二维波达方向估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二维波达方向(DOA)估计方法广泛应用于雷达、声纳、通信和地震学等领域。近年来提出了很多二维波达方向的估计方法,其中具有代表性的为基于空域信号二维特征结构的高分辨技术。然而,对于采用多维搜索的二维DOA估计技术,计算量很大而不易于实际应用;对于采用分维处理的二维DOA估计技术,由于需要对参数进行配对,在低信噪比、小的角间距下或者复杂的信号传播环境情况下,就会出现配对错误,从而不能获得正确的参数估计。
     本文的主要工作是对常用阵列的二维DOA估计特性进行研究,针对不同的阵列和信号,分析了已有算法的不足,提出了几种无需参数配对的计算量较低的二维DOA估计方法。本文的主要创新之处概括如下:
     1.针对双平行均匀线性阵列,提出了一种解耦二维DOA估计方法。与现有的基于双平行线阵的算法不同,该方法不仅能估计更多信号的二维DOA,还获得了更高的估计精度。根据双平行均匀阵列的特点,进一步给出了基于多项式求根的二维到达角估计方法。给出了双平行阵列的CRB(Cramer-Rao Bound),最后采用前后向空间平滑技术把其推广到处理相关信号源的情况。
     2.针对基于双平行均匀线性阵列的现有DOA矩阵法存在的一维角度兼并问题,通过合理设计阵列流形,提出了一种基于联合对角化技术的DOA矩阵方法。该方法较好的解决了现有DOA矩阵法存在的一维角度兼并问题,并且无需二维谱峰搜索和参数配对,改善了阵列的角估计性能。然后,新方法被推广到应用于由任意triplets(三元子阵)组成的阵列,通过调整triplets间的距离可以获得更高的分辨力。
     3.在一些应用中,信号常常具有不同的谱。利用信号的时域信息,可以有效的扩展阵列孔径,避免阵列校正等等。针对原空时DOA矩阵法不能估计在某些曲面内的信号的缺点,提出了一种基于联合对角化空时协方差矩阵的二维DOA估计方法。通过联合对角化全部或部分空时DOA矩阵,新方法比原空时DOA矩阵法获得了两方面的性能增强。第一,解决了原空时DOA矩阵法在某些曲面存在的角度兼并问题;第二,在低信噪比下,其估计性能得到了改善。最后把该方法推广到任意阵列的二维DOA估计。
     4.对于非高斯信号,高阶统计量包含了有效的统计信息,并且具有许多良好性质,如抑制任意加性高斯噪声、阵列校正与孔径扩展等。针对相互独立的非高斯窄带信号,提出了基于联合对角化技术的累量域二维DOA矩阵方法。利用阵列的结构,该方法构造几个子阵,然后通过联合对角化获得二维角估计。其适合存在一维角兼并的情况。
     5.在实际中所遇到的很多信号和噪声都是非高斯的。在非高斯情况下,若仍采用高斯假设,则信号处理的性能会大打折扣。为了使设备在此复杂情况下正常工作,必须研究适合冲击噪声环境下的算法。为此,提出了三种基于联合对角化分数低阶矩阵的二维DOA估计方法,该方法适合于存在一维角度兼并的信号,且无需二维谱峰搜索和参数配对,弥补了传统的二阶或四阶统计模型及相应的处理算法不能用于冲击噪声环境的缺陷,增强了子空间算法的稳健性,改善了阵列的二维角估计性能。
The problem of two-dimensional (2-D) directions of arrival (DOAs) estimation has attracted a lot of attention, especially in fields such as radar, sonar, communications, and seismology. Many 2-D DOAs estimation methods have been proposed recently, the popular high-resolution techniques used to distinguish multiple closely spaced sources are eigenstructure based techniques. However, multidimensional searching based 2-D DOA estimation techniques require searching spectral peaks in a 2-D domain and are thus not amenable to real-time implementation. Another class of methods that adopt two one-dimensional processing requires complex pair matching. The aligning accuracy of pair matching degrades significantly in the case of low SNR, small angular separation, and other severe propagation environments.
     The main contributions of this dissertation are studying the property of some widely used arrays and proposing several 2-D DOAs estimation algorithms with neither pair matching nor peak searching. The main creative works are concluded as the following:
     Firstly, a novel decoupled method for 2-D DOAs estimation using two parallel ULAs is proposed. It decouples the 2-D DOAs estimation problem into two one-dimensional estimation problems and thus reduces the computation complexity. It can estimate more 2-D parameters of source signals with distinct angles than DOA matrix method and obtained more accurate estimates. Then it is solved by polynomial-rooting. A relevant Cramer-Rao bound (CRB) of the proposed method is derived and forward/backward spatial smoothing techniques are adopted to extend the proposed method to estimate 2-D DOAs of multiple highly correlated and coherent signals.
     Secondly, a novel joint diagonalization based DOA matrix method is proposed to estimate the higher 2-D DOAs of uncorrelated narrowband signals. The method constructs three subarrays by exploiting the special structure of the array, thereby obtaining the 2-D DOAs of the array based on joint diagonalization directly with neither peak search nor pairing. The new method can handle sources with common 1-D angles. Then the method is extended to a sensor array consists of triplets of identical sensors. The new array structure achieves very accurate estimates since the estimation accuracy can be improved by adjusting the array aperture.
     Thirdly, in some applications, the sources are stationary with different spectral contents. We can achieve array aperture extending, array calibration, and so on by exploiting the temporal structure of the signals. We propose a 2-D DOAs estimation method based on a joint diagonalization of several spatio-temporal covariance matrices. It is shown that performing a joint diagonalization of a combined set of these matrices provides an improved estimate of the 2-D DOAs over the aforementioned techniques in two aspects. First, signals with common 1-D angles or in any curved surface can be resolved. Second, robustness is increased at low signal to noise ratios (SNRs). At last, the method is extended to 2-D DOAs estimation with arbitrary array configuration.
     Fourthly, for non-Gaussian signals, higher-order (HO) statistics have many excellent properties such as suppress non-Gaussian noise, array calibration, array aperture extending and so on. Two novel joint diagonalization fourth-order cumulant DOA matrix methods are proposed to estimate the 2-D DOAs of uncorrelated narrowband signals in arbitrary Gaussian noise environment. Based on the special structure of the array, the methods constructs several subarrays by exploiting fourth-order cumulant, thereby obtaining the 2-D DOAs of the array directly with neither peak searching nor pair matching. The new method can handle sources with common 1-D angles.
     Finally, there are also many phenomena in signal processing which are decidedly non-Gaussian. Non-Gaussianity often results in significant performance degradation for system optimized under the Gaussian assumption. In order that the devices work well and exert fighting efficiency sufficiently in this bad situations, an exact and appropriate mathematical model needs to be established for impulsive interference or noise, what's more, signal processing methods and techniques are studied in the impulsive noise environments. Three novel joint diagonalization fractional lower-order moment (FLOM) DOA matrix methods are proposed, which can estimate the 2-D DOAs of the signals directly with neither peak searchings nor pair matchings. Moreover, they can handle sources with common 1-D angles. The new methods are robust against SαS noises and remedy the lack of the traditional subspace-based techniques employing second-order or HO moments cannot be applied in the implusive noise environments.
引文
[1]Steven M.Kay,Fundamentals of Statistical Signal Processing:Estimation Theory,Prentice hall,1993.
    [2]Steven M.Kay,Modem Spectral Estimation:Theory and Application.Prentice hall,1988.
    [3]Harry L.Van Trees,Detection,Estimation and Modulation Theory Part Ⅲ:Radar-Sonar Signal Processing and Gaussian Signals in Noise[影印版]电子工业出版社,2003.
    [4]张扬,葛利嘉.基于Y形阵的空时二维波达方向估计.通信学报.2003,7(24):50-58.
    [5][美]Rodger E.Ziemer,Roger L.Peterson著,尹长川等 译.数字通信基础.机械工业出版社.2005.
    [6]P.Strobach.Total least squares phased averaging and 3-D ESPRIT for joint azimuth elevation carder estimation.IEEE Trans.on Signal Processing,Vol.49,Issue 1,pp.54-62,Jan.2001.
    [7]M.D.Zoltowski,K.T.Wong,ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors.IEEE Trans.Signal Processing.Vol.48,Issue 8,pp.2195-2204,Aug.2000.
    [8]R.Goossens,H.Rogier.A Hybrid UCA-RARE/Root-MUSIC Approach for 2-D Direction of Arrival Estimation in Uniform Circular Arrays in the Presence of Mutual Coupling.IEEE Trans.on Antennas and Propagation,Vol.55,Issue 3,Part 2,pp.841-849,March 2007.
    [9]C.H.Lin,W.H.Fang,K.H.Wu,J.D.Lin.Fast Algorithm for Joint Azimuth and Elevation Angles,and Frequency Estimation via Hierarchical Space-Time Decomposition.ICASSP 2007.Vol.2,pp.Ⅱ-1061-Ⅱ-1064,15-20 April 2007.
    [10]Fetid Harabi,Hatem Changuel,Ali Gharsallah.Estimation of 2-D Direction of Arrival with an Extended Correlation Matrix.WPNC '07.pp.255-260,March 2007.
    [11]Hu Hang,Jing Xiuwei.An Improved Super-Resolution Direction Finding Method at Subarray Level for Coherent Sources.CIE '06.pp.1-4,Oct.2006.
    [12]Hu Hang,Jing Xiuwei.Super-resolution Direction Finding at Subarray Level for Coherent Sources Based on Weighting Network.ISAPE '06.
    [13]F.Belloni,V.Koivunen,A.Richter.Extension of root-MUSIC to non-ULA Array Configurations.ICASSP 2006.Vol.4,2006.
    [14]Liguo Liu,Yibing Gai,Haisong Wang.An Improved ESPRIT-like Algorithm for Coherent Signal and Its Application for 2-D DOA Estimation.ISAPE '06.Oct.2006.
    [15]N.Yilmazer,T.K.Sarkar.Efficient computation of the azimuth and elevation angles of the sources by using unitary matrix pencil method(2-D UMP).IEEE Antennas and Propagation Society International Symposium pp.1145-1148,9-14 July 2006.
    [16]Shi Yu,Wang Shuxun,Huang Zhiqiang.An Algorithm for 2-D DOA Source Parameters Estimate Based on Multistage Wiener Filters.ICCCAS.2006.Vol.1,pp.398-401 June 2006.
    [17]C.Jian,S.Wang,L.Lin.2-D DOA Estimation by Minimum-Redundancy Linear Array.ICSP.Vol.1,16-20,2006.
    [18]C.Jian,S.Wang,L.Lin.Two-Dimensional DOA Estimation of Coherent Signals Based on 2D Unitary ESPRIT Method.ICSP.Vol.1,16-20,2006.
    [19]C.Jian,S.Wang,L.Lin.2-D DOA Estimation by MEMP Based on L-shape Array.ICSP.Vol.1,16-20,2006.
    [20]Xiaohua Lian,Jianjiang Zhou.2-D DOA Estimation for Uniform Circular Arrays with PM.ISAPE'06.Oct.2006.
    [21]Jian-Feng Gu,Ping Wei.Fast Algorithm for Estimating 2-D DOA in Coherent Signals Case.CIE '06.Oct.2006.
    [22]Wang Han,Jin-Kuan Wang,Xin Song.Azimuth/elevation angle estimation via TST-ESPRIT technique.TENCON 2004.Vol.1,pp.563-566,21-24 Nov.2004.
    [23]Wei Sujuan,Deng jiahao,Pan Shuguang.The estimation for 2-D direction of arrival based on higher-order cumulant of signals received by circle array.ICCEA 2004.pp.348-351,1-4 Nov.2004.
    [24]V.I.Vasylyshyn.Antenna array signal processing with superresolution by 2-D Unitary TLS-ESPRIT with structure weighing.
    [25]Ze-Jun Lu,Xian-Ci Xiao.A novel algorithm for 2-D DOA estimation in the presence of impulsive noise.MWSCAS-2002.Aug.2002.
    [26]陶建武,石要武,常文秀.一般阵列误差情况下信号二维方向角估计.电波科学学报.2006,4(21):606-611.
    [27]陶建武,石要武,常文秀.基于均匀圆阵的信号二维方向角高精度估计.航空学报.2006,4(27):687-691.
    [28]曹东,杨余旺.基于一种改进型阵列结构联合估计二维方向角.信息技术.2005,10:12-14.
    [29]鲍拯,王积勤.一种解耦合二维MUSIC算法研究.通信学报.2003,12(24):16-20.
    [30]A.Y.J.Chan,J.Litva,MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array,IEE Proceedings Radar,Sonar and Navigation,Vol.142,Issue 3,pp.105-114,June 1995.
    [31]C.P.Mathews,M.D.Zoltowski,Eigenstructure techniques for 2-D angle estimation with uniform circular arrays,IEEE Trans.on Signal Processing,Vol.42,Issue 9,pp.2395-2407,Sept.1994.
    [32]Y.Hua,T.K.Sarkar,D.D.Weiner,An L-shaped array for estimating 2-D directions of wave arrival,IEEE Trans.on Antennas and Propagation,Vol.39,Issue 2,pp.143-146,Feb.1991.
    [33]Y.Hua,T.K.Sarkar,D.D.Weiner,L-shaped array for estimating 2-D directions of wave arrival,Proceedings of the 32nd Midwest Symposium on Circuits and Systems,1989,14-16,vol.1,pp.390-393,Aug.1989.
    [34]N.Tayem,H.M.Kwon,L-shape 2-dimensional arrival angle estimation with propagator method,IEEE Trans.on Antennas and Propagation,Vol.53,Issue 5,pp.1622-1630,May 2005.
    [35]S.Kikuchi,H.Tsuji,A.Sano,"Pair-Matching Method for Estimating 2-D Angle of Arrival With a Cross-Correlation Matrix",Antennas and Wireless Propagation Letters,Vol.5,Issue 1,pp.35-40,Dec.2005.
    [36]Yuntao Wu,Guisheng Liao,H.C.So,A fast algorithm for 2-D direction-of-arrival estimation,Signal Processing,Vol.83,Issue 8,pp.1827-1831,August,2003.
    [37]N.Tayem,H.M.Kwon,Yong Hoon Lee,2-D DOA estimation with no failure,VTC-2005-Fall,Vol.4,pp.2206-2210,25-28,Sept.2005.
    [38]Q.Y.Yin,R.W.Newcomb,L.H.Zou,Estimating 2-D angles of arrival via two parallel linear arrays,ICASSP-89,Vol.4,pp.2803-2806,23-26 May 1989.
    [39]Q.Y.Yin,R.W.Newcomb,L.H.Zou,Relation between the DOA matrix method and the ESPRIT method,IEEE International Symposium on Circuits and Systems,vol.2,pp.1561-1564,1-3,May 1990.
    [40]R.O.Schmidt,Multiple Emitter Location and Signal Parameter Estimation,IEEE Trans.on Antennas and Propagation,Vol.34,Issue3,pp.276-280,March 1986.
    [41]Y.H.Chen,J.Y.Lai,Two-dimensional angles of arrival estimation for antenna array,APMC-93,1993 Asia-Pacific Vol.1,pp.1-74-1-77.
    [42]Pascal Chargé,Yide Wang,Joseph Saillard,An extended cyclic MUSIC algorithm,IEEE Trans.on Signal Processing,Vol.51,Issue 7,pp.1695-1701,July 2003.
    [43]R.T.Williams,S.Prasad,A.K.Mahalanabis,L.H.Sibul,An improved spatial smoothing technique for bearing estimation in a multipath environment,IEEE Trans.on Acoustics,Speech,and Signal Processing,Vol.36,Issue 4,pp.425-432,April 1988.
    [44]A.Moghaddamjoo,T.C.Chang,Signal enhancement of the spatial smoothing algorithm,IEEE Trans.on Signal Processing,Vol.39,Issue 8,pp.1907-1911,Aug.1991.
    [45]J.S.Thompson,P.M.Grant,B.Mulgrew,Performance of spatial smoothing algorithms for correlated sources,IEEE Trans.on Signal Processing,Vol.44,Issue 4,pp.1040-1046,April 1996.
    [46]T.Shan et al.,On spatial smoothing for direction-of-arrival estimation of coherent signals,IEEE Trans.Acoust.,Speech,Signal Processing,Vol.ASSP-33,no.4,pp.806-811,Aug.1985.
    [47]K.T.Wong,M.D.Zoltowski,Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones,IEEE Trans.on Signal Processing,Vol.47,Issue 12,pp.3250-3260,Dec.1999.
    [48]S.Marcos,A.Marsal,M.Benidir,The propagator method for source bearing estimation,Signal Processing,vol.42,pp.121-138,1995.
    [49]T.Q.Xia,Y.Zheng,Q.Wan,X.G.Wang,2-D Angle of Arrival Estimation with Two Parallel Uniform Linear Arrays for Coherent Signals,2007 IEEE Radar Conference,Waltham,Massachusetts,17-20 April 2007,pp.244-247.
    [50]C.M.S.See,A.B.Gershrnan,Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays,IEEE Trans.on Signal Processing,Vol.52,Issue 2,pp.329-338,Feb.2004.
    [51]A.Nehorai,E.Paldi,Vector-sensor array processing for electromagnetic source localization,IEEE Trans.on Signal Processing,Vol.42,Issue 2,pp.376-398,Feb.1994.
    [52]P.Stoica and A.Nehorai,Performance Study of Conditional and Unconditional Direction-of-Arrival Estimation,IEEE Trans.on Acoustics,.Speech and Signal Processing,vol.ASSP-38,.no.10,pp.1783-1795,October 1990.
    [53]T.Q Xia,Y.Zheng and Q.Wan et al.,Decoupled Estimation of 2-D Angles of Arrival Using Two Parallel Uniform Linear Arrays,IEEE Trans.On AP.
    [54]V.S.Kedia,B.Chandna,A new algorithm for 2-D DOA estimation,Signal Processing,Vol.60,Issue 3,pp.325-332,Aug.1997.
    [55]斯德谊,乐强,沈士团,刘荣科.一种二维来波方向估计的快速ESPRIT算法.北京航空航天大学学报,1999,1(25):8-11.
    [56]斯德谊,乐强,沈士团,周荫清.用均匀中心对称阵二维酉ESPRIT方法实现闭环形式二维角估计.电子学报,1999,3(27):67-70.
    [57]王建英,陈天麒.频率、二维到达角和极化联合估计.电子学报,2000,11(27):74-76.
    [58]蒋伯峰,王文杰,殷勤业.适用于任意阵列的多径信道二维方向角与相对时延的联合估计方法.电子学报,2000,12(28):1-4.
    [59]刘若伦,王树勋.二维DOA估计的高分辨阵列(HRA).吉林工业大学自然科学学报,2000,1(30):90-94.
    [60]陈建,王树勋,魏小丽.一种基于L型阵列的二维波达方向估计的新方法.吉林大学学报(工业版),2006,4(36):590-593.
    [61]吴湘霖,俞卞章,李会方,张辉.基于虚拟阵列的波达方向、载频和极化参数联合估计.电子与信息学报,2005,12(27):1887-1891.
    [62]张辉,葛临东,李蒙,吴月娴.多径环境中二维波达方向估计的子空间平滑算法.电子学报,2005,6(33):1077-1080.
    [63]徐利民,毛志杰,徐晓建,吴瑛.一种空时二维超分辨分维估计方法.信息工程大学学报.2003,3(4):69-72.
    [64]战金龙,王安义,卢建军.一种新的二维ESPRIT算法的研究.西安电子科技大学学报(自然科学版).2003,4(30):561-564.
    [65]董轶.吴云韬,廖桂生.一种二维到达方向估计的ESPRIT新方法.西安电子科技大学学报(自然科学版).2003,5(30):569-573.
    [66]王鼎,吴瑛.基于均匀圆阵的二维ESPRIT算法研究.通信学报,2006,9(27):89-95.
    [67]刘全,王雪松,皇甫堪.二维虚拟ESPRIT算法.国防科技大学学报,1999,4(21):63-67.
    [68]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进.国防科技大学学报,2003,3(24):65-69.
    [69]刘全,魏急波,熊辉,雍玲.二维虚拟ESPRIT算法.信号处理,2001,3(17):247-251.
    [70]金梁,殷勤业.时空DOA矩阵方法.电子学报,2000,7(28):8-12.
    [71]金梁,殷勤业.时空DOA矩阵方法的分析和推广.电子学报,2001,3(39):300-303.
    [72]L.Jin,M.L.Yao,Q.Y.Yin,2D angle and array response estimation with arbitrary array configuration,ISCAS '99.Vol.4,pp.507-510,1999.
    [73]M.Xia,C.Liu,R.Du,J.Li,An effective army for 2-D direction-of-arrival estimation,First International Conference on Innovative Computing,Information and Control,vol.2,pp.370-373,2006.
    [74]C.P.Mathews,M.D.Zoltowski,Performance Analysis of the UCA-ESPRIT for circular ring arrays,IEEE Trans.on Signal Processing,Vol.42,Issue 9,pp.2535-2539,Sept.1994.
    [75]Q.Liu,Two-dimensional virtual ESPRIT algorithm,Electronics Letters,Vol.37,NO.16,pp. 1052-1053.Aug.2001.
    [76]殷勤业,邹理和,R.Newcomb.一种高分辨率二维信号参数估计方法一波达方向矩阵法.通信学报,1991,4(12):1-7.
    [77]姚敏立,殷勤业.累量域高分辨率二维波达方向估计算法.西安交通大学学报,1999,1(33):15-18.
    [78]唐斌,肖先赐,施太和.空间信号二维到达方向估计的新方法.电子学报,1999,3(27):104-106.
    [79]唐斌,施太和,肖先赐.基于四阶累积量的空间信号2-D DOA分离估计.电子科学学刊,1998,6(20):745-749.
    [80]刘全.改进的累量域波达方向矩阵法.国防科技大学学报,2001,5(23):89-92.
    [81]刘全.一种新的二维快速波达方向估计方法-虚拟累积量域波达方向矩阵法.电子学报,2002,3(30):351-353.
    [82]向前,林春生.累量域虚拟阵列二维波达方向估计法.电子与信息学报,2005,2(27):329-331
    [83]M.C.Dogon,J.M.Mendel.Applications of cumulants to array processing-part Ⅰ:aperture extension and array calibration,IEEE Trans.Signal Processing,1995,5(43):1200-1216.
    [84]A.Belouchrani,K.Abed-Meraim,J.-F.Cardoso,E.Moulines.A blind source separation technique using second-order statistics.IEEE Trans.Signal Processing,1997,2(45):434-444.
    [85]J.F.Cardoso,A.Souloumiac,Blind beamforming for non-Gaussian signals,IEE Proceedings F Radar and Signal Processing,Vol.140,Issue 6,pp.362-370,Dec.1993.
    [86]R.Roy and T.Kailath,ESPRIT-Estimation of signal parameters via rotational invariance techniques,IEEE Trans.On Acoustics,Speech and Signal Processing,vol.37,no.7,pp.984-995,July 1989.
    [87]H.Chiang,C.L.Nikias,The ESPRIT algorithm with higher-order statistics.Proc.Workshop on higher-order spectral analysis,1989,pp.163-168.
    [88]Tsung-Hsien Liu,J.M.Mendel,Application of cumulants to array signal processing.V.Sensitivity issues,IEEE Trans.on Signal Processing,Vol.47,Issue 3,pp.746-759,March 1999.
    [89]N.Yuen,and B.Friedlander,Asymptotic performance analysis of ESPRIT,higher order ESPRIT,and virtual ESPRIT algorithms.IEEE Trans.Signal Process.v44.2537-2550.1996.
    [90]徐尚志,吴先良.复杂噪声中基于累积量的二维DOA估计.安徽大学学报(自然科学版),2002,26(2):29-33.
    [91]叶中付.一种基于四阶累量的二维空间谱估计的新方法.通信学报,1996,19(3).
    [92]陈建,王树勋.基于四阶累积量虚拟阵列扩展的DOA估计.吉林大学学报(信息科学版).2006,4(24):345-350.
    [93]刘若伦,王树勋.基于累积量的二维DOA估计的特征向量算法.电子学报,1999,9(27):138-140.
    [94]斯德谊,乐强,沈士团,刘荣科.基于四阶累积量的来波信号频率和二维角估计.宇航学报,2000,3(21):82-87.
    [95]王建英,陈天麒.用四阶累积量实现频率、二维到达角和极化的联合估计.中国科学(E 辑),2000,5(30):424-429.
    [96]黄佑勇,王激扬,陈天麒.一种基于高阶累积量的信号频率和到达角联合估计算法.电子与信息学报,2001,2(23):140-146.
    [97]A.J.Van der Veen,P.B.Ober,E.E Deprettere,Azimuth and elevation computation in high resolution DOA estimation,IEEE Trans.on Signal Processing.Vol.40,Issue 7,pp.1828-2832,July,1992.
    [98]M.D.Zoltowski,M.Haardt,C.P.Mathews,Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT.IEEE Trans.On signal processing,Vol.44,Issue 2,pp.316-322,Feb.1996.
    [99]A.Swindlehurst and T.Kailath,Azimuth/elevation direction finding using regular array geometries,IEEE Trans.Aerosp.Electron.Syst.,vol.29,Issue 1,pp.145-156,Jan.1993.
    [100]M.C.Dogan and J.M.Mendel,Applications of cumulants to array processing.Ⅱ.Non-Gaussian noise suppression,IEEE Trans.Signal rocessing,vol.43,Issue 7,pp.1663-1676,May 1995.
    [101]Liu Tsung-Hsien,J.M.Mendel,Azimuth and elevation direction finding using arbitrary array geometries,IEEE Trans.on Signal Processing,Vol.46,Issue 7,pp.2061-2065,July 1998.
    [102]Liu Tsung-Hsien,J.M.Mendel,Application of cumulants to array signal processing.V.Sensitivity issues,IEEE Trans.on Signal Processing,Vol.47,Issue3,pp.746-759,March 1999.
    [103]任勋立,廖桂生,曾操.一种低复杂度的二维波达方向估计方法.电波科学学报,2005,4(20):526-530.
    [104]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法.电子与信息学报,2004(3):350-356.
    [105]吕泽均,肖先赐.一种在冲击噪声环境中基于协变异的二维波达方向估计算法.声学学 报,2004(2):149-154.
    [106]吕泽均,肖先赐.基于分数阶矩的测向算法研究.电波科学学报,2002,6(17):562-568.
    [107]T.H.Liu,J.M.Mendel.A subspace-based direction finding algorithm using fractional lower order statistics.IEEE Trans.Signal Processing,2001,8(49):1606-1613.
    [108]P.Tsakalides,C.L.Nikias.The robust covariation-based MUSIC(ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments.IEEE Trans.on Signal Processing,1996,7(44):1623-1633.
    [109]W.J.Szajnowski,J.B.Wynne.Simulation of dependent samples of symmetric alpha-stable clutter.IEEE Trans.Signal Processing letters,2001,5(8):151-152.
    [110]G.A.Tsihrintzis,C.L.Nikias.Fast estimation of the parameters of alpha-stable impulsive interference.IEEE Trans.on Signal Processing,1996,6(44):1492-1503.
    [111]吕泽均,肖先赐.基于时延分数阶相关函数时空处理的子空间测向算法.信号处理,2003,2(19):51-54.
    [112]何劲,刘中.利用分数低阶空时矩阵进行冲击噪声环境下的DOA估计.航空学报,2006,1(27):104-108.
    [113]何劲,刘中.冲击噪声环境中求根类DOA估计方法研究.系统工程与电子技术,2005,12(27):2103-2106.
    [114]王波,王树勋.冲击噪声背景下的近场源二维参数估计方法.电路与系统学报,2005,5(10):6-10.
    [115]常冬霞,冯大政.脉冲噪声环境的一种递归全局最小平均P-范数算法.电子学报,2003,3(31):426-428.
    [116]刘文红,邱天爽,唐 洪.脉冲噪声下基于自适应特征值分解的时延估计新方法.大连理工学报,2006,6(46):905-909.
    [117]邱天爽,张旭秀,李小兵,孙永梅.统计信号处理--非高斯信号处理及其应用.电子工业出版社.2004.
    [118]金梁,姚敏立,殷勤业.宽带循环平稳信号的二维空间谱估计.通信学报,2000,3(21):7-11.
    [119]金梁,殷勤业,汪仪林.广义子空间拟合DOA估计原理.电子学报,2000,1(28):60-63.
    [120]姚敏立,蒋伯峰,殷勤业.基于高阶循环平稳特性的二维波达方向估计算法.信号处理,1999,4(15):346-351.
    [121]金梁,殷勤业,蒋伯峰.宽带谱相关时空DOA矩阵方法.通信学报,2001,7(22):26-31.
    [122]黄知涛,周一宇,姜文利等.循环平稳信号处理与应用.科学出版社.2006.
    [123]张贤达.信号处理中的线性代数.科学出版社.1997.
    [124]杨福生,洪波.独立分量分析的原理与应用.清华大学出版社.2004.
    [125][波兰]Andrzei CICHOCKI,[日本]Shun-ichi AMARI著,吴正国 等译.自适应盲信号与图像处理.电子工业出版社.2005.
    [126]万群.分布式目标波达方向估计方法研究:[博士学位论文].成都:电子科技大学,2000.
    [127]王建英.阵列信号多参量联合估计技术研究:[博士学位论文].成都:电子科技大学,2000.
    [128]吕泽均.高分辨阵列测向技术研究:[博士学位论文].成都:电子科技大学,2003.
    [129]黄佑勇.基于高阶累积量的阵列信号多参数估计技术:[博士学位论文].成都:电子科技大学.2001.
    [130]Chen Y H,Lian Y T.2-D multitarget angle tracking algorithm using sensor array.IEEE Proceedings,PartF:Radar and Signal Processing,1995,142(8):158-161.
    [131]R.Schmidt.Multiple Emitter location and Signal Parameter Estimation.Proceedings of RADC Spectrum Estimation Workshop.pp.243-258,Oct.1979.
    [132]M.Wax,T.Shan and T.Kailath,Spatio-Temporal Spectral Analysis by Eigenstructure Method.IEEE Trans.On ASSP,pp.817-827,Aug.1984.
    [133]A.Paulraj,R.Roy and T.Kailath,Estimation of Signal Parameters via Rotational Invariance Techniques-ESPRIT.ACCSC,Nov.1985.
    [134]A.Paulraj,R.Roy and T.Kailath,A Subspace Rotation Approach to Signal Parameter Estimation.Proc.ofIEEE,Vol.74,No.7,pp.1044-1046,July 1986.
    [135]叶中付.一种快速的二维高分辨波达方向估计方法-混合波达方向矩阵法.电子科学学刊,1996,6(18):567-572.
    [136]王永良 等.空间谱估计算法与应用.清华大学出版社.2004.
    [137]M.Shao,C.L.Nikias.Signal processing with fractional lower order moments:stable processes and their applications.Proceedings of the IEEE.Vol.81,Issue 7,pp.986-1010,July 1993.
    [138]张锦中,张曙.一种改进的二维扩展DOA估计方法.哈尔滨工业大学学报,2006,4(27):579-583.
    [139]R.Roy and T.Kailath,ESPRIT-A Subspace Rotation Approach to Estimation of Parameters of Cisoids in Noise.IEEE Trans.On ASSP,Vol.34,NO.5,pp.1340-1342,Otc.1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700