宽带数字侦察接收机若干关键技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代电子战中,复杂的电子侦察环境要求雷达侦察接收机不仅要具有大带宽,而且要对信号具有高截获概率和多信号处理的能力。传统的模拟和窄带侦察接收机已经很难适应需要,宽带数字侦察接收机已经开始逐步替代传统接收机并成为电子侦察发展的必然。宽带数字侦察接收机是现代电子战系统的重要组成部分,它采用高速的A/D转换器将模拟信号转换成数字信号,应用数字信号处理技术完成对信号的分析和识别,能够在很宽的带宽范围内对电子环境进行监测,对侦收信号进行快速、高效的测量和分析,具有软件无线电的应用优势。目前,对宽带数字侦察接收机的研究已经称为电子侦察领域的重要课题。
     本文在前人研究成果的基础上,研究了宽带数字侦察接收机的高效实现,并结合具体工程实践,对接收机中若干关键技术进行了研究和创新,且对无源侦察定位系统中的辐射源到达时差问题进行了分析和讨论,主要研究内容包括以下几个方面:
     1)分析和讨论了基于多相滤波器组的宽带数字信道化接收机实现结构。多相滤波器组可以改进传统FIR滤波器组结构,减少滤波器的计算量和简化结构,从而减少系统实现的资源开销。在这种信道化接收机中,信道数与多相结构的抽取率相同,它们与信道化接收机的时频分辨之间存在相互制约,因而在进行信道化设计时需要权衡考虑。
     2)设计了一种采用全并行方式实现短时傅里叶变换(STFT)结构的宽带数字信道化接收机。STFT结构的信道化接收机是利用傅里叶变换对整个接收带宽进行均匀信道划分。目前高速A/D转换器的采样速率可以达到1Gsps甚至几Gsps,而FFT运算模块的运行速度要远远低于这些高速A/D转换器的采样速率。为了解决高速A/D转换器与FFT运算模块之间的配合问题,文中给出了采用对数据进行缓存和降速的结构,通过全并行方式进行FFT运算,讨论了在数据不堆积的情况下,采用流水方式处理的过程和对数据缓存的要求及其时序关系。
     3)提出了一种高效的宽带数字信道化接收机实现方案。该方法利用多相结构改进STFT实现宽带数字信道化接收机,集合了多相滤波器组和STFT两种结构的优点。该结构对傅里叶变换采用多相方式进行展开,应用多路抽取并行运算实现傅里叶变换,从而减少了STFT的数据运算量。且抽取操作降低了傅里叶变换的运算速度,实现对STFT结构信道化接收机的优化,减少所需要的硬件资源开销,而其性能与全并行结构的STFT信道化接收机一致。最后,根据实际工程需要,设计了多相结构的STFT信道化接收机原理样机,并通过工程实验验证了其有效性。
     4)研究了宽带数字接收机中的信号脉内特征提取技术,分析了雷达常用信号分别在相位差分法和小波脊分析法中最小二乘估计的脉内特征,构建了它们的特征参数集合,并由此实现对雷达常用信号调制类型的自动识别和分类。针对接收机中同时接收到多个信号混叠时的信号调制类型识别问题,提出了利用最小互信息准则下的独立分量分析,在多维观测数据条件下实现多个独立信号或者信号分量的盲分离,进而将多信号混叠时的调制类型识别转化为多个单信号的调制类型识别。最后,运用信号脉内特征提取技术,实现了无先验信息条件下多信号混叠时的信号调制类型的自动识别和分类。
     5)针对无源侦察定位系统中多Chirp信号混叠时的站间到达时差估计问题,提出了利用自适应Chirplet原子分解对混叠信号进行估计和分离,然后利用最大似然条件下的相关法实现对各Chirp信号的到达时差估计。原子分解是利用与信号分量具有相近特征的向量或者函数来描述信号。利用Chirplet原子来分解Chirp信号具有较好的时频内聚性,对多Chirp信号的自适应Chirplet原子分解是最大似然条件下Chirplet原子对相应Chirp分量的逼近。最后,利用自适应分解后得到的原子进行相关处理,可以估计出各信号的站间到达时差。
     6)针对无源侦察定位系统中对噪声调频干扰源的定位问题,提出了采用增量调制编码对接收到的噪声调频信号进行编码和传输,利用最大似然条件下的相关法完成对噪声调频干扰源的站间到达时差估计。采用增量调制编码对噪声调频信号进行编码可以大大降低无源侦察定位系统中的数据传输量,且编码后的序列仍然保持了噪声调频信号的近似统计特性。文中推导了利用增量调制编码序列估计噪声调频干扰源站间到达时差估计的克拉美-罗下界。利用最大似然的相关法能够估计噪声调频干扰源的站间到达时差,其性能接近直接采用原始数据进行相关运算估计的到达时差。最后讨论了抽取和插值处理对到达时差估计的影响。
Electronic warfare is more complex than ever before, EWRR(Electronic War Reconnaissance Receiver) is the import part of the electronic detection system for radar signal. In many radar countermeasure applications, it requires characters of EWRR that wideband, catch low probability of intercept radar signal, processing multiple signals. Traditional analog receiver has many disadvantages, so it was only used in some simply application. With the rapid development of digital techniques, EWRDR(Electronic War Reconnaissance Digital Receiver) is take a very important roles in modern electronic war. EWRDR has advanced architecture than Traditional analog receiver, it use analog-digital-converter to convert analog to digital signal, and the outstanding advantage is that it can amalgamate the high performance of soft-radio. With the using of digital signal processing techniques, EWRDR can analysis character of signal and measure property of signal in detail with high efficiency, and it even can recognize signal, also can monitor the environment of electronic in a large frequency band. So studying EWRDR with high performance and its application is very important to adapt modem complex electromagnetism environment.
     Based on the previous works, this paper primarily researches the high efficiency application of EWRDR associating actual projections, investigates the key technologies and implementations of EWRDR. The main works can be summarized as follows:
     1. The architecture of channelized receiver based on poly-phase filters is analysis. The poly-phase filter can improve the performance of traditional FIR filter, it can reduce the calculate work and simply the architecture of receiver. So, with the advantage of poly-phase filter, the system resource of receiver is less than trandition receiver . In the receiver based on poly-phase filters, the number of receiver channel is equal the decimation of poly-phase filter. The number of channel or decimation of poly-phase filter will cause the conflict of resolution between time and frequency domain. So, the selection of channel number is need to think about with careful.
     2. The architecture of channelized EWRDR receiver based on full parallel STFT(Short Time Fourier Transform) is provided. With the advantage of STFT, this architecture realized uniformity channel, every channel has same parameters except carrier frequency. The sample rate of ADC is up to Gsps now, even several Gsps, but the operation speed of FFT block is large lower than GHz. So, it is necessary to find some solution to match the speed of ADC and FFT block. With the help of multiple FFT blocks operation paralleled, the speed of data operation can be slow down, and each FFT block also work with lower operation clock. Full parallel processing mode with pipeline operation is provided in this paper, and its timing characters is also discussed.
     3. A novel and high efficiency architecture of channelized EWRDR is provided, poly-phase is employed to optimize normal channelized receivers based on the STFT. In this architecture, advantages of poly-phase filter and STFT are combined together. First step of this method is decimate time-domain data with poly-phase processing, then apply Fast Fourier transform (FFT) using decimated data, final weight for transform result. Using theory of poly-phase, the STFT can be expanded to another form. With the help of multiple parallel FFT block and decimation operation, the throughput of FFT operation can be reduced largely. The performance of receiver by new method is as same as the receiver by STFT, but the spending of receiver is more lower. The experiments with actual receiver based on new architecture shows the method is correct and its efficiency is higher.
     4. The processing algorithms of phase-differential and wavelet based on minimum square is presented to classify difference modulated signal. Features of some typical radar signals based on phase-differential and wavelet are discussed. And then, the method of classification of signal mixed with multiple different modulated components is presented. Under the condition of multiple dimension observed data, using ICA(Independent Component Analysis) based on minimization of mutual information, it can achieve the blind signal separate of multiple independent signal. With the help of ICA, the method of classification of signal mixed with multiple different modulated components can be convert to classify several single signal modulation. And then, the signal modulation can be recognized by signal features. The processing algorithms of phase-differential and wavelet based on minimum square is presented to classify difference modulated signal. The signal features analysis by phase-differential and Morlet wavelet is also discussed. Thus, without the beforehand information of signals, the algorithm adopting ICA and phase-differential or wavelet implements the automatic classification of mixed signal by difference modulation.
     5. The adaptive chirplet atomic decomposition is used to analyze the separation of multiple Chirps. After separation of signals, the TDOA(Time Difference of arrival) of each Chirp can be estimation based on maximum likelihood correlation algorithm. The basic way of atomic decomposition is that signal can be described by some components with same features as signal. Chirp shows assembly feature of time-frequency if it decomposed by chirplet atoms. Under condition of maximum likelihood, some Chirps mixed signal can be decomposed by adaptive chirplet atom, each Chirp component can be approached by one chirplet atom. In passive location system, compute the correlation of each pair atoms between main-receiver signal and sub-receiver signal in mixed Chirps, the TDOA of each Chirp can be estimated.
     6. To locate noise-frequency modulation jammer with TDOA in passive system, a new method of delta-modulation coding jointed cross-correlation is presented in this paper. Signal can be described by delta-modulation code, and coding sequence of sub-receiver is send to main-receiver. Using coding sequence and maximum likelihood correlation algorithm, TDOA can be estimated. The advantage of delta-modulation code is that it can reduce communication data traffic between main-receiver and sub-receiver. After coding, the sequence of noise-frequency modulation signal hold similar statistics feature of raw data. The TDOA estimated by coding sequence is same as that of the method of cross-correlation using signal sample data. Finally, the method of decimate coding sequence and interpolate correlation are analysis, and the effect of TDOA in this method is discussed.
引文
[1]侯印鸣.综合电子战:现代战争的杀手锏[M].北京:国防工业出版社,2000.
    [2]胡来招.雷达侦察接收机[M].北京:国防工业出版社,2000.
    [3]桑炜森,顾耀平.综合电子战新技术新方法[M].北京:国防工业出版社,1996.
    [4]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社,2003.
    [5]栗苹,赵国庆,杨小牛等.信息对抗技术[M].北京:清华大学出版社,2008.
    [6] Jeffrey H. Collins, Peter M. Grant. A Review of Current and Future Components for Electronic Warfare Receivers[J]. IEEE Trans. On Microwave Theory and Techniques, Vol.MTT-29, No.5, MAY, 1981.
    [7]王旭东基于FPGA的雷达信号侦察数字接收机关键技术研究[D],南京航空航天大学博士论文,2007.
    [9] Inkol.R,Szwarc.v,Desormeanx.L, Esonu.M, AI-Khalili.D.A 400 megasample per second digitalreceiver[C].IEEE Conference on ASIC,1996:235-238.
    [10]李祖新.国外雷达对抗侦察设备发展综述[ J].舰船电子对抗, No.3, 1998.
    [11]张嵘.宽带高灵敏度数字接收机[D].电子科技大学博士论文,2002.
    [12]何伟.新型宽带数字接收机——短数据高速测频研究[D].电子科技大学博士学位论文,2003.
    [13] Serioja Ovidiu Tatu.Ka-Band Direct Digital Receiver,IEEE TRANS.On Microwave Theoryand Techniques.2002,Vol.50(11):2436-2442.
    [14]王洪.宽带数字接收机关键技术研究及系统实现[D].电子科技大学博士学位论文, 2007.
    [15] Yoshida H., Otaka S., Kato T., Tsurami H.A Software Defined Radio Receiver using the Direct Conversion Principle : Implementation and Evaluation[J], IEEE International Symposium On Personalal, Indoor and Mobile Radio Communications, 2000, 2:1044-1048.
    [16] http://www.lnxcorp.com/transmit-Receive.cfm
    [17] http://www.patria.fi/828f5a804054055098f6fa10241c73b6/Elint_esite.pdf
    [18] http://www.rockwellcollins.com/content/pdf/pdf_10460.pdf.
    [19]中电集团第38研究所所微波公司产品手册.
    [20]董晖,姜秋喜,毕大平.数字接收机中基于TMS320C6416的数字下变频技术[J].电子技术应用, 2003,(3):49-51.
    [21]王旭东.基于FPGA的雷达信号侦察数字接收机关键技术研究[D],南京航空航天大学博士论文, 2007.
    [22]刘平,靳成英,陈曾平.一种基于短时的宽带数字侦察接收机设计[J].信号处理, 2008, Vol.24(6):988-991.
    [23]王永明,王世练,张尔扬. 1.2GSPS数字信道化接收机的设计与实现[J].系统工程与电子技术, 2009,Vol.31(6):1324-1327.
    [24] Zhu Jun, Tang Bin, Wu wei, Jiang Zong-ming. Design and Implementation of a Cueing Wideband Digital EW Receiver[J]. Journal of Electronic Science and Technology of China, 2006, Vol.4(3):257-263.
    [25]祝俊.宽带雷达信号侦察接收关键技术研究[D].电子科技大学博士学位论文, 2008.
    [26]罗勇江,赵国庆,汤建龙.一种高效的宽带数字接收机及其FPGA实现[J],系统工程与电子技术,2010. Vol.32(5 ):916-920.
    [27]王宏伟,赵国庆,王玉军,鲍丹.一种宽带数字信道化接收机[J].西安电子科技大学学报,2010,Vol.37(6):487-491.
    [28]常虹,赵国庆,牛新亮.高效的宽带数字信道化接收机设计[J].西安电子科技大学学报,2010,Vol.37(6):464-498.
    [29]王鑫.宽带数字接收机的关键技术研究及实现[D],哈尔滨工程大学博士学位论文,2008.
    [30] James Tsui著.杨小牛,陆安南,金飚译.宽带数字接收机[M].北京:电子工业出版社, 2002.
    [31] Grajal, J.; Blazquez, R.; Lopez, G.; Sanz, J.M.; Burgos, M.; Monobit receiver for electronic warfare[J]. Statistical Signal Processing, 2001. Proceedings of the 11th IEEE Signal Processing Workshop on . 2001: 138-141.
    [32] Tsui, J.; Schamus, J.J.; Kaneshiro, D.H.; Monobit receiver [J]. IEEE MTT-S International Microwave Symposium Digest, 1997 vol.2: 469-471.
    [33] Fields, T.W.; Sharpin, D.L.; Tsui, J.B.; Digital channelized IFM receiver[C]. IEEE National Telesystems Conference, 26-28 May 1994: 87-90.
    [34] Baseghi, Behshad. A radar countermeasures receiver[C]. Radar 92; Proceedings of the International Conference, Brighton, United Kingdom, Oct. 12, 13, 1992 (A93-43376 17-32): 180-183.
    [35] Miguelángel Sánchez, Mario Garrido, Marisa López-Vallejo, Jesús Grajal , Carlos López-Barrio. Digital Channelised Receivers on FPGAs platforms[C].Radar Conference, 2005 IEEE International, 9-12, May, 2005, 816-821.
    [36] Sanchez, M.A., Garrido, M., Lopez-Vallejo, M., Grajal, J. Implementing FFT-based digital channelized receivers on FPGA platforms[J], IEEE Transactionson Aerospace and Electronic Systems, 2008, Vol.44(4): 1567-585.
    [37] Kiran George; Chien-In Henry Chen. Multiple Signal Detection and Measurement Using a Configurable Wideband Digital Receiver[C]. Instrumentation and Measurement Technology Conference-IMTC, Warsaw, Poland, May 1-3, 2007:1-5.
    [38]毕大平,董晖,姜秋喜.雷达对抗侦察宽带数字接收机[J].航天电子对抗,2004 (6):6-10.
    [39]董晖,姜秋喜,毕大平.数字侦察接收机中的瞬时频率测量技术[J].电子对抗技术, 2005, Vol.20(5):7-10.
    [40]印茂伟,唐斌,龙柯宇,祝俊.一种改进引导式宽带数字接收机设计[J].传感器与微系统, 2009, Vol.28(2):100-103.
    [41]罗跃东,陈禾,王晓君.一种雷达信号侦察处理器的设计与实现[J].北京理工大学学报,2008,Vol.28(4):352-355.
    [42]王永明,张尔扬,程巧金.一种有效的宽带数字侦察接收机信号检测方法[J].信号处理, 2010, Vol.26(2):208-212.
    [43]陶海红,夏南,王楠,胡国栋,廖桂生.单比特宽带数字接收机的频域多波束测向技术[J].电波科学学报, 2009, Vol.24(1):83-91.
    [44] Daniel R. Zahirnak, David L. Sharpin, Timothy W. Fields. A Hard ware-Efficient, Multirate, Digital ChannelizedReceiver Architecture[J]. IEEE Trans on Aerospace and Electronic Systems, 1998,Vol. 34(1):137-152.
    [45] Agrawal, S.K.; Sahu, O.P.; Digital Receiver Architectures for OFDMA Systems Using Polyphase Filter Banks [c]. India Conference (INDICON), 2009 Annual IEEE , 2009,:1-4.
    [46] Harris, F.J.; Dick, C.; Rice, M.; Digital receivers and transmitters using polyphase filter banks for wireless communications [C]. Microwave Theory and Techniques, IEEE Transactions on ,2003, Vol.51(2):1395-1412.
    [47] Iwabuchi, M.; Sakaguchi, K.; Araki, K.; Study on multi-channel receiver based on polyphase filter bank [C]. Signal Processing and Communication Systems, 2008. ICSPCS 2008. 2nd International Conference on ,2008:1-7.
    [48]朱晓华,王建新,于雷.多相滤波法实现的数字正交相干检波器[J].南京理工大学学报, 2001, Vol.25(6):642-645.
    [49]张嵘,肖先赐.任意中频带通信号多相数字下变频方法[J].电子与信息学报, 2003, Vol.25 (9) :1285-1289.
    [50]吕幼新,郑立岗,王丽华.基于多相滤波的宽带数字化接收机技术[J].电子科技大学学报, 2003, Vol.32(2):133-136.
    [51] Tsui J B Y, Stephens J P. Digital Microwave ReceiverTechnology[J]. IEEE Trans onMicrowave Theory and Techniques, 2002,Vol.50 (3) :699-705.
    [52]杨静,吕幼新.高效数字信道化IFM接收机的研究[J].电子科技大学学报.2005,Vol.34(5):444-447.
    [53]董晖,姜秋喜,毕大平.多相滤波宽带信道化数字接收机[J].雷达科学与技术,2007,Vol.5(1):73-77.
    [54]王启峰,黄高明,陈旗,程远国.多相结构在信道化接收机中的应用研究[J].舰船科学技术,2009,Vol.31(8):79-81.
    [55]朱拥建,王宏.宽带数字接收机的设计与实现[J].中国电子科学研究院学报,2010,Vol.5(2):86-89.
    [56]周欣,吴瑛.一种基于多相滤波的高效信道化算法研究及改进[J].信号处理,2008,Vol.24(1):45-48.
    [57] Zhilu Wu, Xuexia Wang, Zhenzhen Gao, and Guanghui Ren. Automatic Digital Modulation Recognition Based on Support Vector Machines[C]. ICNN&B '05. International Conference on Neural Networks and Brain,2005 .
    [58] Teng xiaoyun'09. IEEE ,2009.
    [65] Lin Li, Hongbing Ji, Lei Wang. Specific Radar Emitter Recognition Based on Wavelet Packet Transform and Probabilistic SVM[C]. Proceedings of the 2009 IEEE International Conference on Information and Automation,2009.
    [66] Wlodzimierz Pogribny, Tadeusz Leszczy_ski. IMPROVEMENT OF SHORT NOISY CHIRP SIGNALS RECOGNITION[C]. ICSES 2008 INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS, 2008.
    [67] Jie Yang,Xumeng Wang, Hongli Wu. Modified Automatic Modulation Recognition Algorithm[C]. Wireless Communications, Networking and Mobile Computing, 2009. WiCom '09. 5th International Conference on ,2009.
    [68]陆明泉.多信号的调制识别技术研究[D].电子科技大学博士学位论文,2010.
    [69] GARDNER W A, BROWN W A, CHEN C K. Spectral correlation of modulated signals, Part II: digital modulation[J]. IEEE Trans. on Communication, 1987,Vol.35(6): 595-601.
    [70] A. Fehske, J. Gaeddert, J. H. Reed. A New Approach to Signal Classification Using Spectral Correlation and Neural Networks[C]. 005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks,(DySPAN 2005), 2005.
    [71] HU H, SONG J D, WANG Y J. Signal classification based on spectral correlation analysis and SVM in cognitive radio[C]. The 22nd IEEE International Conference on Advanced Information Networking and Applications, 2008.
    [72] SM Kay. Statistically/ computationally efficient frequency estimation[ C ]. Proc IEEE ICASSP, 1988.
    [73] GARDNER W A, BROWN W A, CHEN C K. Spectral correlation of modulated signals, Part II: digital modulation[J]. IEEE Trans. on Communication, 1987, 35(6): 595-601.
    [74]黄知涛,周一宇,姜文利.基于相对无模糊相位重构的自动脉内调制特性分析[J].通信学报, 2003, Vol.24(4):153-160.
    [75] WANG F H, HUANG ZH T, JIANG W L. A new approach for intra-pulse modulation recognition [C]. Radar, 2006, CIE’06, China, 2006, 1-5.
    [76]宋云朝,万群,毛祺,等.一种稳健的基于解卷叠的相位差分瞬时测频方法[J].电子信息对抗技术, 2008,Vol.23(4): 12-15.
    [77]曾德国,熊辉,龙柯宇,唐斌.基于相位差分的脉内调制信号类型识别[J].电子测量与仪器学报, 2009,Vol.23(10):85-90.
    [78]王鑫,赵春晖,戎建刚.一种用于信道化接收机的相位差分算法[J].计算机仿真,2008,Vol.25(12):316-20.
    [79]王鑫,赵春晖,戎建刚.一种用于信道化接收机的相位差分算法[J].航天电子对抗, 2007,Vol.23(6):49-52.
    [80]宋云朝.雷达信号细微特征提取方法研究[D].电子科技大学硕士学位论文,2008.
    [81]普运伟,金炜东,胡来招.基于瞬时频率二次特征提取的辐射源信号分类.西南交通大学学报,2007,Vol.42(3):373-379.
    [82]余志斌.基于脉内特征的雷达辐射源信号识别研究[D].西南交通大学博士学位论文,2010.
    [83] Delpart N. Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies[J]. IEEE Trans Information Theory,1992, Vol.38(3):644-664.
    [84]曲长文,乔治国.雷达信号脉内特征的小波分析[J].上海航天,1996,5:15-19.
    [85]梁百川.利用小波变换识别脉内调制信号[J].电子对抗. 1998,3:l-12.
    [86]董晖,魏栋,姜秋喜.基于连续小波变换的脉内调制类型识别技术[J].航天电子对抗. 2007, Vol.23(1):42-45.
    [87]刘东霞.脉内调制信号的分析与自动识别[D].西安电子科技大学硕士学位论文,2003.
    [88] Zhu Bo, Wan Qun, Shi Rong. Modulation Recognition of Multi-Signals via Multi-Resolution Approach[C]. Wireless Communications, Networking and Mobile Computing, 2009. WiCom '09. 5th International Conference on .2009.
    [89]陈春霞,余志斌,金炜东.基于小波脊频级联特征的雷达辐射源信号识别[J].西南交通大学学报,2010, Vol.45(02):290-295.
    [90]池庆玺,袁健全,陈旭情,佟富欣.基于改进小波脊线的PSK信号载频提取技术仿真[J].系统仿真学报.2008,Vol.20(23):6338-6342.
    [91] Mingqiu Ren,Jinyan Cai, Yuanqing Zhu,Minghao He. Radar Emitter Signal Classification based on Mutual Information and Fuzzy Support Vector Machines[C]. ICSP2008 Proceedings,2008.
    [92]郁春来,何明浩,裴立志.基于改进小波脊线法的LFM信号脉内特征提取[J].航天电子对抗,2004,4:10-14.
    [93]陈昌孝,何明浩,朱元清,王鹏,.一种提取非线性调频信号脉内特征的新方法[J].空军雷达学院学报,2006, Vol.20(4):270-272.
    [94]柳征,姜文利,周一宇.基于小波包变换的辐射源信号识别[J],信号处理,2005, Vol.2l(5):460-464.
    [95]张葛祥,荣海娜,金炜东.基于小波包变换和特征选择的雷达辐射源信号识别[J].电路与系统学报,2006,Vol.6(11):45-49.
    [96] Lin Li, Hongbing Ji, Lei Wang. Specific Radar Emitter Recognition Based onWavelet Packet Transform and Probabilistic SVM[C]. Proceedings of the 2009 IEEE International Conference on Information and Automation,2009.
    [97]朱明,普运伟,金炜东,胡来招.基于时频原子方法的雷达辐源信号特征提取[J].电波科学学报,2007,Vol.22(3):458-462.
    [98] Ming Zhu,Weidong Jin, Laizhao Hu. Radar Emitter Signal Recognition Based on Atomic Decomposition[C]. IEEE International Joint Conference on Neural Networks(IJCNN 2008), 2008.
    [99]陈韬伟.基于脉内特征的雷达辐射源信号分选技术研究[D].西南交通大学博士学位论文,2010.
    [100]朱明,金炜东,胡来招.一种基于Spectrum原子的雷达辐射源信号识别方法[J].电子与信息学报,2009,Vol.31(1):188-192.
    [101]Grishin, Yuri P. Konopko, Krzysztof . A Classifying Algorithm for Radar Signals Using the Wigner-Ville Distribution and the RBF Probability Density Function Estimator [C]. International Radar Symposium(IRS 2006),2006.
    [102]Lampropoulos, George A.; Thayaparan, Thayananthan; Xie, Ning.Fusion of time-frequency distributions and applications to radar signals[J]. Journal of Electronic Imaging, 2006,Vol. 15, 023007 (2006); doi:10.1117/1.2199858.
    [103]韩国成,吴顺君.雷达信号脉内调制特征的时频分析[J].航天电子对抗,2004.3.
    [104] Dersan A, Tanik Y. Passive radar localization by time difference of arrival[C]. MILCOM 2002. Proceedings,2002.
    [105] C.H. Knapp and G.C. Carter, The generalized correlation method for estimation of time delay[J]. IEEE Trans.on Acoustics, Speech and Signal Processing, 1979, Vol.24(4): 320–327.
    [106] G.Clifford Carter. Coherence and Time Delay Estimation[J]. Processing Of IEEE,1987,Vol.25(2):236-255.
    [107]Gardner W A , Chen C K. Signal-selective time-difference-of-arrival estimation for passive location of man-madesignal sources in highly corruptive environments , partⅡ:Algorithms and performance [J] . IEEE Trans on Signal Processing ,1992, Vol.40 (5) :1185-1197.
    [108]Jacob Benesty, Jingdong Chen, Yiteng Huang. Time-Delay Estimation via Linear Interpolation and Cross Correlation[J]. IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2004,Vol.12(5):509-519.
    [109]史建锋,马强.基于循环互相关的宽带信号时差估计[J].电子信息对抗技术,2006,Vol.21(6):3-6.
    [110]栾风虎,李玉峰,于学明,司锡才.基于高阶累计量的时延估计研究[J].黑龙江大学自然科学学报, 2010,Vol.27(2):260-263.
    [111] Xiaohong Sheng, Yu-Hen Hu. Maximum Likelihood Multiple-Source Localization Using Acoustic Energy Measurements with Wireless Sensor Networks[J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005,VOL.53(1):44-53.
    [112] Dirk Bechler, Kristian Kroschel. CONSIDERING THE SECOND PEAK IN THE GCC FUNCTION FOR MULTI-SOURCE TDOA ESTIMATION WITH A MICROPHONE ARRAY[C]. International Workshop on Acoustic Echo and Noise Control(IWAENC2003),2003.
    [113] J Chen,Y Huang,J Benesty. Time delay estimation via multichannel cross- correlation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).2005.
    [114] M.V. Orlova. ACTIVE JAMMING COMPENSATION IN COMPLEX LOCATION SYSTEMS[C]. 5th International Conference on Actual Problems of Electronic Instrument Engineering Proceedings, (APEIE-2000),2000.
    [115]屈晓光,黄培康,朱可炎.对运动干扰源的时差测量精度分析[J].航天电子对抗,1999.(1):1-6.
    [116]屈晓光,黄培康,朱可炎.对运动干扰源的时差估计[J],系统工程与电子技术,2000,Vol.22(5):1-3.
    [117]罗勇江;汤建龙;赵国庆;斯海飞.基于Δ调制编码对噪声调频干扰源的无源定位[J].系统工程与电子技术,2009,Vol. 6:
    [118]罗勇江汤建龙赵国庆斯海飞.对噪声调频干扰源的站间到达时差测量[J] .电子与信息学报,2009,Vol. 5:1117-1121.
    [119]殷兆伟,戴国宪.不断发展的现代电子战接收机[J].舰船电子对抗. 2002, 25(5):6-9.
    [120] Timothy W. Fields, David L. Sharpin, James B. Tsui. Digital channellized IFM receiver[C]. IEEE MTT-S Digest, 1994
    [121]电子工业部5l所.电子战新技术:电子侦察干扰.电子工业部5l所,1997.
    [122] T. W. Fields, D. L. Sharpin, J. B. Tsui. Digital channelized IFM receiver[J].IEEE MTT-SrIntemational Microwave Symposium DigesL 1994:1667-1670.
    [123] D. R. Zahimiak, D. L. Sharpin, T. W. Fields. A hardware-efficient mutilate digital channelized receiver architecture[J]. IEEE Trans Aerospace and Electronic Systems,1998, 34(1):137-152.
    [124]肖先赐.宽带电子侦察系统的实时处理问题[J].电子对抗技术. 2004,No.3:1-6.
    [125] Tsui J B Y, Stephens J P. Digital Microwave Receiver Technology[J]. IEEE Trans on Microwave Theory and Techniques . Vol. 50, NO. 3, March 2002,699:705.
    [126]杨小牛,楼才义.软件无线电原理与应用[M].北京,电子工业出版社. 2001.
    [127]王启峰,黄高明.多相结构在信道化接收机中的应用研究[J].舰船科学技术,2009, Vol.31(8):79-81.
    [128]吴拓.侦察接收一体式宽带数字接收机设计[J],航天电子对抗, 2009, Vol.25(6):43-46.
    [129]付永庆,李裕. .基于多相滤波器的信道化接收机及其应用[J].信号处理.2004,Vol.20(5):17-20.
    [130]宋勇辉,张志明,唐莽,一种基于多相滤波器的信道化数字检波方法[J],航天电子对抗,2008, Vol.24(5) :59-61.
    [131] GUSTAVO LO′PEZ-RISUEN?O, JES′US GRAJAL,A′LVARO SANZ-OSORIO. Digital Channelized Receiver Based on Time-Frequency Analysis for Signal Interception[J]. IEEE Transactions on Aesospace and Electronic Systems. 2005,Vol. 41(3):879-898.
    [132] Bian Hailong , Chen Guangju.Anti-aliasing nonstationary signals detecion algorithm based on interpolation in the frequency domain using the short time Fourier transform[J].Journal of Systems Engineering and Electronics. 2008, Vol.19(3):419-426.
    [133]刘平,靳成英,陈曾平.一种基于短时FFT的宽带数字侦察接收机设计[J].信号处理. 2008, Vol.24(6) :988-991.
    [134]宗孔德.多抽样率信号处理[M].清华大学出版社1996.
    [135] A.V.奥本海姆,R.W.谢夫著,刘树堂译.数字信号处理[M],西安交通大学出版社,2001.
    [136]韩俊,何明浩,程柏林.一种未知雷达辐射源信号分选的新方法[J],航天电子对抗,2009,Vol.25(1):40-43.
    [137]邹顺,靳学明,张群飞.一种雷达信号脉内调制特征分析方法[J],航天电子对抗,2006, Vol.22(1):52-54.
    [138]王志斌,贺冰,胡杨.低信噪比下雷达信号调制类型的自动识别[J].现代防御技术.2008,Vol.36(3):83-86.
    [139]胡国兵,刘渝.基于最大似然准则的特定辐射源识别[J].系统工程与电子技术. 2009, Vol.31(2):270-273.
    [140]李楠,曲长文,苏峰.雷达辐射源模糊识别算法改进[J].电子科技大学学报.2010,Vol.39(2):182-185.
    [141] C Jutten, J Herault. Blind separation of Sources, part I: An adaptive algorithm based on neuromimetic architecture [J]. Signal Processing(S0165-1684), 1991, 24(1): 1-10.
    [142] Wei Lu, Jagath C Rajapakse. Approach and Applications of Constrained ICA [J]. IEEE Transactions on Neural Networks (S1045-9227), 2005, 16(11): 203-212.
    [143]刘靳,姬红兵.一种改进的红外目标识别算法[J].模式识别与人工智能,2010, Vol.23(1):115-119
    [144]李小军.独立分量分析及其在阵列信号处理中的应用[D].西安电子科技大学博士论文. 2004.
    [145]杨福生,洪波.独立分量分析的原理与应用[M],清华大学出版社,2006.
    [146] Bell A.j. and Sejnowski T.J. An information-maximization approach to lind separation and blind deconvolution[J], Neural Computation, 1995, Vol.7(6): 1129-1159.
    [147] Fei Ge, Jinwen Ma. Spurious Solution of the Maximum Likelihood Approach to ICA[J]. IEEE Signal Processing Letters,2010, Vol.17(7):655-658
    [148] Amari S,Cardoso J.F. Blind source separation-semiparametric statistical approach.IEEE Trans on Signal Processing,1997,Vol.45(11):2692-2700.
    [149] Hyv?rinen. A Fast and robust fixed-point algorithms for independent component analysis[J],1999,IEEE Trans on Neural Networks,10:626-634
    [150] xu L. Least mean square error reconstruction principle for self-organizing neural nets[J].Neural Networks,1993,6:627-648.
    [151]杨家轩,贾传荧,史国友,冯锡炜.基于负熵准则的FastICA盲多用户检测的研究[J].电子与信息学报.2009,Vol.31(9): 2274-2277
    [152] Sasmita Kumari Behera. FAST ICA FOR BLIND SOURCE SEPARATION AND ITS IMPLEMENTATION[D] . National Institute of Technology.2009.
    [153]蒋刚,肖建,宋昌林,郑永康.一种非正交复小波核函数及其非线性参数辨识应用[J].系统仿真学报, 2006, Vol.18(9): 2550-2554.
    [154] N Delprat, et al. Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies [J]. IEEE Trans. on Information Theory, 1992, Vol.38(2): 644-664.
    [155]郭汉伟,王岩,杨风风,梁甸农.基于小波Radon变换检测线性调频信号[J].国防科技大学学报,2003,Vol.25(1):91-94.
    [156]宋杰,何友,毕崇伟.非合作双基地雷达互相关时差估计仿真分析[J].系统仿真学报, 2009, 21(12):3689-3693.
    [157]于凤芹,曹家麟.基于分数阶傅里叶变换的多分量Chirp信号的检测与参数估计[J].电声技术.2004.1:53-56
    [158]孙晓昶,皇甫堪.基于Wigner-Hough变换的多分量LFM信号检测及离散计算方法[J].电子学报,2003,Vol.31(2):241-244.
    [159]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [160]方纯.时频原子分解快速算法及其在雷达信号分析中的应用[D].西南交通大学硕士学位论文,2009.
    [161]朱明.复杂体制雷达辐射源信号时频原子特征研究[D].西南交通大学博士学位论文,2008.
    [162] Mallat S.G,Zhang Z.F.Matching pursuits with time-frequency dictionaries.IEEE Trans On Signal Processing,1993,41(12):3397-3415.
    [163] O’Neill J.C.,Flandrin P. Chirp hunting[J]. Proc. IEEE Int. Symp on Time-frequency and time-scale analysis, Pittsburgh, USA, October 1998: 425-428.
    [164] Gustavo López-Risue?o,Jesús Grajal .Unknown Signal Detection via Atomic Decomposition[C]. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001:174-177.
    [165]王亮.基于时频原子的雷达辐射源信号特征分析[D].西南交通大学硕士学位论文,2009.
    [166]张文耀.基于匹配跟踪的低位率语音编码研究[D].中国科学院研究生院软件研究所博士学位论文,2002.
    [167]朱明,金炜东,普运伟,胡来招.基于Chirplet原子的雷达辐射源信号特征提取.红外与毫米波学报, 2007,26(4): 302-306.
    [168] Bultan. A four-parameter atomic decomposition of chirplets[J]. IEEE Trans . Signal Process , 1999 , 47(3) :731-745.
    [169] OMAR A.YESTE-OJEDA, JESúS GRAJAL, GUSTAVO LóPEZ-RISUE?O. Atomic Decomposition for Radar Applications[J]. IEEE Trans on Aerospace and Electronic Systems,2008, 44(1).:187-200.
    [170] Gustavo López-Risue?o,Jesús Grajal .Unknown Signal Detection via Atomic Decomposition[C]. Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 2001:174-177.
    [171] Haining Fan, Ying Guo, Qingwei Meng. Blind detection and parameter estimation algorithm based on atomic decomposition and information theoretic criterion[C]. 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing, 2009, Wuhan, China.
    [172]于凤芹.多分量Chirp信号的时频表示与参数估计的研究及其应用[D].上海大学博士学位论文,2004.
    [173] Gustavo López-Risue?o,J Grajal,O Yeste-Ojeda. Atomic decomposition-based radar complex signal interception[J]. IEE Proc.-Radar Sonar Navig, 2003,150(4):323-331.
    [174]周国富,毛二可.频率调制对雷达线性调频脉冲压缩性能的影晌[J].北京理工大学学报, 2008, Vol.28(3):256-256.
    [175]李万春.外辐射源定位跟踪技术的研究[D].电子科技大学博士学位论文,2009
    [176]樊昌信.通信原理[M].国防工业出版社,2001
    [177]李庆杨,王能超,易大义.数值分所[M].华中科技大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700