液驱混合动力车辆液压系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以串联式液驱混合动力车辆液压系统为研究对象,采用理论研究、试验装置验证和原理样车试验等方法,对液驱混合动力车辆液压系统的建模、设计和液驱混合动力车辆的性能等进行了研究。
     (1)选择了串联式液驱混合动力车辆液压系统的技术方案,建立了集成车辆负载的串联式液驱混合动力车辆液压系统的数学模型。对液压系统的关键元件如液压蓄能器、双向变量马达等进行了详细分析。提出了液压蓄能器工作过程的变多变指数的新计算方法。
     (2)采用模糊数学的方法对车辆工况进行判别。选择具有代表性的驱动模式,通过自定义的参数来对这些驱动工况进行描述。应用多层次综合评判,比较实际工况和代表性工况的相关性,对实际工况进行综合评价。
     (3)对液驱混合车辆的功能要求和液压系统工作过程进行分析,得到了液驱混合动力车辆液压系统的设计要求和设计思想。建立液驱混合动力车辆液压系统的评价准则,采用平均供能功率、最大供能功率、制动能量回收效率和系统能量利用效率等评价指标来指导液驱混合动力车辆液压系统的设计。同时将车辆工况的模糊识别应用到液驱混合动力车辆液压系统的设计中。
     (4)完成了液压系统转速控制动态特性仿真,对所得到的仿真结果进行了分析,并在自行研制的试验装置上进行了验证性试验。仿真计算的结果与试验结果基本吻合,表明了系统模型和仿真算法的正确性;利用验证后的模型,对液驱混合动力车辆的动力性能进行了研究,对城市循环十五工况下的经济性能进行了仿真;应用基于量化因子和决策因子自修正的模糊PID控制算法进行了十五工况的转速控制仿真,对十五工况下液压系统的评价指标进行了分析;从功率流的观点出发,对液驱混合动力车辆制动能量回收过程进行研究并进行了仿真计算,详细研究了液驱混合动力车辆制动能量回收过程中能量损耗的构成及其相对比例,并对双向变量马达排量、管径、制动初始压力和蓄能器容积等主要设计参数对制动能量回收效率以及车辆制动性能的影响进行了定量分析。
     (5)研制了“液驱混合动力车辆液压系统试验装置”,在试验室对液驱混合动力车辆液压系统动态性能进行研究。该装置以液驱混合动力车辆中应用的定压网络液压马达控制系统为基础,用调速电机作为原动机带动变量泵工作,由磁粉制动器和惯性飞轮的组合模拟车轮的实际负载并可实现模拟负载的实时控制与调节,采用计算机进行数据采集与控制。完成了不同工况下的试验,对液压系统的动态特性进行了分析。
     (6)在理论研究和试验验证的基础上,设计、研制了基于定压网络液压马达控制技术的串联式液驱混合动力车辆样车。进行实际样车的设计和改装,制定实际车辆液压系统的布置方案和管路连接方案,进行液压系统和控制系统的调试。基于实际样车系统,开展了一系列试验,分析实际车辆液压系统运行情况,对不同工况下的液驱混合动力车辆液压系统动态特性进行研究。
Study on the hydraulic system of series hydraulic hybrid vehicles (SHHV) was presented in this dissertation. Based on the theoretic research, the test bench of the hydraulic system for SHHV and the prototype vehicle were developed. Computer simulation and experiments of the hydraulic system for SHHV were performed.
     (1) Technical scheme of the hydraulic system for SHHV was chosen, and the mathematical models of hydraulic system integrated with vehicle load were established. The key components of hydraulic system such as the hydraulic accumulator and bidirectional variable-displacement motor were analyzed detailedly. Some key parameters influencing dynamic performance of hydraulic system were analyzed. The calculation method of variable polytropic index was proposed.
     (2) Fuzzy algorithm was applied to identify vehicle operating condition. Four representative driving patterns were selected as vehicle duty cycles. Some self-defined parameters were chosen to characterize the driving patterns. Multilevel comprehensive assessment was applied to evaluate the real duty cycle.
     (3) The function and working process of SHHV were analyzed. Evaluating indexes, such as average power-supplying rate, maximum power-supplying rate, braking energy regenerative efficiency and utilizing efficiency of hydraulic ststem, were established to direct the design of hydraulic system for SHHV. The fuzzy assessment of vehicle driving cycles was applied to the design of the hydraulic system for SHHV.
     (4) Simulation was performed on the dynamic characteristic of speed controlling system of the hydraulic system and simulation results were analyzed. Verification experiment was perfomed on the self-developed test bench. The simulation results accorded with the experimental data well. The accuracy of systematic models and simulation algorithm was testified. By using the verified mathematical models, power performance and fuel economy of SHHV were studied; fuzzy PID algorithm based on the auto-tuning of scaling factor and decision-making factor was applied to perform the simulation of fifteen-mode driving cycle, evaluating indexes of hydraulic system on 15-mode driving cycle were analyzed; Mathematical models based on the power flow of braking energy recovery for hydraulic hybrid vehicles were established and simulation was implemented. Evaluation indexes of braking energy regenerative system were defined. Constitute of energy loss and corresponding proportion were studied detailedly during the process of braking energy recovery. Quantitative analysis was made to study the influence of bidirectional motor displacement, pipe diameter, initial braking pressure and volume of accumulator on energy regenerative efficiency and braking performance of the vehicle.
     (5) The test bench of hydraulic system for SHHV was developed in the lab to study its dynamic characteristic. The test bench based on hydraulic motor controlling system in the constant pressure net used transducer motor to drive pump working, wheel load was simulated and real-time controlled through the combination of magnetic particle brake and fly wheel, and data collecting and controlling scheme were implemented by a computer. Different duty-cylces of hydraulic system were tested on the test bench and its dynamic characteristics was analyzed.
     (6) The prototype vehicle of SHHV based on hydrostatic transmission was built up. The technical and disposal scheme were developed. The hydraulic system and controlling system tests were carried out. Some experiments based on the prototype vehicle and control system were made.
引文
[1]公安部:我国机动车保有量比去年增加800 多万辆[EB/OL]. http://www. cnautonews. com.
    [2]常思勤.关于一种新型电控液驱车辆的探讨[J].机械设计与制造工程(增刊),2002:26~27.
    [3]刘冬红.液压技术在能量回收中的应用[J].南京理工大学学报,1997(4):153-156.
    [4]常思勤,易纲.一种新型电控液驱车辆的性能仿真与分析[J].南京理工大学学报,2004,28(2):169~173.
    [5]Matthew Brusstar. Hydraulic hybrids-cost effective clean urban vehicles[R]. US Environmental Protection Agency, Office of Transportation and Air Quality,2006.
    [6]John Henry Lumkes JR. Design, Simulation, and Testing of An Energy Storage Hydraulic Vehicle Transmission and Controller [D]:University of Wisconsin-Madison, 1997.
    [7]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [8]任勇,秦大同,杨亚联,杨洋.混合动力电动汽车的研发实践[J].重庆大学学报,2004,27(4):27-30.
    [9]吴光强.车辆静液驱动与智能控制系统[M].上海:上海科学技术文献出版社,1998.
    [10]赵春涛,姜继海,赵克定.二次调节静液传动技术在城市公交车辆中的应用[J].汽车工程,2001,23(6):423-426.
    [11]姜继海,赵春涛,孟兆生.二次调节静液传动在城市公交车辆驱动中的节能技术研究[J].中国机械工程,2001(3):270-272.
    [12]赵春涛,姜继海,赵克定.车辆串联混合传动中二次调节系统的节能制动[J].中国机械工程,2003,14(6):529-532.
    [13]EPA. Hydraulic hybrid technology-A proven approach[EB/OL]. EPA420-04-024, March,2004.
    [14]US EPA. Clean Automotive Technology Full Hydraulic Drive[EB/OL].[2005-02-28]. http://www.epa.gov/otaq/technology.
    [15]Buchwald P, Christensen G, Larsen H. and Pedersen P. Sunn. Improvement of Citybus Fuel Economy Using a Hydraulic Hybrid Propulsion System-A Theoretical and Experimental Study[R].. SAE Paper 790305:1316-1328.
    [16]William S. Chao. Brake hydraulic system resonance analysis. SAE975504.pp1329-1332.
    [17]Lubomyr O.Hewko, Trudy R.weber. Hydraulic energy storage based hybrid propulsion system for a terrestrial vehicle. Proceedings of the Intersociety Energy Conversion Engineering Conference,1990(4):90-105
    [18]R.P.Kepner.Hydraulic Power Assist-A Demonstration of Hydraulic Hybrid Vehicle Regenerative Braking in a Road Vehicle Application[J].2002(1):3128-3138.
    [19]Paul Matheson and Jacek Stecki. Development Simulation of a Hydraulic-Hybrid Powertrain for use in Commercial Heavy Vehicles[J].2003(1):3370-3382.
    [20]Bin Wu, Chan-chiao Lin, Zora Filipi, Huei Peng and Dennis Assanis. Optimization of power management for a hydraulic hybrid delivery vehicle[J]. Vehicle system dynamics,2004,42(1):23-40.
    [21]Nguyen, the M., Elahinia, Mohammad H. Vibration isolation for parallel hydraulic hybrid vehicles[J]. Shock and Vibration.2008,15(2):193-200.
    [22]Green Car Congress. Eaton and Peterbilt to Produce Hydraulic Hybrids[EB/OL]. October 20,2004. http://www.epa.gov/otaq/technology.
    [23]Green Car Congress. Eaton and Partners Developing Full Diesel-Hydraulic series Hybrid for UPS[EB/OL].2005,10. http://www.epa.gov/otaq/technology.
    [24]Trevor Blohm, Scott Anderson. Hybrid refuse truck study[C].2004 MSC Software Virtual Product Development Conference, Hunting Beach, California,2004.
    [25]US Environmental Protection Agency. World's First Full Hydraulic Hybrid in a Delivery Truck [EB/OL].(2005-06).http://www.epa.gov/oms/technology/420f06054.pdf
    [26]Institute for the Analysis of Global Security. EPA displays the first advanced hydraulic hybrid vehicle[R]. Institute for the Analysis of Global Security,2004.
    [27]美国新型液压混合动力装置提高燃油经济性.[EB/OL]. http://www.qiche.com.cn
    [28]EPA. World's First Full Hydraulic Hybrid SUV Presented at 2004 SAE World Congress[EB/OL].EPA420-F-019.March,2004.
    [29]姜继海,韩水刚,王德海.二次调节静液驱动系统的智能PID控制[J].哈尔滨工业大学学报,1998,1:45-48
    [30]赵春涛,姜继海,赵克定.采用准恒压系统的公交汽牟主要元件参数匹配的研究[J].机床与液压,2001(2):36-37.
    [31]赵春涛,姜继海,高维忠,赵克定.新型二次调节静液汽车传动系统[J].汽车技术,2001(1):4-6.
    [32]赵春涛.乍辆串联混合系统中二次调节静液传动技术的研究[D].哈尔滨工业大学博士论文.2001.
    [33]陈华志,苑士华.车辆制动能量回收与再利用系统及控制技术研究[D].北京:北京理工大学硕士论文.2003.
    [34]李翔晟,常思勤.静液压储能传动汽车动力源系统的匹配效率[J].中国公路学报,,2007,20(1):118-122.
    [35]李翔晟,常思勤.新型电控液驱车辆能量再生系统建模与实验[J].农业机械学报,2006,37(10):31-34.
    [36]李翔晟,常思勤,韩文.静液压储能传动汽车动力源系统匹配及性能分析[J]农业机械学报,2006,37(3):12-16.
    [37]李翔晟,常思勤.新型电控液驱车辆储能元件特性分析[J].中国机械工程,2007,18(10):1244~1247.
    [38]韩文,常思勤.模糊控制在二次调节静液传动车辆中的应用[J].汽车工程,2004,26(3):322-324.
    [39]韩文,常思勤.二次调节静液车辆传动系统的智能PID控制[J].农业机械学报,2004,35(5):9-11.
    [40]韩文.新型电控液驱车关键技术的研究-驱动/制动系统[D].南京:南京理工大学博士论文.2005.
    [41]魏英俊.液驱混合动力SUV制动能量回收研究[J].农业机械学报,2007,38(8):25-29.
    [42]魏英俊.新型液压驱动混合动力运动型多用途车的研究[J].中国机械工程,2006,17(15):1645~1648.
    [43]易纲,常思勤,张庆永.液驱混合动力车辆控制系统的开发[J].汽车工程,2007,29(10):876-879.
    [44]易纲,常思勤.定压网络车辆的制动力分配策略[J].农业机械学报,2006,37(12):13~16.
    [45]易纲,常思勤.液驱混合动力车辆纵向运动控制策略[J].南京理工大学学报,2007,31(3):312-316.
    [46]易纲,常思勤.基于模糊神经预测的新型电控液驱车辆的能量管理策略研究[J].机床与液压,2006(11):121-123.
    [47]嘉捷博大展出液压混合动力客车[EB/OL]. http://www.aojauto.com/Index.shtml
    [48]何仁,孙龙林,吴明.汽车新型储能动力传动系统节能机理[J].长安大学学报(自然科学版),2002,22(3):67-71.
    [49]张欣,王颖亮,杜微,张昕.混合动力电动汽车综合能量流模型仿真[J].机械工程学报.2009,45(2):31-35
    [50]http://auto.163.com/07/0626/11/3HTLVIKU000816HJ.html
    [51]http://auto.china.com/zh_cn/specia/08beijing/news/11066377/20080423/14800587.html
    [52]张维刚,谭或,朱小林.液压技术在混合动力汽车节能方面的应用[J].机床与液压,2006(6):144~146.
    [53]R.P.Kepner. Hydraulic Power Assist-A Demonstration of Hydraulic Hybrid Vehicle Regenerative Braking in a Road Vehicle Application [R]. SAE Paper,2002-01-3128.
    [54]Paul Matheson, Jacek Stecki. Development and Simulation of a Hydraulic-Hybrid Powertrain for use in Commercial Heavy Vehicles[R].SAE Paper,2003-01-3370.
    [55]Shelley, Tom. Stored braking energy saves fuel[J]. Eureka.2006,26(10):36
    [56]http://www.epa.gov/oms/technology/index.htm.
    [57]Sun Hui, Jiang Jihai, Wang, Xin. Parameters matching and control method of hydraulic hybrid vehicles with secondary regulation technology[J]. Chinese Journal of Mechanical Engineering (English Edition).2009,22(2):57-63.
    [58]Peter W. Secondary control technology and applications[J]. Fluid Power System and Technology.1998,5,19-34.
    [59]Wang Huiyi, Wu Guangqiang. Research on Vehicular Hydrostatic Energy Storage Transmission and Its Control System[C]. Proceedings of International Truck & Bus Meeting & Exposition 1997.New York:SAE,1997.394-398.
    [60]Zhang Qingyong, Chang Siqin. Study on Hydraulic System of Hydraulic Hybrid Vehicle[C]. International Conference on Mechanical Engineering and Mechanics 2007.Wuxi,2007,11:2025-2029.
    [61]Weishaupt E. Adaptive Regler fur eine Verstelleinheit am Nets mit aufge-pragtem Druck[J]. Olhydraulik und Pneumatik,1992,36(11):740-749.
    [62]Rexroth. Introduction to secondary control technology Germany[C],2002,4.
    [63]Pourmavahed A, Beachley N H, Fronczak F J. Modeling of a hydraulic energy regeneration system[J]. Journal of Dynamics, Measurement and Control,1992,114(3):160-165.
    [64]Karl-Erik Rydberg. Hydrostatic drives in heavy mobile machinery[A]. New Concept and Development Trends[C].SAE,1998.
    [65]Kong Xiangdong, He Long, Gao Yingjie, Zhang Qin. The control systems of secondary regulation and theirs coupling and decoupling characteristics analysis[C]. Proceedings of the IEEE International Conference on Automation and Logistics. Ji'nan,2007,8: 735-739.
    [66]H. Murrenholf. E. Weishaupt. Recent developments for the control of variable displacement motors with impressed pressure[C]. Third International Symposium on fluid Power. JHPS, Tokyo, Octorber 1996:79-84.
    [67]Zang Faye, Dai Ruquan. Simulation research on the secondary regulating transmission system of bus[C]. IEEE Intelligent Vehicles Symposium, Xi'an.2009,7:1318-1321.
    [68]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].冶金业出版社,2003.
    [69]逢振旭.考虑能耗的大功率复杂液压系统仿真与控制技术的研究[D].上海交通大学博士论文.2001.
    [70]陆元章.液压系统建模与分析[M].上海:上海交通大学出版社,1989.
    [71]蔡廷文.液压系统现代建模方法[M].北京:中国标准出版社,,2002.
    [72]D G Tilley,C R Burrows. Development of computer-based techniques for fluid power systems design[J]. Design Studies, Vol 16 No 4,Octoberl995.
    [73]邓习树,李自光.当前液压系统仿真技术发展现状及趋势[J].机床与液压,2003,1:20-22.
    [74]王勇,张勇,李从心.黄树槐.液压仿真软件的研究进展[J].系统仿真学报.1998,10,54-57.
    [75]吴先福,李从心,王勇,勇.面向对象建模在复杂液压系统仿真中的应用[J].机床与液压,997.4.
    [76]姚俊,马松辉.Simulink建模与仿真[M].西安:西安电子科技大学出版社.
    [77]吕刚,谷立臣.基于SIMULINK的液压动力系统动态仿真[J].现代电子技术.2003,12:62-64
    [78]Joel Tollefson.A better way to model fluid power system[EB/OL].www.machinedesign.com
    [79]Lynn Alfred.Smid Edzko, Eshraghi, Moji, Caldwell Niall. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink[A].Enabling Technologies for Simulation Science IX[C]. Bellingham WA:International Society for Optical Engineering,2005.24-40.
    [80]战兴群,张炎华,赵克定.二次调节系统中液压蓄能器数学模型的研究[J].中国机械工程,2001,12:45~46.
    [81]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [82]权凌霄,孔祥东,高英杰,康双琦,姚静.不考虑进口特性的蓄能器吸收冲击理论及试验[J].机械工程学报,,2007,43(9):28-32.
    [83]YOKOTA S, SOMADA H, YAMAGUCHI H. Study on an active accumulator[J]. JSME International Journal, Series B,1996,39(1):119-124.
    [84]姚怀新.工程车辆液压动力学与控制原理[M].北京:人民交通出版社,2006.
    [85]雷天觉.新编液压工程手册(上)[M].北京:北京理工大学出版社,1998.
    [86]陈水利,李敬功,王向公.模糊集理论及其应用[M].北京:科学出版社,2005.
    [87]Soon-il Jeon, Sung-tae Jo, Yeong-il Park,Jang-moo Lee. Multi-mode driving control of a parallel hybrid electric vehicle using driving pattern recognition[J]. Journal of Dynamic Systems, Measurement, and Control,2002,124(3):141-149.
    [88]GB 18352.3-2005.轻型汽车污染物排放限值与测量方法[S].
    [89]QC/T 759-2006.汽车试验用城市运转循环[S].
    [90]http://www.dieselnet.com/standards/cycles/ftp_us06.html
    [91]刘金琨.先进PID控制[M].北京:北京航空航天大学出版社.2005.
    [92]李洪兴.非线性系统的变论域稳定自适应模糊控制器[J].中国科学,2000,32(2):211-223.
    [93]Guzelkaya M, Eksin I, Yesil E. Self-tuning of PID-type fuzzy logic controller coefficients via relative rate observer [J]. Engineering Applications of Artificial Intelligence,2003,16(3):227-236.
    [94]秦大同,谭强俊,杨阳,杨亚联,胡建军.CVT混合动力汽车再生制动控制策略与仿真分析[J].汽车工程,29(3):220~225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700