基于交换式以太网的实时工业通信相关理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交换技术的出现不仅提高了以太网的通信速率和带宽,也为以太网支持工业通信提供了新的途径。但是,将交换式以太网直接应用于工业控制领域还存在相当多理论和实践的问题。本文重点研究基于交换式以太网的实时工业通信的相关理论和关键技术,在深入分析面向工业通信的交换式以太网实时特性的基础上,针对交换式以太网构建控制网络所存在的诸多理论和技术问题,从静态和动态两方面提出解决方案。主要研究工作如下:
     (1)面向工业通信的交换式以太网实时特性分析。时延是影响控制网络性能最主要的一个因素。针对网络控制系统中最常用的拓扑结构和数据特性,基于统计网络演算建立系统在不同调度策略下的时延模型。利用该模型计算控制网络中实时数据的时延分布和统计上界,并与确定性网络演算得出的时延上确界进行比较,评价该上确界的悲观程度。
     (2)基于交换式以太网的控制网络拓扑结构优化(静态解决方案)。通过分析影响控制网络实时性能的诸多因素及其内在联系,给出归一化的拓扑结构优化的评价指标。将该问题转化为一个多目标优化问题,充分考虑到控制网络的通信特点。提出改进的擂台赛算法用以构造进化群体的非支配集,并综合运用支配关系法和目标函数组合求积法对个体进行评价,以减小算法的开销。实验研究表明最终解在流量本地化和均衡方面以及交换机物理端口使用率平衡方面,都较其他算法有着较大的改进。此外,为实际控制网络设计与优化问题提出一个新性能指标的估算方法。
     (3)面向实时工业通信的交换机设计(基于网络节点的动态解决方案)。针对基于虚拟输出排队的输入队列交换机应用于控制网络所面临的诸多困难,提出一种新的输入队列交换机结构,并根据新的结构设计了一种基于记录矩阵和需求矩阵的信元传输顺序控制方案,解决了以往交换机中存在的信元行为及时延的不确定性问题。考虑控制网络中的流量特征,还提出了两级调度机制,链接调度提供了分级服务,交换调度实现了端口匹配。后者是一种分层的结构性匹配调度算法,层数的设置提供了在调度率和复杂度之间折衷的手段。仿真实验证明,较现有的结构性调度算法,本算法具有更高的调度率,同时所提出的交换机结构及其调度策略为控制网络的数据通信提供了确定性的实时保障。
     (4)分布式带宽分配策略研究(基于端节点的动态解决方案)。交换式以太网应用于控制领域所面临的主要问题之一是如何以尽量小的代价来实现其支持典型的工业通信的目的。结合控制网络的通信特点,提出了一套基于时隙的分布式带宽分配策略。给出了节点通信任务和带宽资源的模型、调度策略中信息传输的控制方法和调度算法。通过实验分析和比较,该策略在满足了各通信任务实时需求的同时,解决了当前分布式调度策略中存在的诸如不能灵活应对通信任务频繁变化、任务调度率和带宽利用率低等问题。
     (5)交换式以太网在网络化数控系统中的应用研究。以工业控制中的一个典型应用——网络数控服务系统为对象,分析了网络实时系统中各通信任务之间以及通信任务与其他任务之间的协调设计问题,并通过实验证明了设计方案的有效性。
The emergence of the switching technology not only improves the transmission rate and bandwidth of Ethernet but also provides many new features for the industrial communication support. However, there are quite a few theorical and technological problems in applying the switched Ethernet to industrial field directly. This dissertation mainly studies the related theories and key technologies on the switched-Ethernet-based real-time industrial communication. After the deep analysis of the industrial communication oriented switched Ethernet's temporal characteristics, this dissertation proposes solutions from both static and dynamic aspect to solve the problems in the control networking based on switched Ethernet. The main work is as follows:
     (1) Analysis of the industrial communication oriented switched Ethernet's temporal characteristics. Delays have great influences on the control network's performance. Topologies most in use and data characteristics of the network control system are considered and corresponding delay models under different scheduling policies are derived based on stochastic network calculus. Then the distribution of delays and stochastic upper bound on delays of real-time data in the control network are calculated. The results are compared with the guaranteed upper bound on delays derived by deterministic network calculus and the pessimism of the bound is evaluated.
     (2) Optimization of the control networks' topology based on switched Ethernet (static solution). Factors that affect the real-time performance of the industrial control network are presented in detail, and optimization criteria with their internal relations are analyzed. After the definition of performance parameters, the normalized indices for the evaluation of the topology optimization are proposed. The topology optimization problem is formulated as a multi-objective optimization problem and the evolutionary algorithm is applied to solve it. Special communication characteristics of the industrial control network are considered in the optimization process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative relation method and the objective function combination method, for reducing the computational cost of the algorithm, are given. Simulation tests show that the performance of the proposed algorithm is preferable and superior compared to other algorithms. The final solution greatly improves the following indices:traffic localization, traffic balance and utilization rate balance of switches. In addition, a new performance index with its estimation process is proposed.
     (3) A switch design for the real-time industrial communication (dynamic solution in switches). Considering the challenges in the application of the virtual-output-queue based input-queue switches to control network, this dissertation proposes a new switch structure. Accordingly, a method for the cell sequence control based on the record matrix and demand matrix is designed, which eliminates the uncertainty of cells' behavior and delay in switches. The characteristics of the traffic in control network are taken into account and a two-level scheduling mechanism is proposed. The link scheduler provides the class of service while the switch scheduler is responsible for the match. In the latter scheduler, a layered frame-based match algorithm is designed. The layer mechanism provides a compromise between the schedulable ratio and complexity. Simulation results show that the algorithm achieves a higher schedulable ratio compared with other frame-based algorithms and the switch structure with its scheduling strategy can provide better deterministic real-time guarantees.
     (4) Study on the distributed bandwidth allocation strategy (dynamic solution in end nodes). One of the main problems of applying the switched Ethernet to control applications is how to adapt it to the typical industrial communication with least changes. Considering the communication characteristics of the control network, this dissertation proposes a distributed bandwidth allocation strategy based on the time-slot. Models of communication tasks and bandwidth resources in the network control system based on switched Ethernet together with the control methods of the message transmission and the scheduling algorithm of the strategy are provided. Existing distributed scheduling proposals often cannot deal with the situation that communication tasks change frequently and both schedulable ratio and bandwidth utilization are low. By the experimental analysis and comparisons, the proposed strategy guarantees the transmission of the real-time communication tasks with their deadlines, and furthermore it solves the above problems of existing proposals.
     (5) The application of switched Ethernet to networked numerical control system. Finally, the dissertation takes a typical application in industrial control-the service-oriented network numerical control system as an example to analyze the coordination design of communications tasks and other tasks in the implementation of network real-time systems. And the effectiveness of the task design is proved by experiments.
引文
[1]高金源,夏杰.计算机控制系统[M].清华大学出版社.北京.2007:351.
    [2]阳宪惠.工业数据通信与控制网络[M].北京.清华大学出版社.2003:9-11.
    [3]林跃,张建华.工业通信网络及系统技术[J].自动化与仪表.2009,(7):22-30.
    [4]毕旭,李孝茹,傅志中.工业以太网技术的发展现状及趋势[J].自动化与仪器仪表,2005,(3):1-2,6.
    [5]Decotignie. J-D. Ethernet-Based Real-Time and Industrial Communications[J]. Proceedings of the IEEE.2005,93(6):1102-1117.
    [6]胡晓娅.基于交换式以太网的网络控制系统研究[D].武汉.华中科技大学.2006:5-7.
    [7]范兴刚.网络控制系统若干通信网络实时特性研究[D].杭州.浙江大学.2004.2.
    [8]任清荣.基于以太网的数控系统数字接口技术研究[D].武汉.华中科技大学.2008:12.
    [9]郑桦.机械臂系统的网络远程控制研究与实现[D].合肥.中国科学技术大学.2007:34.
    [10]Krishna. C. M, Shin. K. G. Real-time Systems[M].清华大学出版社.北京.2004:47-48.
    [11]谢希仁.计算机网络[M].电子工业出版社.北京.2003:94-120.
    [12]鲁士文.网络连接设备的原理和实用技术[M].电子工业出版社.北京.2008:154-168.
    [13]马津燕.基于Petri网的交换机与加权循环调度算法建模与性能分析[D].天津.天津大学.2005:5-6.
    [14]关守平,周玮,尤富强.网络控制系统与应用[M].电子工业出版社.北京.2008:9.
    [15]Mokhtar. A. Aboelaze, Y. Elnaggar. The performance of Ethernet under a combined data/real-time traffic[C]. Proceedings of the 25th Annual IEEE Conference on Local Computer Networks. Tampa, FL, USA.8-10 Nov,2000:349-350.
    [16]Yeung. S. N, Lehoczky. J. End-to-end delay analysis for real-time networks[C]. Proceedings of 22nd IEEE Real-Time Systems Symposium. Pittsburgh, PA, USA.3-6 Dec, 2001:299-309.
    [17]Chen. J. M, Wang. Z, Sun. Y. S. Real-time Capability Analysis for switched industrial Ethernet traffic priority-based[C]. Proceedings of the 2002 IEEE International Conference on Control Applications. Giasgow, U. K.18-20 Sep,2002:525-529.
    [18]Ba. W, Zhang. D. B. Analysis of the Delays of Switched Industrial Ethernet Based on Priority Queue Model[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China.21-23 Jun,2006:4626-4629.
    [19]张信明,陈国良,顾钧.基于网络演算计算保证服务端到端延迟上界[J].软件学报.2001,12(6):889-893.
    [20]张信明,陈国良,顾钧.基于网络演算的流量整形模型[J].软件学报.2002,13(12):2225-2230.
    [21]李明辉.基于网络演算的网络建模方法研究[D].成都.西南交通大学.2007.
    [22]王子君,许维胜,王中杰,吴启迪.控制网络的确定性延迟演算理论研究[J].电子学报.2006,34(2):380-384.
    [23]Zhang. Q. Z, Cai. Y. Z, Gu. D. Y, et al. Determine the Maximum Closed-Loop Control Delay in Switched Industrial Ethernet Using Network Calculus[C]. Proceedings of the 2006 American Control Conference. Minneapolis, Minnesota, USA. June 14-16,2006: 4870-4875.
    [24]Wang. G. T, Liu. J. Network Calculus using in real-time Industrial Ethernet[C]. Proceedings of International Symposium on Information Science and Engineering. Shanghai, China. 20-22 Dec.2008,2:77-79.
    [25]Georges. J-P, Divoux. T, Rondeau. E. Comparison of Switched Ethernet Architectures Models [C]. Proceedings of the 9th IEEE International Conference on Emerging Technologies and Factory Automation. Lisbon, Portugal.16-19 Sep.2003:375-382.
    [26]Jasperneite. J, Neumann. P. Switched Ethernet for factory communication[C]. Proceedings of 8th IEEE International Conference on Emerging Technologies and Factory Automation. Antibes, France.15-18 Oct.2001,1:205-212.
    [27]Vojnovic. M, Le Boudec. J. Y. Stochastic bound on delay for guaranteed rate nodes[J]. IEEE Communications Letters.2002,6(10):449-451.
    [28]Le Boudec. J. Y, Charny. A. Packet scale rate guarantee for non-FIFO nodes[J]. IEEE/ACM Transactions on Networking.2003,11(5):810-820.
    [29]张连明.基于网络演算的自相似网络性能上界模型研究[D].长沙.中南大学.2006.
    [30]张连明,陈志刚,黄国盛.网络演算理论及应用研究[J].计算机工程与应用.2006,(27):8-11,173.
    [31]张顺颐,孙立宏,舒斐等.基于遗传算法的大规模企业网拓扑设计新算法[J].通信学报.2001,22(6):27-33.
    [32]张奇智,唐幼纯,孙华丽等.使用遗传算法划分交换式工业以太网[J].化工自动化及仪表.2005,32(3):31-34.
    [33]胡晓娅,朱德森,汪秉文.用改进的遗传算法设计交换式工业以太网拓扑[J].计算机工程与科学.2007,29(9):9-11,33.
    [34]孙立山,郝燕玲.基于混合遗传算法的网络拓扑设计[J].计算机工程.2006,32(3):25-27,87.
    [35]曾勇,王宇平.用基于多目标决策的遗传算法解网络拓扑结构设计问题[J].计算机工程与应用.2003,(7):pp.101-103.
    [36]曹继伟,刘玉华,许凯华等.基于初始环的遗传算法优化网络拓扑结构问题[J].计算机工程与应用.2006,26:147-149.
    [37]高坚,贺秉庚.网络结构拓扑扩展的混合遗传算法[J].计算机工程与科学.2002,24(3):3-4.
    [38]陈国龙.基于遗传算法的计算机通信网的拓扑优化设计[J].计算机科学.2002,29(11):141-143.
    [39]章竺,唐棣芳.遗传算法在通信网设计中的应用[J].计算机工程.2002,28(10):157-158.
    [40]Li. F, Zhang. Q. Z, Zhang. W. D. Graph partitioning strategy for the topology design of industrial network[J]. IET Commun.2007,1(6):1104-1110.
    [41]Han. J. H, Wang. Y. F, Hou. Z. F, et al. An Approach of Industrial Ethernet Network System Design with Hybrid Niche Genetic Algorithm[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China.21-23 Jun,2006,5:3699-3703.
    [42]Bassam. A, Alheraish. A, Bakry. H. S. A tutorial on using genetic algorithms for the design of network topology [J]. International Journal of Network Management. Int. J. Network Mgmt,2006,16(3):253-262.
    [43]Krommenacker. N, Rondeau. E, Divoux. T. Study of algorithms to define the cabling plan of switched Ethernet for real-time application[C]. Proceedings of the 8th IEEE Symposium on Emerging Technologies and Factory Automation. Antibes, France.15-18 Oct,2001,1: 223-230.
    [44]Krommenacker. N, Rondeau. E, Divoux. T. Using Genetic Algorithm to Design Switched Ethernet Industrial Network[C]. Proceedings of the 2002 IEEE International Symposium on Industrial Electronics. L'Aquila, Italy.8-11 Jul,2002,1:152-157.
    [45]Krommenacker. N, Rondeau. E, Divoux. T. Genetic Algorithms for Industrial Ethernet Network Design[C]. Proceedings of 4th IEEE International Workshop on Factory Communication Systems. Vasteras, Sweden.28-30 Aug,2002:149-156.
    [46]Chou. H, Premkumar. G, Chu. C. H. Genetic algorithms for communications network design-an empirical study of the factors that influence performance[J]. IEEE Transactions on Evolutionary Computation.2001,5(6):236-249.
    [47]Sem. K, Malhotra. S. Multi criteria network design using genetic algorithm[C]. Proceedings of the IET International Conference on Wireless, Mobile and Multimedia Networks. Mumbai, India.11-12 Jan,2008:56-60.
    [48]Sayoud. H, Takahshi. K. Vaillant. B. Designing Communication Networks Topologies Using Steady-State Genetic Algorithms[J]. IEEE Communications Letters.2001,5(3): 113-115.
    [49]Kim. D, Doh. Y, Lee. Y. Table driven proportional access based real-time Ethernet for safety-critical real-time systems[C]. Proceedings of the 8th Pacific Rim International Symposium on Dependable Computing. Seoul, Korea.17-19 Dec,2001:356-363.
    [50]Pedreiras. P, Gai. P, Buttazzo. G, et al. FTT-Ethernet:A platform to implement the elastic task model over message streams[C]. Proceedings of the 4th IEEE Workshop Factory Communication Systems. Vasteras, Sweden.28-30 Aug,2002:225-231.
    [51]Pedreiras. P, Almeida. L, Gai. P. The FTT-Ethernet protocol:Merging flexibility, timeliness and efficiency[C]. Proceedings of 14th Euromicro Conference on Real-Time Systems. Vienna, Austria.19-21 Jun,2002:134-142.
    [52]Pedreiras. P, Gai. P, Almeida. L, et al. FTT-Ethernet:a flexible real-time communication protocol that supports dynamic QoS management on Ethernet-based systems[J]. IEEE transactions on industrial informatics.2005,1(3):162-171.
    [53]Bonaccorsi. A, Lo Bello. L, Mirabella, et al. A distributed approach to achieve predictable Ethernet access control in industrial[C]. Proceedings of the 5th IFAC International Conference on Fieldbus Systems and Their Applications. Aveiro, Portugal.7-9 Jul,2003.
    [54]Kweon. S, Shin. K. G. Statistical real-time communication over Ethernet[J]. IEEE Transactions on Parallel and Distributed Systems.2003,14(3):322-335.
    [55]Kweon. S, Cho. M, Shin. K. G. Soft Real-Time Communication over Ethernet with Adaptive Traffic Smoothing[J]. IEEE Transactions on Parallel and Distributed Systems. 2004,15(10):946-959.
    [56]Carpenzano. A, Caponetto. R, Lo Bello. L, et al. Fuzzy traffic smoothing:An approach for real-time communication over Ethernet networks[C]. Proceedings of the 4th IEEE Workshop Factory Communication Systems. Vasteras, Sweden.28-30 Aug,2002:241-248.
    [57]Lo Bello. L, Kaczynski. G. A, Mirabella. O. Improving the real-time behavior of Ethernet networks using traffic smoothing[J]. IEEE transactions on industrial informatics.2005,1(3): 151-161.
    [58]Varadarajan. S. Experiences with EtheReal:A fault-tolerant real-time Ethernet switch[C]. Proceedings of the 8th IEEE International Conference on Emerging Technologies and Factory Automation. Antibes, France.15-18, Oct 2001,1:183-194.
    [59]Song. Y. Q, Koubaa. A, Simonot, F. Switched Ethernet for real-time industrial communication:Modeling and message buffering delay evaluation[C]. Proceedings of the 4th IEEE Workshop Factory Communication Systems. Vasteras, Sweden.28-30 Aug,2002: 27-35.
    [60]Choi. B, Sejun. S, Birch. N, et al. Probabilistic approach to switched Ethernet for real-time control applications[C]. Proceedings of the 7th International Conference on Real-Time Systems and Applications. Cheju Island, Korea.12-14 Dec,2000:384-388.
    [61]Loeser. J, Haertig. H. Low latency hard real-time communication over switched Ethernet[C]. Proceedings of the 16th Euromicro Conference on Real-Time Systems. Catania, Italy.30 Jun-2 Jul,2004:13-22.
    [62]Zhang. Q. Z, Zhang. W. D. Priority Scheduling in Switched Industrial Ethernet[C]. Proceedings of the 24th American Control Conference. Portland, American.8-10 June 2005, 5:3366-3370.
    [63]Wang. J. G, Ravindran. B. Time-Utility Function-Driven Switched Ethernet:Packet Scheduling Algorithm, Implementation, and Feasibility Analysis[J]. IEEE Transactions on Parallel and Distributed Systems.2004,15(2):119-133.
    [64]Tan. V. V, Yoo. D. S, Kim. M. K, et al. Hard and Soft Real Time Based on Switched Ethernet[C]. Proceedings of the 1st International Forum on Strategic Technology. Ulsan, Korea.18-20 Oct 2006:378-382.
    [65]Hoang. H. Real-time Communication for Industrial Embedded Systems Using Switched Ethernet[C]. Proceedings of the 18th International Parallel and Distributed Processing Symposium. Santa Fe, USA.26-30 April 2004:127-130.
    [66]Hoang. H, Jonsson. M. Switched real-time Ethernet in industrial applications-deadline partitioning[C]. Proceedings of the 9th Asia-Pacific Conference on Communications. Penang, Malaysia.21-13 Sep 2003:76-81.
    [67]Yiming. A, Eisaka. T. Industrial Hard Real-time Traffic Protocol Based on Switched Ethernet[C]. Proceedings of the 2005 International Symposium on Communications and Information Technology. Beijing, China.12-14 Oct.2005,1:205-208.
    [68]Cuong. D. M, Kim. M. K, Lee. H. C. Supporting Hard Real-time Communication of Periodic Messages over Switched Ethernet[C]. Proceedings of the 1st International Forum on Strategic Technology. Ulsan, Korea.18-20 Oct 2006:419-422.
    [69]Cuong. D. M, Kim. M. K. Real-Time Communications on an Integrated Fieldbus Network Based on a Switched Ethernet in Industrial Environment[J]. Lecture Notes in Computer Science:Embedded Software and Systems, Springer-Verlag Berlin Heidelberg.2007, 4523(6):498-509.
    [70]Kim. M. K, Park. Z. W. Hard Real-time Communication of Periodic Messages on a Switched Ethernet[C]. Proceedings of the 2006 IEEE Global Telecommunications Conference. San Francisco, USA.27 Nov-1 Dec 2006:1-5.
    [71]Kim. M. K, Lee. H. C. Periodic Message Scheduling on a Switched Ethernet for Hard Real-Time Communication[J]. Lecture Notes in Computer Science:High Performance Computing and Communications, Springer-Verlag Berlin Heidelberg.2006,4208(9): 457-466.
    [72]Lee. H. C, Kim. M. K. A Scheduling Algorithm of Periodic Messages for Hard Real-time Communications on a Switched Ethernet[J]. International Journal of Computer Science and Network Security.2006,6(5):111-119.
    [73]Kam. K. S, Chandrasekhar. K. B. Hard Real Time Guarantees Using Switched Ethernet and Distributed Scheduling[R]. School of Information Science, Computer and Electrical Engineering. Halmstad University, Sweden. January 2006.
    [74]Xie. Y, Tu. X. D, Liu. H, et al. Insertion based packets scheduling for providing QoS guarantee in switch systems[C]. Proceedings of the 2008 International Conference on Communications, Circuits and Systems. Xiamen, China.25-27 May,2008:453-456.
    [75]张奇智,曹春生,张卫东.EDF调度方法在交换式工业以太网中的实现.化工自动化及仪表.2004,31(6):41-43.
    [76]Georges. J. P, Divoux. T, Rondeau. E. Strict priority versus weighted fair queuing in switched Ethernet networks for time critical applications[C]. Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium. Denver, USA.04-08 Apr, 2005:141-148.
    [77]McKeown. N. Scheduling algorithms for input-queued cell switches[D]. Ph.D. dissertation, Univ. California, Dept. Elect. Eng. Comput. Sci., Berkeley, CA, May 1995.
    [78]Rostami. M. J, Khodaparast. A. A, Khorsandi. S. A fair request-grant matching algorithm for fabric scheduling in packet switches[C]. Proceedings of the 12th Symposium on Computers and Communications. Aveiro, Portugal.1-4 Jul,2007:877-883.
    [79]Roidel. C, Razavi. N, Analoui. M. Fair scheduling for input-queued switches[C]. Proceedings of the 2nd International Conference on Information and Communication Technologies. Damascus, Syria.24-28 Apr,2006,2:3106-3111.
    [80]Wang. P, Fang. H. B, Jin. D. P, et al. The iTFF scheduling algorithm for input-queued switches[C]. Proceedings of the 2004 International Conference on Communications, Circuits and Systems. Chengdu, China.27-29 Jun,2004,1:692-697.
    [81]Li. Y. H, Shivendra. S, Panwar. H, et al. Exhaustive service matching algorithms for input queued switches[C]. Proceedings of the 2004 Workshop on High Performance Switching and Routing. Phoenix, USA.18-21 Apr,2004:253-258.
    [82]Li. Y. H, Agrawal. P. Matching schemes for input buffered switches with low delay and low complexity[C]. Proceedings of 3rd International Conference on Communications and Networking in China. Hangzhou, China.25-27 Aug,2008:73-77.
    [83]Chen. K. F, Sha. E. H.-M, Zheng. S. Q. A fast noniterative scheduler for input-queued switches with unbuffered crossbars[C]. Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks. Las Vegas, USA.7-9 Dec,2005:230-235.
    [84]Kumar. A, Mahapatra. R. N. Integrated scheduling and buffer management input queued switches under extreme traffic scheme conditions[C]. Proceedings of the 2005 IEEE International Conference on Communications. Seoul, Korea.16-20 May,2005,2: 1020-1025.
    [85]熊庆旭.输入排队结构交换机分组调度研究[J].通信学报.2005.26(6):118-129.
    [86]Yi. P, Qiu. H, Wang. B. Q. Implementing priority scheduling in a combined input-crosspoint-output queued switch[C]. Proceedings of the 20th International Conference on Advanced Information Networking and Applications. Vienna, Austria.18-20 Apr,2006,2:768-774.
    [87]Wang. Q. X, Gopalakrishnan. S, Liu. X, et al. A Switch Design for Real-Time Industrial Networks[C]. Proceedings of the 14th Real-Time and Embedded Technology and Applications Symposium. St. Louis, USA.22-24 Apr,2008:367-376.
    [88]Le Boudec. J-Y, Thiran. P. Network Calculus[M]. Berlin:Springer-Verlag.2004.
    [89]Cruz. R. L. A Calculus for Network Delay, part Ⅰ and Ⅱ[J]. IEEE Transactions on Information Theory.1991,37(1):114-141.
    [90]Agrawal. R, Cruz. R. L, Okino. C, et al. Performance Bounds for Flow Control Protocols[J]. IEEE/ACM Transactions on Networking.1999,7(3):310-323.
    [91]Chang. C. S, Chiu. Y. M, Song. W. On the Performance of Multiplexing Independent Regulated Inputs[C]. Proceedings of the ACM Sigmetrics International Conference on Measurement and Modeling of Computer Systems. Cambridge, USA,16-20 Jun,2001: 184-193.
    [92]Le Boudec. J-Y, Thiran. P. A Short Tutorial on Network Calculus, Part I and II[C]. Proceedings of the 2000 IEEE International Symposium on Circuits and Systems. Geneva, Switzerland.28-31 May,2000,4:93-100.
    [93]王子君,许维胜,王中杰等.基于网络演算的网络控制系统确定性延迟模型[J].控制与决策.2006,21(1):13-18.
    [94]张奇智,张彬,张卫东.基于网络演算计算交换式工业以太网的最大时延[J].控制与决策.2005,20(1):117-120.
    [95]Georges. J. P, Rondeau. E, Divoux. T. Evaluation of Switched Ethernet in an Industrial Context by Using the Network Calculus[C]. Proceedings of the 4th IEEE International Workshop on Factory Communication Systems. Vasteras, Sweden.28-30 Aug,2002:19-26.
    [96]Vojnovic. M, Le Boudec. J-Y. Bounds for Independent Regulated Inputs Multiplexed in a Service Curve Network Element[J]. IEEE Transactions on Communications.2003,51(5): 735-740.
    [97]Vojnovic. M, Le Boudec. J-Y. Elements of Probabilistic Network Calculus for Packet Scale Rate Guarantee Nodes[C]. Proceedings of the 15th International Symposium on Mathematical Theory of Networks and Systems. South Bend, USA.12-16 Aug,2002:1-13.
    [98]Hu. X. Y, Zhu. D. S, Wang. B. W. Delay analysis of switched Ethernet for networked control systems[J]. Advances in Systems Science and Applications.2006,6(2):201-206
    [99]Lee. K. C, Lee. S. Performance evaluation of switched Ethernet for networked control systems[C]. Proceedings of the 28th Annual Conference of the IEEE Industrial Electronics Society. Sevilla, Spain.5-8 Nov,2002,4:3170-3175.
    [100]Lee. S, Lee. K. C, Kim. H. H. Maximum communication delay of a real-time industrial switched Ethernet with multiple switching hubs[C]. Proceedings of the 30th Annual Conference of the IEEE Industrial Electronics Society. Busan, Korea.2-6 Nov,2004: 2327-2332.
    [101]Elbaum. R, Sidi. M. Topological design of local area networks using genetic algorithms[C]. Proceedings of the 14th Annual Joint Conference of the IEEE Computer and Communications Societies. Boston, USA.2-6 Apr,1995,1:64-71.
    [102]Elbaum. R, Sidi. M. Topological design of local area networks using genetic algorithms[J]. IEEE/ACM Transactions on Networking.1996,4(5):766-778.
    [103]郑金华.多目标进化算法及其应用[M].科学出版社.北京.2007:89-98.
    [104]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安交通大学出版社.西安.2002:73.
    [105]王磊.面向流媒体传输的交换机调度算法研究[D].南京.南京理工大学.2007:34-39.
    [106]Glencross. M. Exploiting perception in high-fidelity virtual environments[C]. SIGGRAPH'06 Course,2006.
    [107]李峭,张晓林,熊华钢.基于样本路径分析的交换式以太网实时通信调度方法[J].航空学报.2005,26(5):574-580.
    [108]周祖德,刘泉,龙毅宏等.嵌入式技术与数字制造[J].数字制造科学.2005,3(3):28-37.
    [109]周祖德,龙毅宏,刘泉.嵌入式网络数控技术与系统[J].机械工程学报.2007,43(5):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700