基于网络演算与GTS机制的WSNs性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IEEE802.15.4/ZigBee协议可以支持无竞争的GTS信道访问机制,因此基于GTS机制的无线传感器网络(Wireless Sensor Networks, WSNs)经过合理配置后能够提供有保证的高质量服务。通过对WSNs进行定性或定量的性能分析可以确定其配置参数是否合理。利用网络演算理论对WSNs进行定量的性能分析时,可以在不依赖复杂仿真实验平台的情况下,建立网络配置参数与性能界限之间的显式数学关系。论文基于确定型网络演算理论,系统地建立了GTS机制下WSNs的分批服务模型和网络演算模型,获得了比现有研究更为紧凑的性能界限。当这些性能界限用于指导WSNs配置时,可以节约更多网络资源。论文的主要研究成果如下:
     (1)针对现有研究给出的服务曲线定义比较抽象这一缺点,对三种服务曲线进行了详细分析,指出了它们之间的区别和剩余服务曲线的适用条件。
     (2)提出在对WSNs进行性能分析时,将激活时间序列后置于时分簇调度周期的末端,并假定各感应数据流猝发容忍在网络初始化完成后的瞬间同时产生。这种假定避免了猝发容忍都在节点GTS刚结束时发生这种低概率情况,可使最末端GTS对应节点的流入数据具有最大调度延迟,同时又避免节点服务曲线均取最大调度延迟这种不合理情况。
     (3)分析了GTS机制下节点的服务过程,明确了GTS长度内数据传输有效占用时间和空闲浪费时间的大小与分布规律,指出数据可以跨越同一个GTS内相邻的时槽进行连续传输。提出了更符合实际情况的基于TS的等效带宽和服务曲线,推导了基于TS的WSNs节点积压数据上界和单跳延迟上界。通过数值分析分别对基于TS和基于BI的等效带宽及WSNs节点性能界限进行比较。数值分析结果表明:节点等效带宽由数据帧长度、帧间间隔、占空比、最大重播次数等众多因素决定,而且等效带宽远小于名义带宽;同时,基于TS的方法求解的节点性能界限更符合实际情况。
     (4)证明了基于TS和基于BI两种不同方法求得的数据流输出函数上界是相同的,发现了输出函数上界与到达曲线的一致性、以及到达曲线的可平移性和不变形性这两个重要特性。提出了初始调度延迟、修正调度延迟、汇聚时刻、调度时刻、分段汇聚流等概念。以链式WSNs为研究对象,提出了分段汇聚流数量的求解方法,建立了链式WSNs的分批服务模型和性能分析演算模型。数值分析结果表明:与现有研究相比,本文方法能够大幅降低节点积压数据上界和端到端延迟上界;同时,对链式WSNs,现有研究所谓最坏情况,在本文演算模型中反而是最好情况。
     (5)建立了簇树WSNs的网络模型,分析了移动sink节点与簇树WSNs的连接方式对网络拓扑的影响。通过分析单层簇树WSNs的数据流传输与汇聚规律,发现通过建立“虚拟链式WSNs”可以建立簇树WSNs的分批服务模型和性能分析演算模型。数值分析结果表明:得益于分批服务模型的建立,本文方法求解的簇树WSNs性能界限比现有研究更为紧凑;采用合适的SD序列可以获得较优的网络性能。
IEEE802.15.4/ZigBee standard supports collision-free and predictable access to thewireless medium through the Guaranteed Time Slot (GTS) Mechanism, thus Wireless SensorNetworks (WSNs) based on GTS mechanism could provide guaranteed service with highquality if they were configured well. Reasonable configuration parameters can be judgedthrough WSNs’ quantitative or qualitative performance analysis. When WSNs’ quantitativeperformance analysis is conducted by network calculus, the explicit mathematical relationbetween configuration parameters and performance bounds can be established, withoutrelying on complicated experimental simulation testbed. Based on deterministic networkcalculus and GTS mechanism, WSNs’ batch service models and network calculus models areproposed in the dissertation, which result in much tighter performance bounds. If these tighterperformance bounds were used in WSNs’ configuration, more network resourses might besaved. In detail, the main achievements of the dissertation are as follows:
     (1) The definitions of the three different service curves provided by the existing researchare too abstract to understand. Therefore, a detailed analysis is conducted to differentiate thethree curves’, with the applicable conditions of the left-over service curve are pointed out.
     (2) When WSNs’ performance analysis is being conducted, Active-Period (AP)sequences are proposed to be laid to the end of a Time-Division-Cluster-Schedule (TDCS),and all nodes’ burst tolerances arrive simultaneously as soon as WSNs have finished theirinitialization. The hypothesis avoids the low probability of burst tolerances’arriving just at theend of each node’s GTS, and makes the input data of the last node in the TDCS having themaximum scheduling time, meanwhile avoiding such cases as all service curves havingmaximum scheduling time.
     (3) Benefited from the analysis of a WSN node’s detailed service process for dataframes under the GTS mechanism, the size and distribution of data transmission efficient timeand ilde&wasted time in a GTS become explicit, with the fact that data can be transmittedcontinuously through neighbour time slots being pointed out. The equivalent bandwidth andservice curve which are based on TS method and much more factual are derived, whichresults in a node’s TS-based backlog upper bound and TS-based single-hop delay upper bound. Numerical analysis is conducted to compare the equilavent bandwidth and WSNs’ nodes’performance bounds both in the TS method and BI method. The numerical results illustratethat equivalent bandwidth is determined by many factors such as data frame length,inter-frame spacing, duty cycle ratio, maximum retries, and so on, and it is much less thannominal bandwidth. It is also shown that TS-based performance bounds are more factual.
     (4) In order to conduct multi-hop WSNs’ performance analysis, the expression of dataflow output upper bounds are analyzed at first. It’s found that the TS-Based and BI-basedoutput bounds are the same, and the output bound curve is the same as the arrival curve. Twoimportant properties, namely, the translational property of data flow arrival curve and theindeformable property of single flow arrival curve, are also discovered. Such concepts asinitial latency of service, modified latency of service, scheduling time of service, aggragatingtime of data flow and the segmental convergence flow are proposed. Then Chain WSNs aretaken as the object of study. The solution to the number of the segmental convergence flow isproposed, and batch service models and network calculus models of chain WSNs’performance analysis are established. Numerical analysis illustrated that, compared with theexisting research work, the method in the dissertation can result in greatly reduced upperbounds of nodes’ backlog and end-to-end delay. Meanwhile it’s discovered that the worst casein current research is not the worst one in the dissertation, on the contrast, it is surprisingly thebest one.
     (5) A network model of cluster-tree WSNs is defined, and the impact of linking typesbetween mobile sink nodes and cluster-tree WSNs is analyzed. Through analyzing the law ofdata flow’s transmission and aggregation in a simple single-level cluster-tree WSN, it’s foundthat multi-level cluster-tree WSNs’ batch service models and calculus models can beestablished, in the way of building “virtual chain WSNs”. Numerical analysis illustrated that,compared with the existing research work, the derived performance bounds derived in thedissertation are greatly reduced, and proper SD sequences can be chosen to derive goodWSNs’performance.
引文
[1] Technology Review.10Emerging Technologies That Will Change the World[J]. Technology Review,2003(2):33-36
    [2]陈林星.无线传感器网络技术与应用[M].北京:电子工业出版社,2009
    [3]郑军,张宝贤.无线传感器网络技术[M].北京:机械工业出版社,2012
    [4] Li Y.J., Chen C.S., Song Y.Q., et al. Real-Time QoS Support in Wireless Sensor Networks: ASurvey[A],7th IFAC International Conference on Fieldbuses&Networks in Industrial&EmbeddedSystems[C]. France: INRIA,2007:11-14
    [5]程真,李腊元.一种基于地理位置的无线传感器网络服务质量路由算法[J].上海交通大学学报,2010,44(3):413-417
    [6]余荣,孙智,周海军,等.保证服务质量的最小能量无线传感器网络路由算法[J].清华大学学报,2007,47(10):1634-1637
    [7]滑楠,史浩山,吴健.无线传感器网络主动QoS机制研究[J].计算机工程与应用,2005,14:120-123.
    [8]王殊,阎毓杰,胡富平,等.无线传感器网络的理论及应用[M].北京:北京航空航天大学出版社,2007:10-13
    [9] Callaway E. H. Wireless Sensor Networks: Architectures and Protocols [M]. Florida: CRC Press,2004
    [10]石军锋,钟先信,陈帅,等.无线传感器网络结构及特点分析[J].重庆大学学报(自然科学版),2005,28(2):16-19
    [11]毛晓峰,杨珉,毛迪林,等.无线传感器网络应用综述[J].计算机应用与软件,2008,25(3):179-181
    [12]洪锋,褚红伟,金宗科,等.无线传感器网络应用系统最新进展综述[J].计算机研究与发展,2010,47(增刊):81-87
    [13] Kininmonth S., Bainbridge S., Atkinson I., et al. Sensor Networking the Great Barrier Reef[J].SpatialSciences Queensland Journal, Spring-Verlag,2004:34—38
    [14] Martinez K., Hart J. K., Ong R. Deploying a Wireless Sensor Network in Iceland[A]. Lecture Notes inComputer Science (LNCS)5659[C]. Berlin: Springer-Verlag,2009:131-137
    [15] Lim H. B., Ling K. V., Wang W.Q., et a1.The national weather sensor grid[A]. Proceedings of the5thInternational Conference on Embedded Networked Sensor Systems[C]. New York: ACM Press,2007:369-370
    [16] Murty R. N., Mainland G., Rose I., et a1. CitySense:An Urban-Scale Wireless Sensor Network andTestbed[A]. Proceedings of international Conference on Technologies for Homeland Security[C]. NewYork: IEEE Press,2008:583—588
    [17] Guo Zhongwen, Hong Feng, Feng Yuan, et a1.OceanSense:Sensor Network of Realtime OceanEnvironmental Data Observation and Its Development Platform[A]. The International Conference onUnderWater Networks and Systems (WUWNET)[C]. New York: ACM Press,2008:101-105
    [18] Nasipuri A., Cox R., Alasti H., et a1. Wireless sensor network for substation monitoring: Design anddeployment[A]. Proceedings of the6th ACM Conference on Embedded network sensor systems[C].New York: ACM Press,2008:365-366
    [19] Stoianov I., Nachman L., Madden S., et al. PIPENET:A Wireless Sensor Network for PipelineMonitoring [A]. Proceedings of the6th Internatioanl Syposium on Information Processing in SensorNetworks[C]. New York: IEEE Press,2007:264-273
    [20] Xu N., Rangwala S., Chintalapudi K. K., et a1. A Wireless sensor network for structuralmonitoring[A]. Proceedings of the2nd International Conference on Embedded Networked SensorSystems[C]. New York: ACM Press,2006:13-24
    [21] Kansal A., Rabimi M., Estrin D., et a1. Controlled Mobility for Sustainable Wireless SensorNetworks[A].2004First Annual IEEE Communications Society Conference on Sensor and Ad HocCommunications and Networks[C]. New York: IEEE Press,2004:1-6
    [22] Werner-Allen G.,Johnson J., Ruiz M., et a1.Monitoring volcanic eruptions with a wireless sensornetwork[A]. Proceedings of the2nd European Workshop on Wireless Sensor Networks[C]. New York:IEEE Press,2004:108-120
    [23] Cho C.Y., Chou P.H., Chung Y. C., et a1. Wireless Sensor Networks for Debris Flow Observation[A].Proceedings of the5th Annual IEEE Communications Society Conference on Sensor, Mesh and AdHoc Communications and Networks[C]. New York: IEEE Press,2008:615-617
    [24]赵丽,仲崇波,焦伟赟,等.基于无线传感器网络技术的山区高速公路边坡监测方案[J].交通标准化,2008,11a:34-37
    [25] Wilson J., Bhargava V., Redfern A., et a1. A Wireless Sensor Network and Incident CommandInterface for Urban Firefighting[A]. Proceedings of the4th AnnuaI Internatioal Conference on Mobileand Ubiquitous Systems:Networking&Services[C]. New York: IEEE Press,2007:1-7
    [26] Jiang S., Cao Y., Iyengar S., et a1. Carenet:An integrated Wireless Sensor Networking Environmentfor Remote Healthcare[A]. Proceedings of the ICST3rd international conference on Body areanetworks[C]. New York: ACM Press,2008: Article No.9
    [27] Dickerson R.F., Lu J., Li J., et a1. Metronet:Case study for Collaborative Data Sharing on the WorldWide Web[A]. Proceedings of the7th International Conference on Information Processing in SensorNetworks[C]. New York: ACM Press,2008:557-558
    [28] Heinzelman W. B., Chandrakasan A. P., Balakrishnan H. An application-specific protocol architecturefor wireless microsensor networks[J]. IEEE Transactions on Wireless Communications,2002, l(4):660-670.
    [29]李翠,巨永锋.基于网络微积分的WSN属性界限研究[J].传感器与微系统,2012,31(10):34-37
    [30]张连明.基于网络演算的自相似网络性能上界研究[D].长沙:中南大学,2006
    [31] Akkaya K., Younis. Energy and QoS Aware Routing in Wireless Sensor Networks[J]. ClusterComputing,2005,8(2-3):179-188
    [32] Ahmed A.A., Fisal N. A real-time routing protocol with load distribution in wireless sensornetworks[J]. Computer Communications,2008,31(14):3190-3203
    [33] Xu Y., Ren F., He T., et al. Building a potential field to provide real-time transmission in wirelesssensor network[A]. Proceedings of the13th ACM international conference on Modeling, analysis, andsimulation of wireless and mobile systems[C]. New York: ACM Press,2010:403-410
    [34]梁庆伟,姚道远,巩思亮.一种保障时延能量高效的无线传感器网络路由协议[J].西安交通大学学报,2012,46(6):48-52
    [35]余小华,黄灿辉.一种基于蚁群优化的WSN拥塞控制算法[J].计算机应用研究,2012,29(4):1525-1528
    [36]余小华,陈瑛.一种新的无线传感器网络拥塞控制算法[J].计算机工程,2011,37(11):108-110
    [37]李明维,井元伟,陈向勇.一种无线传感器网络跨层拥塞控制算法[J].东北大学学报(自然科学版),2012,33(1):10-12
    [38]刘永帅,王新生,胡玉兰.一种基于虚拟簇头的拥塞控制算法[J].计算机工程,2012,38(9):93-96
    [39]吴国伟,张岩.无线传感器网络中的逐跳跨层拥塞控制[J].计算机工程,2010,36(16):108-109
    [40]刘昌华,袁操.具有通信时延的无线传感器网络拥塞控制算法稳定性研究[J].计算机工程与应用,2011,47(16):77-79
    [41]张连明,陈志刚,黄国盛.网络演算理论及应用研究[J].计算机工程与应用,2006,42(27):8-11
    [42]李明辉.基于网络演算的网络建模方法研究[D].成都:西南交通大学,2007
    [43] Le Boudec J. Y., Hebuterne G. Comments on "A deterministic approach to the end-to-end analysis ofpacket flows in connection oriented networks"[J]. IEEE/ACM Transactions on Networking,2000,8(1):121-124
    [44] Vojnovic M., Le Boudee J. Y. Stochastic analysis of some expedited forwarding networks[A].Proceedings of the21st Annual Joint Conference of the IEEE Computer and CommunicationsSocieties[C]. New York: IEEE Press,2002:1004-1013
    [45] Rexford J, Towsley D. Smoothing variable-bit-rate video in an intemetwork[J]. IEEE/ACMTransactions on Networking,1999,7(2):202-215
    [46]张信明,陈国良,顾钧.基于网络演算计算保证服务端到端延迟上界[J].软件学报,2001,12(6):889-893
    [47]李庆华,陈志刚,张连明,等.基于网络演算的无线自组网QoS性能确定上界研究[J].通信学报,2008,29(9):32-39
    [48]李庆华,陈志刚,黄国盛,等.基于网络演算的无线自组网端到端延迟上界研究[J],系统仿真学报,2009,21(4):2248-2251
    [49] Xin W., Kar K. Throughput modelling and fairness issues in CSMACA based ad-hoc networks[A].Proceedings of the24th Annual Joint Conference of the IEEE Computer and CommunicationsSocieties[C]. New York: IEEE Press,2005:23-34
    [50] Ciucu F., Burehard A., Liebeherr J. Scaling Properties of Statistical End-to-End Bounds in theNetwork Calculus[J]. IEEE Transactions on Information Theory,2006,52(6):2300-2312
    [51]王子君,许维胜,王中杰,等.控制网络的确定性延迟演算理论研究[J].电子学报,2006,34(2):380-384
    [52]张奇智,张彬,张卫东.基于网络演算计算交换式工业以太网中的最大时延[J].控制与决策,2005,20(1):117-120
    [53] Qi H., Chen Z., Zhang L. Towards end-to-end delay bounds on WMNs based on statistical networkcalculus[J]. Proceedings of the9th International Conference for Young Computer Scientists[C]. NewYork: IEEE Press,2008:493-497
    [54] Schmitt J. B., Roedig. Sensor Network Calculus–A Framework for Worst Case Analysis [A].Proceedings of the International Conference on Distributed Computing in Sensor Systems, LNCS3560[C]. Berlin: Springer-Verlag,2005:141-154
    [55] Schmitt J., Roedig U. Worst Case Dimensioning of Wireless Sensor Networks under UncertainTopologies[A]. Proceedings of the1st workshop on Resource Allocation in Wireless NETworks[C].New York: IEEE Press,2005
    [56] Schmitt J., Zdarsky F.A., Roedig U. Sensor Network Calculus with Multiple Sinks[EB/OL].http://disco.informatik.uni-kl.de/publications/SZR06-1.pdf,2007-05-12/2013-10-07
    [57] Schmitt J.B., Zdarsky F.A., Thiele L. A Comprehensive Worst-Case Calculus for Wireless SensorNetworks with In-Network Processing[A]. Proceedings of the28th IEEE International Real-TimeSystems Symposium[C]. New York: IEEE Press,2007:193-202
    [58] Koubaa A., Alves M., Tovar E. Modeling and Worst-Case Dimensioning of Cluster-Tree WirelessSensor Networks[A]. Proceedings of the27th IEEE International Real-Time Systems Symposium[C].New York: IEEE Press,2006:412-421
    [59] Koubaa A., Alves M., Tovar E. Modeling and worst-case dimensioning of cluster-tree wireless sensornetworks: proofs and computation details[EB/OL].http://www.open-zb.net/publications/TR-060601.pdf,2007-04-21/2013-10-07
    [60]洪雁兵,王一军,刘桂波,等.基于网络演算的簇树WSN性能上界分析[J].计算机工程与应用,2012,48(19):48-53
    [61] Jurcik P., Koubaa A., Severino R., et al. Dimensioning and worstcase analysis of cluster-tree sensornetworks[J]. ACM Transactions on Sensor Networks,2010,7(2): Article No.14
    [62] She H., Lu Z., Jantsch A., et al. Deterministic worst-case performance analysis for wireless sensornetworks[A]. Proceedings of the International Conference on Wireless Communications and MobileComputing [C]. New York: IEEE Press,2008:1081-1086
    [63] Zhang L. Bounds on end-to-end delay jitter with self-similar input traffic an ad hoc wireless network,Proceedings of2008ISECS International Colloquium on Computing, Communication, Control, andManagement[C]. New York: IEEE Press,2008:538-541
    [64] Li H.,Liu X. He W., et al. End-to-end Delay Analysis in Wireless Sensor network coding: A NetworkCalculus-Based Appoach[A]. Proceedings of2011International Conference on Distributed ComputingSystems[C]. New York: IEEE Press,2011:47-56
    [65] Zhang L. M., Yu J. P., Deng X. H. Modelling the guaranteed QoS for wireless sensor networks: anetwork calculus approach[J]. EURASIP Journal on Wireless Communications and Networking,2011:82
    [66] KIEFER A., GOLLAN N., SCHMITT J. B. Searching for Tight Performance Bounds in Feed-Forwardnetworks [A]. Lecture Notes in Computer Science (LNCS)5987[C]. Berlin: Springer-Verlag,2010:227-241
    [67] LENZINI L., MINGOZZI E., STEA G. Delay Bounds for FIFO Aggregates: A Case Study [A].Lecture Notes in Computer Science (LNCS)2811[C]. Berlin: Springer-Verlag,2003:31-40
    [68] Lenzini L., Martorini L., Mingozzi E., et al.Tight end-to-end per-flow delay bounds in FIFOmultiplexing sink-tree networks[J]. Performance Evaluation,2006,63(9-10):956-987
    [69] Schmitt J. B., Zdarsky F. A., Fidler M. Delay Bounds under Arbitrary Multiplexing: When NetworkCalculus Leaves You in the lurch…[A]. Proceedings of the27th IEEE International Conference onComputer Communications[C]. New York: IEEE Press,2008:1669-1677
    [70] IEEE-TG15.4. Part15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY)Specification for Low-Rate Wireless Personal Area Networks (LR-WPANS)[S]. IEEE standard forInformation Technology,2006
    [71] Koubaa A., Alves M., Tovar E. A comprehensive simulation study of slotted CSMA/CA for IEEE802.15.4wireless sensor networks[A]. Proceedings of IEEE International Workshop on FactoryCommunication Systems[C]. New York: IEEE Press,2006:183-192
    [72] Koubaa A., Alves M., Tovar E. i-GAME:an implicit GTS allocation mechanism in IEEE802.15.4[A].Proceedings of the18th Euromicro Conference on Real-Time Systems[C]. New York: IEEE Press,2006:10-192
    [73] Koubaa A., Alves M., Tovar E.,et al. IEEE802.15.4: a federating communication protocol fortime-sensitive wireless sensor networks[EB/OL].http://www.open-zb.net/publications/tr-hurray-060202.pdf,2007-05-14/2013-10-07
    [74] Sheu S., Shih Y., Chen L. An Adaptive Interleaving Access Scheme (IAS) for IEEE802.15.4WPANs[A]. Proceedings of IEEE the61st Vehicular Technology Confercence[C]. New York: IEEEPress,2005(Vol.3):1523-1527
    [75] Koubaa A. Cunha A., Alves M. TDBS: a Time Division Beacon Scheduling Mechanism for ZigBeeCluster-Tree Wireless Sensor Networks[A]. Proceedings of the19th Euromicro Conference onReal-Time Systems[C]. New York: IEEE Press,2007:125-135
    [76] Koubaa A. Engineering IEEE802.15.4/ZigBee Wireless Sensor networks, Lecture12[EB/OL].http://www.open-zb.net/publications/SensorNets_Seminar_AnisKoubaa.pdf,2010-03-16/2013-10-07
    [77] Batsa M. K. Supporting Different QoS Levels in Multiple-Cluster Wireless Sensor Networks[D].Roorkee: Indian Institute of Technology Roorkee,2010
    [78] Severino R. On the use of IEEE802.15.4/ZigBeefor Time-Sensitive Wireless Sensor NetworkApplications[D]. Portol: Polytechnic Institute of Porto School of Engineering,2008
    [79] Jurcík P. Real-time Communication over Cluster-tree Wireless Sensor Networks[D]. Prague: CzechTechnical University,2010
    [80]洪雁斌.基于网络演算的簇树型WSN性能研究[D].长沙:中南大学,2012
    [81] Cheng L., Bourgeois A.G., Zhang X. A new GTS allocation scheme for IEEE802.15.1.4networkswith improved bandwidth utilization[A]. Proceedings of the7thInternational Symposium onCommunications and Information Technologies[C]. New York: IEEE Press,2007:1143-1148
    [82]熊伟丽,唐蒙娜,徐保国.基于OPNET的无线传感器网络MAC协议研究[J].传感技术学报,2010,23(1):139-143
    [83]何璇,赵海,朱剑,等.无线传感器网络中MAC层超帧重设计[J].东北大学学报(自然科学版),2012,33(6):810-814
    [84]蔡惠娟,蒋文贤. IEEE802.15.4多时槽下GTS性能分析及配置优化[J].计算机应用,2012,32(12):3499-3504
    [85]谢琦,王磊,胡俊.基于IEEE802.15.4的GTS调度算法优化[J].计算机工程与设计,2011,32(11):3642-3645
    [86]王程锦,张中荃,韩悦,等.基于统计网络演算的双漏桶模型带宽需求研究[J].光通信研究,2013,4:25-28
    [87]漆华妹,陈志刚.基于统计网络演算的无线mesh网络流量模型[J].通信学报,2009,30(7):1-6
    [88]伍志韬,黄宁,王学望,等.基于随机型网络演算的AFDX端端时延分析方法[J].系统工程与电子技术,2013,35(1):168-172
    [89] Shenker S., Partridge C., Guefin R. Specication of guaranteed quality of service [EB/OL].http://tools.ietf.org/pdf/rfc2212.pdf,2008-02-05/2013-10-07
    [90] Guérin R., Peris V. Quality-of-Service in packet networks: basic mechanisms and directions[J].Computer Networks,1999,31(3):169-189
    [91] Cruz R. L. A calculus for network delay, part I and II [J]. IEEE Transactions on Information Theory,1991,37(1):114-141.
    [92] Chang C. S. On deterministic traffic regulation and service guarantees:a systematic approach byfiltering [J]. IEEE Transaction on Information Theory,1998,44(3):1097-1110
    [93] Le Boudec J. Y. Application of network calculus to guaranteed service networks[J].IEEE/ACMTransactions on Information Theory,1998,44(3):1087-1097
    [94] Agrawal R., Cruz R. L.,Okino C., et a1. Performance bounds for flow control protocols[J]. IEEE/ACMTransactions on Networking,1999,7(3):310-323
    [95] Le boundec J. Y., Thiran P. Network Calculus: A Theory of Deterministic Queuing Systems for theInternet[M]. Berlin: Springer-Verlag,2004
    [96]高文宇,陈松乔,王建新.网络微积分学研究[J].微电子学与计算机,2004,21(11):76-80
    [97] Burchard A., Liebeherr J., Patek S.D. A Min-plus calculus for end-to-end statistical serviceguarantees[J].IEEE Transactions on Information Theory,2006,52(9):4105-4114
    [98] Baccelli F., Cohen G., Olsder G. J., et a1. Synchronization and Linearity: An Algebra for DiscreteEvent Systems[M]. New York: John Wiley&Sons, Inc.,1992
    [99] Chang C.S. Performance Guarantees in Communication Networks[M]. Berlin: Springer-Verlag,2000
    [100] Starobinski D., Karpovsky M., Zakrevski L. Application of Network Calculus to General TopologiesUsing turn-prohibition[J]. IEEE/ACM Transactions on Networking,2003,11(3):411-421
    [101]孟繁亮.基于时间敏感应用下IEEE802.15.4网络的研究和改进[D].天津:南开大学,2010
    [102] Cunha A., Severino R.Pereira N., et al. ZigBee over TinyOS: Implementation and experimentchallenges[EB/OL].http://ww.open-zb.net/publications/CONTROLO08.pdf,2009-02-19/2013-10-07

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700