7 times higher than unsettled, the treatment activities of PAL is the same as unsettled after seven days. When the fermentation broth of Men-myco-93-63 was used as cure medicament, the activities of POD reached its maximum after treatment one day, which were higher 50% than water comparison at the same time. The activities of CAT reached its maximum after treatment one day, which were higher 50% than unsettled at the same time, then, the activities of treatment were fell gently, which activities of CAT were higher than water comparison all the time. The activities of water comparison were hardly variety. The activities of CAT reached its maximum after treatment one day, which were higher 20% than unsettled at the same time, the activities of CAT were fell gently. The activities of PAL reached its maximum after treatment one day, which were higher 47% than unsettled at the same time.
     The study showed that the fermentation broth of Men-myco-93-63 reduced Sphaerotheca fuligenea (Schlecht) Poll germination, delayed its intrusion time, the amount of hypha were restrained a certain extent after treatment by the fermentation broth of Men-myco-93-63. The hypha on the host surface had taken place a series of change, such as hypha distortion, clone sparsing and decreesinsing, and which delayed come into being sporule about two days. Being studied by means of TEM, the host cell and Sphaerotheca fuliginea arisesed a series of transformation. Being treated with the fermentation broth of Men-myco-93-63, the infected host cells produced defense structures and material related to infection, including that the host cell wall was thickened and deeply stained, solidity of papilla structure produced under the cell wall, dark material deposited between the cell wall and plasmalemma. The number of haustellum of Sphaerotheca fuliginea was reduced obviously. Haustoria became malformed and the wall thickened, and organelles disintegrated. Finally, haustoria necrotizcd. Haustoria can't absorb favorably nutrition from the host.
引文
[1] Culver J N, Lindbeck A G C, Dawson W O. Vims-host interactions: induction of chlomtic and necrotic responses in plant by tobacco mosaic virus [J]. Annu. Rev. Plant Pathol, 1991, 29: 193~217.
    [2] 冯东昕,李宝栋.主要瓜类作物抗白粉病育种研究进展[J].中国蔬菜,1996,(1):55~59.
    [3] Khan M W, Khan A M. Studies on the cucurbit powdery mildew. I. Perithecial production in cucurbit powdery mildew in northern India[J]. Indian Phytopath, 1970, 23: 497~501.
    [4] 吕佩珂,李明远,吴钜文,等.中国蔬菜病虫原色图谱[M].农业出版社,1992:17~18.
    [5] 董金皋,李洪连,朱杰华,等.农业植物病理学(北方本)[M].北京:中国农业出版社,2001.
    [6] 惠勒.(沈崇绕.译)植物病程[M].北京:农业出版社,1975.
    [7] Zadoks J C, R D Schein. Epidemiology and plant disease management[M]. Oxford Univ Press, 1979.
    [8] Vanderplank J E. Host-pathogen interactions in plant disease[M]. Academic Press Newyord, 1982.
    [9] 戴芳澜.中国真菌总汇[M].科学出版社,1979.
    [10] 屈振涂.长春地区黄瓜白粉病菌的鉴定[J].吉林农业大学学报,1981(2):32~34.
    [11] 马青,崔鸿文,仇贵生.速保利防治黄瓜白粉病效果研究[J].西北农业大学学报,1997,25(1):36~40.
    [12] 方中达.中国农业百科全书.植物病理学卷[M].北京:农业出版社,1996.
    [13] 郑濡永,于永年.中国真菌志-白粉菌目[M].北京:科学出版社,1987.
    [14] 朱国仁.主要蔬菜病虫害防治技术及研究进展[M].北京:农业出版社,1992.
    [15] Agrios. G. N. (陈永萱.译)植物病理学[M].北京:农业出版社,1995.
    [16] Dekhuijzen H M. The isolation of haustoria from cucumber leaves infected with powderymildew[J]. Neth Plant Pathol, 1996, 72: 1~11.
    [17] White N H, Baker E P. Host pathogen relation in powdery mildew of barley histology of tissue relations [J]. Phytopathology, 1954, 44: 657~662.
    [18] 周益林,段霞瑜,盛宝钦.植物白粉病的化学防治进展[J].农药学学报,2001,3(2):12~18.
    [19] 陈杏禹.无公害蔬菜及其发展前景[J].无公害蔬菜生产技术:中国计量出版社,13~14:16~24.
    [20] Bowen P, Menzies J G, Ehret D, et al. Soluble silicon sprays inhibit powdery mildew development on grape leaves[J]. JAm Soc Hort Sci, 1992, 117: 906~912.
    [21] 马利平,武英鹏,高芬,等.家畜沤肥浸渍液对黄瓜白粉病的作用及其机理[J].植物保护学报,1999,26:(3)286~287.
    [22] 范玲.微生物农药研究进展及产业发展对策[J].中国生物工程杂志,2002,22(5):83~86.
    [23] 黄大防,林敏.农业微生物基因工程[M].北京:科学技术出版社,2001.
    [24] 俞子牛.微生物农药及产业化[M].北京:科学技术出版社,2000.
    [25] 李荣森.我国微生物防治研究与微生物农药产业化的进展[J].中国病毒学,2000 (15):1~15.
    [26] 蒋细良,谢德岭.农用抗生素作用机理[J].中国生物防治,1994,(2):76~81.
    [27] 张曦,陈小波,李琦华,等.抗生素类饲料添加剂[J].云南畜牧兽医,1998(4):39~49.
    [28] 矶野清.以新的观点研究抗生素和抗生素对农业生产的贡献[J].农药译丛,1991,13(1):12~16.
    [29] COHLN R. Seed treatment for the control of Sphaerotheca fuliginea in muskmelon seedlings[J]. Plant Pathology, 1994 (43): 316~320.
    [30] Askary H, Benhamou N, Broder J. Ultra-structural and tyro-chemical investigations of the antagonistic effect of Verticillium Lecanii on cucumber powdery mildew[J]. Phytopathology, 1997, 87: 358~368.
    [31] M. J. Jeger. E. Gilijamse. The epidemiology, variability andcontrolofthedowny mildews of pearl millet and sorghum, ith particular reference to Africa[J]. Plant Pathology, 1998 (47): 544~569.
    [32] Jarivs W R, Shaw L A, Traquair J A. Factors affecting antagonism ofcuumber powdery mildew by Stephanoascusflocculosus and S.rugulosus[J]. Mycol Res, 1989, 92:: 162~165.
    [33] Bettiol W, Garibaldi A, Migel I Q. Brcillus subtilis for the control powder mildew on Cucmber and Zucchini squash [J]. Bmgantia, 1997, 56(2): 281~287.
    [34] Reuveni M, Agapov V, Reuveni R. Induced systemic protection to powdery mildew in cucumber by phosphate and potassium fertilizers: effects of inoculum concentration and post-inoculation treatment [J]. Canadian Journal of Plant Pathology, 1994, 17: 247~251.
    [35] Reuveni M, Agapov V, Reuveni R. Suppression of cucumber powdery mildew (Sphaerothecafuliginea) by foliar sprays of phosphate and potassium salts[J]. Plant Pathology, 1995, 44: 31~39.
    [36] Abood J K, Losel D M, Ayres P G. Lithium chloride and cucumber powdery mildew infection[J]. Plant Pathology, 1991, 40: 108~117.
    [37] ContiGG, PianezzolaA, ArnoldiA, etal. Possible involementofsalicylicacidin systemic acquired resistance of Cucumber is sativus against Sphaerotheca fuliginea [J]. European Journal of Plant Protection, 1996, 102: 537~544.
    [38] Wagner F. The signifance of silicon acid for the growth of certain, cultivated plants, their nutrient economy, and their susceptibility to genuine mildews[J]. Phytopathology, 1940, 12: 419~427. (in German).
    [39] Adatia M H, Besford R T. The effects of silicon on cucumber plants grown in recirculating nutrient solution[J]. Annual Botany, 1986, 58: 343~351.
    [40] 梁永超,孙万春.硅和诱导接种对黄瓜炭疽病的抗性研究[J].中国农业科学,2002,35(3):267~271.
    [41] Jarvis W R, Slingsby K. The control of powdery mildew of greenhouse cucumber by water sprays and ampelomyces quisqualis[J]. Plant Disease Reporter, 1977, 61 (9).
    [42] Heijwegen T. Effect of seventeen fungicolous fungi on sporularion of cucumber powderymildew[J]. Neth. J. PL. Path, 1988, 94: 185~190.
    [43] Hofstein R, Daoust R A, et al. Constraints to the development of biofungicides: The example of "AQ", Anew product for controlling powdery mildews[J]. Entomophaga, 41 (3/4): 455~460.
    [44] Urquhart E J, Menzies J G, Punja Z K. Growth and biological control activity of Tilletiopsis species against powdery mildew (Sphaerothecafuliginea) on greenhouse cucumber[J]. Phytopathology, 1994, 84: 341~351.
    [45] 沈寅初.农用抗生素研究开发新进展[J].植保技术与推广,1997,17(6):35~37.
    [46] 周明国,叶钟音,刘径芬.稻纹枯病对井岗霉素抗药性的检测、临测和诱导[J].中国水稻科学,1991,5(2):73~78.
    [47] 杨文香,张汀,刘大群.三株链霉菌对黄瓜白粉病及黄瓜生长的影响[J].河北农业大学学报,2005,28(4):80~84.
    [48] 陈喜文,郝友进,陈德福,等.含氮杂环化合物对黄瓜白粉病抗性的诱导作用及其与防御酶系统的关系[J].植物病理学报,2003,33(6):535~540.
    [49] 魏国强,朱祝军,等.硅对黄瓜白粉病抗性的影响及其生理机制[J].植物营养与肥料学报,2004,10(2):202~205.
    [50] 魏国强,钱琼秋,朱祝军.黄瓜白粉病抗性及生理机制的研究[J].华北农学报,2004,19(2):84~86.
    [51] 魏国强,朱祝军,等.硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究*[J].应用生态学报,2004,15(11):2147~2151.
    [52] 阐光锋,张广民,房保海,等.烟草野火病菌对烟草细胞内5种防御酶系统的影响[J].山东农业大学学报(自然科学版),2002,33(1):28~31.
    [53] 李洪连,王守正.黄瓜对炭疽病诱导抗性的初步研究Ⅱ-诱导抗性机制的研究[J].植物病理学报,1993,23(4):327~330.
    [54] 冯杰.棉株体内几种生化物质与抗枯萎病之间的关系的初步研究[J].植物病理学报,1991,21(4):291~297.
    [55] 宋凤鸣.氟乐灵诱发棉苗对枯萎病的诱导抗病性机制[J].植物病理学报,1993,23(2):114~117.
    [56] Brzezicka-Szymczyk K, Golinowski W, Zamorski C. Cytological changes observed in the successive phases of the wheat rust caused by Puccinia reconditaf, sp. tritici after the treatment with Tilt 250 EC [J]. Acta Societatis Botanicorum Poloniae (Poland), 1995, 64 (4): 349~358.
    [57] Dahmen H, Staub T. Differential effects ofsterol inhibitors on growth cell membrane permeability, and ultrastructure of two target fungi[J]. Phytopathology, 1988, 78 (8): 1033~1042.
    [58] Fakhouri W, Kang Z, Buchenauer H. Ultrastructural studies on the mode of action of fluorescent pseudomonads alone and in combination with acibenzolar-S-methyl effective against Fusariurm oxysporum f. sp. lycopersici in tomato plant[J]. Journal of Plant Diseases and Protection, 2001, 108 (5): 513~529.
    [59] Hippe S, Hermanns M. Intracellular localization of the systemic fungicide triadimenol in phytopathogenicfungi[J]. Journal-of-Phytopathology (Germany, F. R), 1988, 122 (1): 13~24.
    [60] 陶家凤,沈言章,秦家忠,等.小麦的种和品种对白粉病抗性的初步研究[J].植物病理学报,1982,12(2):7~14.
    [61] 吴畏,杨家书,吴友三.小麦白粉病菌吸器与品种抗病性的关系[J].植物病理学报,1985,15(1):31~35.
    [62] 陶家凤,文成敬,张敏,等.小麦白粉菌对几种禾本科植物侵染的观察[J].四川农业大学学报,1985,3(2):1~8.
    [63] Carver T L W. Histology of infection by Erysiphe graminis f. sp. hordei in spring barley lines with various levels of partial resistance[J]. Plant Pathology, 1986, 35: 232~240.
    [64] Wright A J, Heale J B. Host responses to fungal penetration in Erysiphe graminis f. sp. hordei infections in barley[J]. Plant Pathology, 1988, 37: 131~140.
    [65] 康振生,商鸿生,井金学,等.内吸杀菌剂速保利对小麦条锈菌和白粉病菌发育影响的研究[J].植物病理学报,1996,26(2):111~116.
    [66] 李金玉,康振生,胡东维.种衣剂17号对小麦白粉病菌发育影响的研究[J].中国农业科学,1995,28(4):60~65.
    [67] Dekhuijzen H M. The isolation of haustoria from cucumber leaves infected with powderymildew[J]. Neth. J. PlantPathol, 1966, 72: 1~11.
    [68] Staub T, Dahmen H, Schwinn F J. Light and scanning electron microscopy of cucumber and barley powdery mildew on host and nonhost plants[J]. Phytopathology, 1974, 64: 364~372.
    [69] Levente Kiss. A review of fungal antagonists of powdery mildews and their potential as biocontrol agents[J]. Pest Manag Sci, 2003, 59: 475~483.
    [70] Hashioka Y. Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales[J]. TransMycol. Soc. Japan, 1980, (21):329~338.
    [71] 马青,孙辉,等.寡聚糖诱抗剂诱导黄瓜抗白粉病的研究[J].西北农林科技大学学报(自然科学版),2005,8(33):79~81.
    [72] 马青,孙辉等.氨基寡糖素对黄瓜白粉病菌侵染的抑制作用[J].菌物学报,2004,23(3):423~428.
    [73] 马青,孙辉,商鸿生,等.寡聚糖诱导黄瓜对白粉病抗病反应的超微结构研究[J].植物病理学报,2004,34(6):525~530.
    [74] Liu D Biological control of Streptomyces scabies and other plant pathogens[D]. Ph. D. thesis, University of Minnesota, St. pal. 1996.
    [75] Yang Wen-xiang, Zhang Ting, Liu Da-qun. Biological Control. cucumber powdery mildew using culture filatrate of antagonistic Streptomyces in green house[J]. The 2nd International Workshop on White Agriculture, 2004, 85.
    [76] 李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996.
    [77] 方中达.植病研究法[M].北京:农业出版社,1998,366~368.
    [78] 朱光廉,钟文海,张爱琴.植物生理学实验[M].北京:中国农业出版社,1998,366~368.
    [79] Cakmak I, Manrschner H. Magnesium deficiency and highlight intensity enhance activities of super oxide dismutase ascorbate peroxides, and lutathione reductase in leaves[J]. Plant Physiology, 1992, 98: 1222~1227.
    [80] 李靖,利荣干,袁文静.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277~283.
    [81] 康振生.植物病原菌超微结构[M].北京:中国科学技术出版社.1996.
    [82] Zhu Z-J (朱祝军), Yu J-Q (喻景权), Gerendas J, et al. 1998. Effect of light and nitrogen form on growth and activities of H_2O_2-scavenging enzymes in tobacco[J].Plant Nutr Fen Sci(植物营养与肥料学报),4(4):379~385(in Chinese).
    [83] 汪红,刘辉,袁红霞,等.棉花黄萎病不同抗性品种接菌前后体内酶活性及酚类物质含量的变化[J],华北农学报,2001,16(3):46~51.
    [84] 薛应龙,欧阳光察.植物抗病的物质代谢基础[M].1996,416~429.
    [85] 薛应龙,欧阳光察.植物抗病生理的分子基础[M].1997,212~228.
    [86] Dorey S, Kopp M, Geoffroy P, et al. Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin [J]. Plant Physiology, 1999, 121: 163~171.
    [87] Friedrich L, Lawton K, Dincher S, et al. Benzothliadiazole induces systemic acquired resistance in tobacco[J]. Plant J, 1996, 10: 61~70.
    [88] 蒋选利.小麦与条锈菌(Puccinia stfiiformis West.)相互作用的超微结构、细胞化学和分子细胞学研究[D].西北农林科技大学,2002.
    [89] 王保通,商鸿生.小麦高温抗条锈性表达与木质素合成的关系[J].植物保护学报,1996,23(3):229~234.
    [90] Dietrich R A, Delaney T P, Uknes S J, et al. Arabidopsis mutants simulating disease resistance response[J]. Cell, 1994, 77: 565~577.
    [91] 马青.小麦高温抗锈性和慢锈性品种与条锈菌互作的特点及超微结构研究[D].西北农业大学,2000.
    [92] Heath M C, Heath I B. Ultrastructure of an immune and a susceptible reaction of cowpea leaves to rest infection[J]. Physio. Plant Pathol., 1971, 1: 277~287.
    [93] Ellingboe A H Plant-pathogen interactions: genetic and comparative analysis[J]. Euro. J. Plant Pathol, 2001, 107: 79~84.
    [94] Jakab G, Cottier V, Toquin V, et al. β-Aminobutyric acid-induced resistance in plants[J]. Euro. J. Plant Pathol, 2001, 107: 29~37.
    [95] Kessmann H, Staub T, Hofmann C, et al. Induction of systemic acquired disease resistance in plant by chemicals[J]. Annu Rev Phytopathol, 1994, 32: 439~459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700