地铁车厢送风系统性能优化及车厢内CO_2扩散规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁车厢内良好的空气分布对于维持车厢内良好的热舒适条件和清新的空气品质至关重要,保证风道送风均匀是维持车厢内良好气流分布的前提条件,在风道送风均匀的前订提下,如何选择送风速度、主风道送风口数量和主风道与扁风道的送风量分配比将直接影响车厢的送风系统性能,进而影响车厢内的气流分布情况。同时,掌握车厢内污染物CO2的扩散情况也将对改善车厢内的气流组织提供重要的指导意见。因此,本研究将从风道结构优化入手,对地铁车厢内的送风系统性能优化和污染物CO2的扩散规律进行研究。
     为了更方便的衡量地铁车厢送风风道多送风口的送风均匀性,提出了基于面积加权平均速度和质量加权平均速度的气流分布均匀性关联式。由于截面上的面积加权平均速度和质量加权平均速度可以由模拟结果直接给出,因此,使得整个速度分布均匀性的计算过程大为简化。为了检验提出的新关联式衡量气流分布均匀性的合理性,新关联式分别被应用于假定的速度分布和模拟的速度分布进行速度分布均匀性的评价,评价结果与文献中已有公式进行的相应的评价结果进行对比,结果表明:新关联式的评价结果在整体趋势上与文献中两个公式的评价结果完全一致。
     对地铁列车车厢内某段独立风道送风进行了数值模拟和试验研究,以风道各送风口的送风速度和送风量为考察目标,对模拟结果和试验结果进行了对比分析,检验了数值模拟应用于地铁车厢风道结构优化的可靠性。
     对提出的新的风道结构优化思路——主风道中采用穿孔板代替导流板、扁风道中采用与送风口齐宽的挡板——应用于某段地铁车厢风道内进行模拟优化分析,研究发现:主风道内设置穿孔板可以有效的平衡风道内各段的压力,使得每段的静压都比较均衡,从而为保证送风口的送风均匀性提供了良好的前提条件;扁风道内设置挡板可以有效的改善扁风道各送风口的送风方向,同时通过调整挡板的高度并结合扁风道顶板后半段向末端倾斜可以很好的调整各送风口的送风量,并改善送风均匀性。
     为了了解送风速度、主风道送风口数量和主风道与扁风道的送风量分配比三个设计变量同时改变时对地铁车厢内的空气分布性能的影响,采用中心组合设计方法对三因素各三个水平安排了15组三因素不同组合的方案,通过数值模拟得到15组方案的空气分布性能,采用商业统计软件MINITAB对15组数据进行响应曲面法统计分析,得到了响应曲面法预测的空气分布性能模型,对模型进行方差分析,结果表明:送风速度对地铁车厢内的空气分布性能指标影响最大,而且,送风速度与主风道送风口数量对空气分布性能指标的交互影响比较明显。当送风速度一定时,主风道与扁风道的送风量分配比和主风道送风口数量对空气分布性能指标也有一定的交互影响。同时,根据获得的空气分布性能指标的响应曲面模型,送风系统的设计者可以很容易选择出最佳的影响送风系统性能的设计变量组合来得到最大的空气分布性能指标值。
     最后研究了地铁车厢内在乘客满员的情况下,乘客位置变动对车厢内污染物C02扩散规律的影响。根据车厢内乘客可能采用的站立方式设置了四种方案,采用数值模拟方法,分别研究了这四种方案下车厢内站立空间区域距地板上方1.7m上的污染物CO2的扩散情况,和车厢内两侧的坐姿区域距地板上方1.1m上的污染物CO2的扩散情况,结果发现:在1.7m高度上,在目前顶部送风、回风、两侧顶部排风的送风模式下,车厢内远离回风口、靠近车厢外端面的区域污染物CO2的浓度明显低于靠近回风口和内端面区域的污染物CO2浓度。在1.1m高度上,靠近车厢回风口区域两侧乘客坐姿呼吸高度上的污染物C02的浓度整体上高于远离回风口区域两侧乘客坐姿呼吸高度上的污染物C02的浓度。乘客位置变动对车厢内C02扩散的整体的分布趋势没有太大的影响,而对局部会有一定的影响。研究结果可以为地铁列车车厢内污染物的检测测点设置及气流组织的改善提供参考依据。
The good air distribution is essential for maintaining the good thermal comfort conditions and fresh air quality inside the subway cars. To ensure uniform air supply through the air duct is a prerequisite to maintain good airflow distribution inside the subway cars. On the premise of uniform air supply through the air duct, that how to choose the velocity of supplying air, the number of the supplying air outlets of the main air duct and the ratio of the supply air volume of the main air duct and the flat air duct will directly affect the performance of air supply system of the subway car, thereby affect air distribution inside the subway car. Meanwhile, the knowing of pollutant CO2 diffusion inside the subway car will also provide important guidance for improving airflow inside the subway car. Therefore, the paper will start with duct structure optimization and further study the performance optimization of supply air system and the diffusion law of pollutant CO2 in the subway car.
     In order to facilitate quantifying the uniformity of supply air through lots of air outlets of supply air duct in the subway car, a correlation measuring the uniformity of air distribution is proposed based on area-weighted average velocities and mass-weighted average velocities in this paper. Since area-weighted average velocity and mass-weighted average velocity at the supply air outlets can be computed directly in numerical simulation, the correlation can be used to analyze velocity distribution uniformity of the simulation results more conveniently. To test the proposed approach to quantifying airflow distribution uniformity, the correlation is applied in two studies-one based on assumed velocity distribution, another based on the simulated velocity distribution- in comparison with two existing formulae from prior studies. The results show that the evaluation results of the proposed correlation are in complete agreement with that of the two formulae from prior studies in the overall trend.
     The supplying air through a certain independent air supply duct in the subway car is simulated and tested, the simulation results are compared with the experimental results according to the velocity of supply air and the supply air volume through air outlets of the air duct, the results verify the reliabilty of the numerical simulation that is used to the optimization of air duct structure in the subway car.
     A new idea on the optimization of air duct structure—guide plates in the main air duct will be replaced with perforated plates, the baffles are used in the flat duct and its width is the same with the width of supply air outlet of air duct—is used in a air duct of the subway car and its results on the optimization are analyzed by simulation optimization, the results found that the perforated plate set within the main duct can effectively balance the pressure within various sections of air duct and make the static pressure within each section of air duct relatively balanced, which provides a good prerequisite for ensuring the uniformity of supply air through each air outlet. The baffle set in the flat duct can effectively improve supply air direction through each air outlet in the flat duct, at the same time, supply air volume through each air outlet can be good adjusted and the uniformity of supply air through each air outlet can be improved by adjusting the height of the baffle and making the second half of the roof of flat duct tilt to the end of flat duct.
     In order to understand the effect of simultaneously changing of air supply velocity, the number of the supplying air outlets of the main air dudct and the ratio of the supply air volume of the main air duct and the flat air duct on the air distribution performance inside the subway car, the three factors with the three levels seperately are arranged 15 different combinations of three factors by central composite design. The air distribution performance of 15 schemes are obtained by the numerical simulation. Based on the response surface methodology,15 sets of data are analyzed by the commercial statistical software MINITAB, air distribution performance model predicted is obtained. Analysis of variance on the predicted model is implemented, the results show that the supply air velocity has greatest impact on the performance index of air distribution in the subway car. Moreover, the interaction effect of supply air velocity and the number of the supplying air outlets of the main air duct on the air distribution performance index is more obvious. When the supply air velocity is constant, the interaction effect of the number of the supplying air outlets of the main air duct and the ratio of the supply air volume of the main air duct and the flat air duct has a certain influence on the air distribution performance index. Meanwhile, according to the response surface model of the air distribution performance index obtained, the designer of air supply system can easily choose the best combination of the design variables affecting the performance of air supply system to obtain the maximize air distribution performance index value.
     Finally, the paper study the effect of changing the location of passengers on pollutant diffusion inside the subway car when the subway car is at full strength. According to the standing way adopted possibly by passengers in the subway car, the four schemes are set, the dispersion of pollutant CO2 at the 1.7m height from the floor in the standing room and at the 1.1m height from the floor in sitting areas inside the subway car is studied on the four schemes by numerical simulation, respectively. The results show that at the 1.7m height from the floor, under the mode of supplying air and returning air from the top of subway car and exhausting air from the top of both sides of subway car, the pollutant CO2 concentration in the region away from the return air inlet and near the end of subway car is significantly lower than that in the region near the return air inlet and the inner end of subway car. the pollutant CO2 concentration in the region near the return air inlet and at the 1.1m height of the passengers sitting of both sides in the subway car is overall higher than that in the region away from the return air inlet and at the 1.1m height of the passengers sitting of both sides in the subway car. The changing of the passenger location have not significantly influence on the overall distribution trend of the dispersion of pollutant CO2, but have some impact on the dispersion of local pollutant CO2 in the subway car. The study provides the theoretical base for arranging measurement points to monitor contamination content and improving airflow in the subway car.
引文
[1]梁宁慧,刘新荣,曹学山,等.中国城市地铁建设的现状和发展战略[J].重庆建筑大学学报,2008,30(6):81-85.
    [2]蓝兰.我国地铁建设状况分析[J].中国仪器仪表,2009(10):28-31.
    [3]龙静,王书傲.地铁车辆空调设计问题的探讨[J].机车电传动,2003(4):40-42.
    [4]Chung K C, Lee C Y. Predicting Air Flow and Thermal Comfort in an Indoor Environment under Different Air Diffusion Models[J]. Building and Environment,1996,31(1):21-26.
    [5]王柳.地铁客车空调送风风道及客室内气流组织优化研究.华中科技大学,2008.
    [6]龙静,王书傲.地铁车辆空调系统送风风道分析[J].电力机车与城轨车辆,2004,27(4):40-42.
    [7]王书傲,谈越明.空调客车均匀送风风道的研制[J].铁道车辆,992,(8):11214.
    [8]杨晚生,张吉光,韩海涛.静压式均匀送风道送风机理分析[J].广州工业大学学报.2005;22(1):110-114.
    [9]魏润柏.通风工程空气流动理论[M].北京:中国建筑工业出版社,1981.
    [10]杨晚生,张艳梅,张吉光.新型空调静压送风道主风道流速衰减规律研究[J].流体机械,2003;31(5):58-60.
    [11]杨晚生.客车空调静压均匀送风道的性能研究及诱导器的研制[D].青岛:青岛建筑工程学院,2002.
    [12]杨晚生,张吉光,张艳梅.新型空调均匀送风道静压均衡衰减特性研究[J].广东工业大学学报,2005;22(3):105-108.
    [13]邓建强,靳谊勇,张早校等,空调客车车内风道三维湍流流动特性数值研究[J].制冷学报,2001(1):30-34.
    [14]陈江平,孙召璞,阙雄才,等.轻型客车室内通风的数值模拟与实验研究[J].应用科学学报.2002,20(2):169-172.
    [15]王贤民,王晓梅.轻型客车空调风道改进设计[J].合肥工业大学学报(自然科学版), 2007,30(3):357-360.
    [16]梁亚星,陶乐仁,郑志皋.新型流态化食品速冻机内风道流场的数值模拟[J].食品与机械,2005,21(2):37-40.
    [17]Mathews E H, Claassen D T. A new duct design software tool[J]. Building and Environment,2003,38:521-531.
    [18]Mathews E H, Claassen D T. Problems with the T-method[J]. Building and Environment 1998,33(4):173-9.
    [19]Huan Ruei Shiu, Feng Chu Ou, Sih Li Chen. Optimization design of exhaust duct system in semiconductor factory using dynamic programming method[J]. Building and Environment,2003,38:533-542.
    [20]Sayed M El, Sun T, Berry J. Shape optimization with computational fluid dynamics [J]. Advances in Engineering Software,2005,36:607-613.
    [21]Kim C S, Kim C, Rho O. Sensitivity analysis for the Navier-Stokes equations with two-equation turbulence models[J].AIAA J.2001,39(5):838-845. [22]
    [23]Mak C M. Development of a prediction method for flow-generated noise produced by duct elements in ventilation systems[J]. Applied Acoustics,2002,63:81-93.
    [24]Mak C M, Yang J. A prediction method for aerodynamic sound produced by closely spaced elements in air ducts[J].Journal of Sound and Vibration,2000,229:743-53.
    [25]Mak CM, Yang J. Flow-generated noise radiated by the interaction of two strip spoilers in low speed flow ducts[J]. Acta Acustica United Wth Acustica,2002,88(6):861-868.
    [26]陈焕新,黄素逸,张登春.空调列车室内三维紊流流动与传热的数值模拟[J].华中科技大学学报(自然科学版),2002,30(3):52-54,57.
    [27]王利,陆震,黄兴华.铁路空调硬卧客车室内气流组织的数值模拟[J].上海交通大学学报.2002,36(11):1579-1582.
    [28]Lian Z W, Zhang G R, Liu H M, et al. Presentation and evaluation of a new type of air supply system in a passenger carriage in China[J]. Applied Thermal Engineering,2004, 24:703-715.
    [29]张登春,翁培奋,邹声华.旅客列车空调硬座车厢内热舒适性研究[J].铁道学报.2006,28(5):35-40.
    [30]朱春,张旭,胡松涛.列车空调卧铺包厢不同送风方式热舒适模拟研究[J].铁道学报,2008,30(4):98-102.
    [31]匡骁,齐朝晖,李超,韦婷婷.高速空调列车内气流组织的大涡模拟[J].铁道学报.2009,31(3):94-99.
    [32]易柯.地铁车辆空调系统气流组织数值计算与分析[J].城市轨道交通研究,2009,(11):40-43,85.
    [33]杨柳.风道结构优化对地铁车室内气流组织均匀性影响的研究.华中科技大学.2008.
    [34]Ng KC, Kadirgama K, Ng EYK. Response surface models for CFD predictions of air diffusion performance index in a displacement ventilated office[J]. Energy and Buildings,2008,40(5):774-81.
    [35]Sonoko Kuwano, Seiichiro Namba, Takehisa Okamoto. Psychological evaluation of sound environment in a compartment of a high-speed train[J]. Journal of Sound and Vibration,2004,277:491-500.
    [36]Rongping Fan, Guang Meng, Jun Yang, et al. Internal noise reduction in railway carriages: A case study in China[J]. Transportation Research Part D,2008,13:213-220.
    [37]Rongping Fan, Guang Meng, Jun Yang, et al. Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles[J]. Journal of Sound and Vibration,2009,319:58-76.
    [38]Gao J, Shi C, Zhong M. Smoke control design of deep buried metro station[J]. Journal of Safety Science and Technology,2006,2(6):39-44.
    [39]Shi C, Zhong M, Tu X, et al. Simulation of smoke movement and ventilation in fire at island—Platform of deep buried metro station[J]. China Safety Science Journal,2006a, 16(3):17-22.
    [40]Chow W K, Yin R. A new model on simulating smoke transport with computational fluid dynamics[J]. Building and Environment,2004,39:611-620. [41]
    [42]Jiang C S, Yuan F, Chow W K. Effect of varying two key parameters in simulating evacuation for subway stations in China[J]. Safety Science,2010,48:445-451.
    [43]Manabu Tsukahara, Yusuke Koshiba, Hideo Ohtani. Effectiveness of downward evacuation in a large-scale subway fire using Fire Dynamics Simulator[J]. Tunnelling and Underground Space Technology,2011,26:573-581.
    [44]Chow W K, Philip C H Yu. Simulation on energy use for mechanical ventilation and air-conditioning (MVAC) systems in train compartments[J]. Energy,2000,25:1-13.
    [45]Ming Tsun Ke, Tsung Che Cheng,Wen PorWang. Numerical simulation for optimizing the design of subway environmental control system[J]. Building and Environment, 2002,37:1139-1152.
    [46]Paivi Aarnio, Tarja Yli Tuomi, Anu Kousa, et al. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system[J]. Atmospheric Environment,2005,39:5059-5066.
    [47]Andy T. Chan. Commuter exposure and indoor-outdoor relationships of carbon oxides in buses in Hong Kong[J]. Atmospheric Environment,2003,37:3809-3815.
    [48]David S Grass, James M Ross, Farnosh Family, et al. Airborne particulate metals in the New York City subway:A pilot study to assess the potential for health impacts[J]. Environmental Research,2010,110:1-11.
    [49]Hae Jin Jung, BoWha Kim, JiYeon Ryu,et al. Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis[J]. Atmospheric Environment,2010,44:2287-2293.
    [50]Li Tian Tian, Bai Yu Hua, Liu Zhao Rong, et al. Air quality in passenger cars of the ground railway transit system in Beijing, China[J]. Science of the Total Environment, 2006,367:89-95.
    [51]Ki Youn Kim, Yoon Shin Kim, Young Man Roh, et al. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations[J]. Journal of Hazardous Materials,2008,154:440-443.
    [52]Park DU, Jin KW, Yoo KN. Analysis on Non-malignant respiratory and drowsiness rate symptom for passengers using subway in Seoul [J]. Korean J Environ Health,2006, 32(5):412-7.
    [53]Chillrud S N, Epstein D, Ross J M, et al. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City's subway system[J]. Environmental Science & Technology,2004,38:732-737.
    [54]戈鹤山.新型空调卧铺列车车厢内微小气候及空气离子状况调查[J].中国卫生监督杂志,2005,12(4):250-253.
    [55]Chow W K. Ventilation of enclosed train compartments in Hong Kong[J]. Applied Energy,2002,71:161-170.
    [56]Chow T T, Yang X Y. Ventilation performance in the operating theatre against airborne infection:numerical study on an ultra-clean system[J].Journal of Hospital Infection, 2005,59:138-147.
    [57]Chow Tin Tai, Yang XiaoYu.Performance of ventilation system in a non-standard operating room[J]. Building and Environment,2003,38:1401-1411.
    [58]Zhang Lina, Feng Jiang, Chow T T, et al. CFD analysis of ventilation effectiveness in a public transport interchange[J]. Building and Environment,2006,41:254-261.
    [59]Zhang Lin, Chow T T, Tsang C F, et al. CFD study on effect of the air supply location on the performance of the displacement ventilation system [J]. Building and Environment,2005,40:1051-1067.
    [60]Zhang Lin, Chow T T, Tsang C F. Effect of door opening on the performance of displacement ventilation in a typical office building[J]. Building and Environment, 2007,42:1335-1347.
    [61]Lin Tian, Zhang Lin, Qiuwang Wang. Comparison of gaseous contaminant diffusion under stratum ventilation and under displacement ventilation[J]. Building and Environment,2010,45:2035-2046.
    [62]Lin Tian, Zhang Lin,Qiuwang Wang, et al. Numerical Investigation of Indoor Aerosol Particle Dispersion under Stratum Ventilation and under Displacement Ventilation[J]. Indoor and Built Environment,2009;18;4:360-375.
    [63]Zhang Lin, T.T. Chow, K.F. Fong, et al. Comparison of performances of displacement and mixing ventilations. Part II:indoor air quality[J]. International Journal of Refrigeration 28 (2005) 288-305.
    [64]Wong L T, and Mui K W. Evaluation on four sampling schemes for assessing indoor air quality[J]. Building and Environment,2007,42(3):1119-1125.
    [65]Mui K. W, Wong L T, Ho W L. Evaluation on sampling point densities for assessing indoor air quality [J]. Building and Environment,2006,41(11):1515-1521.
    [66]张登春,翁培奋.旅客列车硬座车厢内气流模拟与浓度场分析[J].中国工程科学,2007,9(11):80-86.
    [67]陶红歌,陈焕新,谢军龙,等.空调列车硬座车厢内污染物扩散规律研究[J].铁道学报,2010,32(3):28-32.
    [68]Hinkelmann K, Kempthorne O. Introduction to experimental design, design and analysis of experiments[M], vol.1. New York:John Wiley and Sons; 1994:87-94.
    [69]Cheng M, Liu G R, Lam K Y, et al. Approaches for improving airflow uniformity in unidirectional flow cleanrooms[J].Building and Environment,1999,34:275-284.
    [70]Noh K C, Oh M D, Lee S C. A numerical study on airflow and dynamic cross-contamin-ation in the super cleanroom for photolithography process[J].Building and Environment,2005,40(11):1431-1440.
    [71]Huang C M, Shy S S, Lee C H. On flow uniformity in various interconnects and its influence to cell performance of planar SOFC[J]. Journal of Power Sources,2008,183: 205-213.
    [72]Jeong S J, Kim W S. A study on the optimal monolith combination for improving flow uniformity and warm-up performance of an auto-catalyst[J]. Chemical Engineering and Processing,2003,42 (11):879-895.
    [73]Macchion O, Lior N, Rizzi A. Computational study of velocity distribution and pressure drop for designing some gas quench chamber and furnace ducts[J]. Journal of Materials Processing Technology,2004,155-156:1727-1733.
    [74]Liu H, Li P W, Lew J V. CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels[J]. International Journal of Hydrogen Energy,2010,35:9186-9198.
    [75]成立.泵站水流运动特性及水力性能数值模拟研究.[D].河海大学,南京,2006.
    [76]Wu J, Zhao B. Effect of ventilation duct as a particle filter[J]. Building and Environment 2007,42(7):2523-2529.
    [77]Zhao B, Wu J. Modeling particle fate in ventilation system—Part Ⅰ:Model development[J]. Building and Environment,2009,44:605-611.
    [78]Darkwa J, Kokogiannakis G., Magadzire C L, et al. Theoretical and practical evaluation of an earth-tube (E-tube) ventilation system[J]. Energy and Buildings,2011,43: 728-736.
    [79]Behjat Y, Shahhosseini S, Marvast M A. Simulation study of droplet vaporization effects on gas-solid fluidized bed[J]. Journal of the Taiwan Institute of Chemical Engineers,2011,42 (3):419-427.
    [80]Botros K K, Geerligs J, Sadowayb B, et al. Performance of expellers in evacuating gas pipelines—Part Ⅰ Measurements, models and field verification[J]. International Journal of Pressure Vessels and Piping,2007,84:412-422.
    [81]Cao J F, Ahmadi G. Gas-particle two-phase turbulent flow in horizontal and inclined ducts[J]. International Journal of Engineering Science,2000,38:1961-1981.
    [82]FLUENT user's guide,2005. Version 6.2, Fluent Inc..
    [83]Zhao R Y, Fan C Y, Xue D H, et al. Air Conditioning[M].3rd ed. Beijing:China Building Industry Press,2006:253-255.
    [84]Tao H G, Chen H X, Xie J L, et al. Comparison on Simulation and Experiment of Supply air through Metro Vehicle Air Conditioning Duct, Applied Mechanics and Materials,2011,44-47:1724-1728.
    [85]龙静,王书傲,周文.关于地铁车辆送风方式方案的探讨[J].铁道车辆,2004,42(8):24-26.
    [86]陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社,2001:347-353.
    [87]Tomas Norton, Jim Grant, Richard Fallon, et al. Optimising the ventilation configuration of naturally ventilated livestock buildings for improved indoor environmental homogeneity[J]. Building and Environment,2010,45:983-995.
    [88]Abou-El-Hossein K A, Kadirgama K, Hamdi M, et al. Prediction of cutting force in end-milling operation of modified AISI P20 tool steel[J]. Journal of Materials Processing Technology,2007,182:241-247.
    [89]Zhao H, Tonkyn R G., Barlow S E, et al. Fractional factorial study of HCN removal over a 0.5% Pt/Al2O3 catalyst:effects of temperature, gas flow rate and reactant partial pressure[J]. Ind. Eng. Chem. Res.2006,45:934-939.
    [90]Bashir M J K, Aziz H A, Yusoff M S, et al. Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchangeresin[J]. Desalination,2010,254 154-161.
    [91]张烘州,明伟伟,安庆龙,等.响应曲面法在表面粗糙度预测模型及参数优化中的应用[J].上海交通大学学报,2010,44(4):447-451.
    [92]Hojjat Karazhiyan, Seyed M A Razavi, Glyn O Phillips. Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology [J]. Food Hydrocolloids,2011,25, (5):915-920.
    [93]Monika Jain, Garg V K, Kadirvelu K. Investigation of Cr(VI) adsorption onto chemically treated Helianthus annuus:Optimization using Response Surface Methodology[J]. Bioresource Technology,2011,102:600-605.
    [94]Berrin Tansel, Nadir Dizge. Multi objective performance analysis of nanofiltration process to loading parameters by response surface approach[J]. Desalination,2011, 272(1-3):164-169.
    [95]Amit Kumar Nayak, Dilipkumar Pal. Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology [J]. International Journal of Biological Macromolecules,2011,49(4):784-793
    [96]Myers R H, Montgomery D C, Anderson-cook C M, Response surface methodology [M].3th ed. New York:John Wiley and Sons,2009:3-6.
    [97]Chung K C, Lee C Y. Predicting Air Flow and Thermal Comfort in an Indoor Environment under Different Air Diffusion Models[J]. Building and Environment,1996,31(1):21-26.
    [98]ASHRAE. ANSI/ASHRAE standard 113. Method of testing for room air diffusion[S]. American Society of Heating, Refrigeration and Air-Conditioning; 2005.
    [99]IPCC, Climate Change 2007:The Physical Science Basis, Full Report, Working Group I of the IPCC,2007.
    [100]Chow T T, Fong K F, Givoni B, et al. Thermal sensation of Hong Kong people with increased airspeed, temperature and humidity in air-conditioned environment[J]. Building and Environment,2010, (45):2177—2183.
    [101]Zhao R, Sun S, Ding R. Conditioning strategies of indoor thermal environment in warm climates[J]. Energy and Buildings,2004,36:1281--6.
    [102]Zhao R. Investigation of transient thermal environments [J]. Building and Environment, 2007,42:3926-32.
    [103]Akimoto T, Tanabe S, Yanai T, et al.. Thermal comfort and productivity--evaluation of work place environment in a task conditioned office[J]. Building and Environment, 2010,45(1):45-50.
    [104]Candido C,de Dear RJ, Lamberts R, Bittencourt L. Air movement acceptability limits and thermal comfort in Brazil's hot humid climate zone[J]. Building and Environment, 2010,45(1):222-9.
    [105]Schiavon S, Melikov A K. Energy saving and improved comfort by increased air movement[J]. Energy and Buildings,2008.40(10):1954-1960.
    [106]ASHRAE, ASHRAE Standard 55, Thermal Environmental Conditions for Human Occupancy[S]. American Society of Heating, Refrigerating and Air-Conditioning Engineers,2005.
    [1071 ISO, ISO 7730, Moderate Thermal Environment-Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort[S]. International Organization for Standardization,2005.
    [108]CEN(European Committee for Standardization), EN 15251 2007, Criteria for the Indoor Environment Including Thermal, Indoor Air Quality, Light and Noise[S]. European Committee for Standardization, Brussels, Belgium.
    [109]Railway applications-Air conditioning for urban and suburban rolling stock-Part 1:Comfort parameters[S]. English version of DIN EN 14750-1:2006-08.
    [110]Rydberg J, Norback P. Air distribution and draught. ASHRAE Transactions, 1949,55,255.
    [111]Koestel A, Tuve G. L. Performance and evaluation of room air distribution system. ASHRAE Transactions,1955,61:533.
    [112]Haghighat F, Jiang Z, Wang J. A CFD analysis of ventilation effectiveness in a partitioned room[J]. Indoor Air,1991,4:606-615.
    [113]Ooi Y, Bahruddin I A, Narayana P A A. Airflow analysis in an air conditioning room[J]. Building and Environment,2007,42 (3):1531-1537.
    [114]Bojic M, Yik F, Lo T Y. Locating air-conditioners and furniture inside residential flats to obtain good thermal comfort[J]. Energy and Buildings,2002,34: 745-751.
    [115]卢纪富,张莉红,杨建中,危晓英.空调列车室内流场的数值模拟[J].郑州大学学报(工学版),2004,25(1):105-108.
    [116]史自强,卢纪富,靳谊勇,胡世兴.空调列车室内气流组织的三维数值模拟[J].河南 科技大学学报(自然科学版),2004,25(3):70-73.
    [117]杨培志,顾小松.零方程湍流模型在列车车厢内气流数值模拟中的应用[J].中国工程科学,2006,8(1):26-29,39.
    [118]杨培志,顾小松.YW25G型空调硬卧列车车厢内换气效率研究[J].铁道学报,2006,28(4):109-113.
    [119]杨培志.YW 25G型空调硬卧列车车厢内热舒适性研究[J].热科学与技术,2007,6(2):167-171.
    [120]邓建强,冯诗愚,张早校,郁永章,靳谊勇.铁路空调客车内流场、温度场的数值模拟和实验研究[J].暖通空调,2005,35(6):20-23.
    [121]张登春,翁培奋.载人列车车厢内空气流场温度场数值模拟[J].计算力学学报,2007,24(6):904-910.
    [122]Patankar S V. Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1981.
    [123]Wong L T, and Mui K W. Evaluation on four sampling schemes for assessing indoor air quality[J]. Building and Environment,2007,42(3):1119-1125.
    [124]Mui K W, Wong L T, Ho W L. Evaluation on sampling point densities for assessing indoor air quality [J]. Building and Environment,2006,41(11):1515-1521.
    [125]卢玉川.旅客空调列车全程空气质量现况调查[J].环境与健康杂志,2007,24(7):543-544.
    [126]中华人民共和国,GB/T7928-2003,地铁车辆通用技术条件[S].北京:中华人民共和国建设部,2004.
    [127]Hakan O. Nilsson. Thermal comfort evaluation with virtual manikin methods. Building and Environment,2007,42:4000-4005.
    [128]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:120-124.
    [129]张登春,陈焕新,舒信伟,等.空调车内三维紊流流动与传热的模拟研究[J].铁道学报,2002,24(6):39-43.
    [130]Zhang T F, Chen Q Y. Novel air distribution systems for commercial aircraft cabins[J]. Building and Environment,2007,42(4):1675-1684.
    [131]Karthikeyan C P, Samuel A A. CO2-dispersion studies in an operation theatre under transient conditions[J]. Energy and Buildings,2008,40(3):231-239.
    [132]吴宗哲.空调客车[M].吉林:长春客车工厂科技咨询服务公司,1988:1-4,2-113.
    [133]中华人民共和国铁道部,TB1951-87,客车空调设计参数[S].北京:铁道部四方车辆研究所,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700