内燃牵引货物列车节能操纵模型与实时优化算法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
列车运行控制是一个典型的多目标、多约束、非线性的复杂时变过程。在我国铁路运输既有条件下,列车运行控制品质基本依赖于司乘人员的操纵技术水平。铁路运输虽具有单位能耗低的优点,但消耗能源总量很大,其中牵引耗能所占比重高达60%-70%,具有很大的节能潜力。因此,研究动态运行环境下的列车节能操纵实时优化问题,可以在安全、正点的前提下实现铁路运输节能减排,为今后研究列车自动驾驶奠定理论基础,具有重要的研究价值和现实意义。
     在借鉴国内外已有研究成果的基础上,论文主要从区间运行和停车制动两个方面研究了列车节能操纵优化问题,提出了基于实际约束条件的列车节能操纵实时优化算法,并探讨了车载指导系统的实现技术和实证效果。论文主要内容包括以下几个方面:
     1.从机车牵引力做功的角度分析了列车运行能耗的主要作用形态,即克服列车运行阻力做功和补偿制动导致的动能损失。通过理论分析验证了提高区间运行速度均衡性和避免不必要制动是列车节能运行的关键。根据仿真得出,合理的控制列车区间运行速度上下限,可在运行时分不变的情况下节约行车能耗6.8%;通过避免不必要制动和增加停站制动前的惰行距离,可在运行时分增加0.5%的情况下使列车运行能耗降低9%。
     2.从模糊推理和预测控制相结合的角度,构建了面向区间运行的列车节能操纵模糊预测模型。在考虑运行安全、防止纵向冲动和机车操纵规范等实际约束的基础上,设计了基于当前运行速度、目标速度和加算坡道的模糊控制规则,构造了模糊规则后件在滚动时域内的行车能耗和运行延误评价函数,提出了列车节能操纵滚动在线优化算法。算例分析表明,模糊预测控制算法具有较好的灵活性,能适应不同的运行线路环境。在长大上坡道前,该算法通过提高机车手柄,使列车以较高的运行速度完成动能闯坡,保证运行速度的均衡性;在长大下坡道和低限速区段前,通过及时降低机车手柄,能有效避免调速制动减少动能损失。
     3.分析了列车制动过程及操纵要求,指出调速制动的关键是合理地选择制动初始点和缓解点,即在同时满足最低缓解速度约束和避免二次调速制动的前提下尽可能减少列车动能损失。探讨了空气制动方式的控制变量及其约束条件,构建了停车制动双层模糊神经网络模型,第一层子网通过样本训练计算基于制动初速和制动距离的初始控制变量,第二层子网考虑加算坡道和牵引计算误差对制动距离的影响,对初始控制变量进行模糊修正,最后采用四点信息三段制动的方法通过追加减压控制提高停车精度。算例结果表明,双层模糊神经网络控制方法能在保证列车运行安全、平稳和满足操纵实际约束的前提下,实现货物列车的一次停车制动,可改进现有的二次制动进站停车控制方法,有利于降低行车能耗。
     4.研究了列车节能操纵实时指导系统的设计方法和实现关键技术。在变步长计算的基础上,通过采样反馈减少牵引计算误差对指导系统计算效果的影响。采用串口通信的方式实现了列车动态运行信息的共享,分析了屏蔽通信数据噪音的方法,提出了列车运行公里标突变的辨识和换算方法,实现了多条运行线路基础数据的衔接与融合。
     5.根据我国铁路运输特点,研制了可用于车载的内燃牵引货物列车节能操纵指导系统。现场测试结果表明,指导系统可在满足列车运行安全、正点和平稳等要求的前提下,通过合理运用动能闯坡、节能有利区段增加惰行比例、避免不必要制动等节能操纵策略,在线计算基于动态环境的列车运行前方优化操纵方案,为乘务员操纵提供实时指导。合肥机务段宁西线的测试结果表明,在节能操纵指导系统的实时指导下,列车运行能耗降低5.88%,初步实现了内燃牵引货物列车的节能操纵。
Reducing the energy consumption and emissions of rail vehicles is one of the main concerns of today's railway industry. However, train operation optimization is a typical time-varying problem with such characteristics as multi-objective, multi-constrictions, and non-linear. Under the existing railway condition of China, its performances largely depend on drivers'operational proficiency. Consequently, it is essential to explore the real-time energy-efficient operation algorithms under dynamic conditions sheds light on an energy-saving, safe, and punctual running of the train. This also sets a foundation for Auto Train Operation study.
     On the basis of domestic and international achievements, this study probes into reducing energy consumption by means of improved train control. A real-time optimization algorithm for train operation is proposed, and an on-board driving aided system is presented. The following components are involved:
     1. The forms of train energy consumption are explained by work analysis of locomotive traction, which includes work against running resistance and the kinetic energy loss caused by apply the brake. The core of energy-efficient operation is illustrated with theoretical analysis, such as ensuring running speed equilibrium and avoiding unnecessary brake. The simulation result also demonstrates that 6.8% energy consumption can be reduced by a reasonable control of upper and lower limit of running speed in the section; the 9% energy consumption decrease with a 0.5% time increase are obtained by reducing unnecessary brake and extending the coasting distance.
     2. A fuzzy predictive model for energy-efficient running is developed with fuzzy inference and predictive control theory. The fuzzy rule set is designed considering running speed, target speed, and modified gradient. An on-line optimization algorithm is presented based on moving horizon strategy, energy consumption and schedule delays are selected as objectives, and the constraints include safety, longitudinal impulse, and operating regulations factors. The case study indicates that the proposed algorithm performs well under different railway conditions. Running on the long sharp slope, the applied high power traction is capable of a high-speed pass, which greatly guarantees speed equilibrium. In the area of heavy down slope and front of speed-limited section, the kinetic energy loss can be effectively reduced by replacing the handle to coasting position.
     3. The key point of speed regulating braking is to determine the initial point and braking releasing point. The optimal strategy is to reduce kinetic energy loss, satisfying the constraints of lowest releasing speed and avoiding second brake regulating. With illustration of the air-braking crucial factors and its constraints, a new bi-level fuzzy neural network model of train stop braking is formulated. The initial control variable associated with initial speed and braking distance are first provided by sample training. Considering the influences from calculation error and gradients in the forward section, the correction values of the control variable are obtained by fuzzy inference. In which, the approach of "four position and three step braking" is presented improve the braking accuracy. According to the results of simulation case, the fuzzy network control method is proved to be more effective, especially that it ensures the safe, stable, accurate and energy-saving train brake with the real operational constraints.
     4. The designing procedure and crucial techniques of the on-board system are addressed for energy-efficient train operation. Sampling feedback compensation is able to diminish the impact of calculation errors on the effectiveness of recommend proposal. Serial communication module is designed to share the train dynamic information, and the control approaches for shielding the noisy data and kilometer post conversion are presented, which makes a good basic-data fusion for railway lines data.
     5. The on-board system for train energy-efficient operation with diesel locomotive is developed in accordance with the railway condition of China, and its effectiveness is illustrated by wide field tests. Referring to the strategies like reaching steep uphill slope with high speed, extending coasting distance in steep downhill section, and avoiding unnecessary brake, the system provides real-time optimized operating schemes for train drivers and insures an efficient, safe, punctual, and stable running. The energy consumption is cut by 5.88%, and the safe and relatively low-cost operation for freight train with diesel locomotive is realized.
引文
[1]Asnis I A, Dmitruk A V, Osmolovskii N P. Solution of the problem of the energetically optimal control of the motion of a train by a maximum principle. U.S.S.R. Comput. Maths. Math. Phys,1985a,25(6):37-44.
    [2]Asnis I A, Dmitruk A V, Osmolovskii N P. Using the maximum principle to solve the problem of energy-optimal control of the motion of the train. Zh. Vychisl. Mat. Mat. Fiz, 1985b,25(11):1644-1656.
    [3]Baek J, Lee C. The simulation of train separation control algorithm by movement authority using beacon. Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007.
    [4]Bai Y, Mao B H, Zhou F M, et al. Energy-efficient driving strategy for freight trains based on power consumption analysis. Journal of Transportation Systems Engineering and Information Technology,2009,9(3):43-50.
    [5]Bai Y, Mao B H, Zhou F M, et al. An nnboard optimal control system for freight trains. In: Proceedings of the Sixth International Conference on Traffic and Transportation Studies, ASCE, USA,2008,670-683.
    [6]Benjamin B R, Milroy I P, Pudney P J. Energy-efficient operation of long-haul trains. In: Proceedings of the 4th International Heavy Hual Railway Conf, Brisbane, Queensland,1989, 369-372.
    [7]Bocharnikov Y V, Tobias A M, Roberts C, et al. Optimal driving strategy for traction energy saving on DC suburban railways. IET Electrical Power Applications,2007,1(5):675-682.
    [8]Chang C S, Sim S S. Optimising train movements through coast control using genetic algotithms. IEE Proc.- Electr. Power Appl.,1997,144(1):65-73.
    [9]Chang C S, Xu D Y, Quek H B. Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system. Proc.-Electr. Power Appl.,1999,146(5): 577-583.
    [10]Chang C S, Xu D Y. Differential evolution based tuning of fuzzy automatic train operation for mass transit system. IEE Proc.- Electr. Power Appl.,2000,147(3):206-212.
    [11]Chang C S, Chua C S, Quek H B. Development of train movement simulator for analysis and optimisation of railway signalling system. Internatioal Conference on developments in Mass Transit Systems,1998,20-23.
    [12]Cheng J X, Davydova Y, Howlett P, et al. Optimal driving strategies for a train journey with non-zero track gradient and speed limits. IMA Journal of Mathematics Applied in Business and Industry,1999,33(10):89-115.
    [13]Cheng J X, Howlett P G. A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains. IEEE Transactions on Automatic Control,1993, 38(11):1730-1734.
    [14]Cheng J X, Howlett P G. Application of critical velocities to the minimization of fuel consumption in the control of trains. Automatic,1992,28(1):165-169.
    [15]Cheng J X, Cheng J S, Song J, et al. Algorithm on optimal driving strategies for train control problem. In:Proceedings of the 3rd World Congress on Intelligence Control and Automation, June 28-July2,2000, Hefei, China.
    [16]Cheng J X. Analysis of optimal driving strategies for train control problems. Doctorial Thesis of University of South Australia, Australia,1997.
    [17]Chou M, Xia X. Optimal cruise control of heavy-haul trains equipped with electronically controlled pneumatic brake systems. Control Engineering Practice,2007,15:511-519.
    [18]Ding Y, Bai Y, Zhou F M, et al. An online real-time algorithm for energy-efficient train operation. International Conference on Transportation Engineering,2009,195-200.
    [19]Ding Y, Mao B H, Liu H D, et al. Train movement simulation system for saving energy. Proceedings of the Fourth International Conference on Traffic and Transportation Studies, 2004,654-662.
    [20]Ding Y, Zhou F M, Bai Y, et al. A Correction Model of Loaded Train's Grade Resistance Calculation. In:Proceedings of the Fifth Advanced Forum on Transportation of China,2009, 267-271.
    [21]Effati S, Roohparvar H. The minimization of the fuel costs in the train transportation. Appl. Math. Comput.,2006,175(2):1415-1431.
    [22]Erofeyev E. Calculation of optimum train control using dynamic programming method. In: Proceedings of Moscow Railway Engineering Institute, Moscow,1967, (811):16-30.
    [23]European Commission. Methodology for Calculating Transport Emissions and Energy Consumption, Luxemburg,1999.
    [24J Fanks R, Terwiesch P, Meyer M. An algorithm for the optimal control of the driving of trains. In:Proceedings of the 39th IEEE Conference on Decision and Control, Sydney Australia, 2000.
    [25]Fay A. A fuzzy knowledge-based system for railway traffic control. Engineering Applications of Artificial Intelligence,2000,13:719-729.
    [26]Figuera J. Automatic optimal control of trains with frequent stops. Dyna,1970,45(7): 263-269.
    [27]Fung Y F, Ho T K, Cheung W L, et al. Parallel solution for railway power network simulation. Communications, Computers and signal Processing. PACRIM,2001, (2): 413-416.
    [28]Golovitcher I M. Energy efficient control of rail vehicles. IEEE International Conference on Tucson, AZ USA,2001,658-663.
    [29]Goodman C J, Siu L K, Ho T K. A review of simulation models for railway system. ASPECT95, London, UK,1995.
    [30]Gordon S P, Lehrer D G. Coordinated train control and energy management control strategies. In:Proceedings of the 1998 ASME/IEEE Joint Railroad Conference, Philadelphia, PA, USA, 1998,165-176.
    [31]Han S H, Byen Y S, Baek J H, et al. An optimal automatic train operation (ATO) control using genetic algorithm (GA). IEEE TENCON.,1999,1:360-362.
    [32]Heung T H, Ho T K. Hierarchical fuzzy logic traffic control at a road junction using genetic algorithms. International Conference of Fuzzy Systems Proceedings,1998,2:1170-1175.
    [33]Ho T K, Mao B H, Yang Z X. A Multi-Train Movement Simulator with Moving Block Signaling, WIT Press,1998,783-792.
    [34]Ho T K, Mao B H, Yuan Z Z, et al. Computer simulation and modeling in railway application. Computer Physics communications,2002,143:1-10.
    [35]Ho T K, Norton J P, Goodman C J. An event-based traffic flow model for traffic flow model for traffic control at railway junctions. ASPECT95. London, UK,1995.
    [36]Hoang H H, Polis M P, Haurie A. Reducing energy consumption through trajectory optimization for a Metero network. IEEE Transaction on Automatic Control,1975,20(5): 590-594.
    [37]Howlett P G, Cheng J X. Optimal driving strategies for a train on a track with continuously varying gradient. J. Austral. Math. Soc. Ser. B,1997,38:388-410.
    [38]Howlett P G, Pudney P J, Xuan V. Local energy minimization in optimal train control. Automatica,2009,45(11):2692-2698.
    [39]Howlett P G, Pudney P J. Energy-efficient driving strategy for long-haul trains. In: Proceedings of CORE 2000 Conference on Railway Engineering,2000a.
    [40]Howlett P G, Pudney P J. Energy-efficient Train Control, London:Springer Press,1995.
    [41]Howlett P G. An optimal strategy for the control of a train. J. Austral. Math. Soc. Ser. B,1990, 31:454-471.
    [42]Howlett P G, Leizarowitz A. Optimal strategies for vehicle control problems with finite control sets. Dynamic of Continuous, Discrete and Impulsive System B, Application and Algorithms,2001,8:41-69.
    [43]Howlett P G. Optimal strategies for the control of a train. Automatica,1996,32(4):519-532.
    [44]Howlett P G. The optimal control of a train. Annals of Operation Research,2000b,98:65-87.
    [45]Hoyt E V, levay R R. Assessing the effects of several variables on freight train fuel consumption and performance using a train performance simulator. Transportation Research Part A,1990,24(2): 99-112.
    [46]Hwang, H S. Control strategy for optimal compromise between trip time and energy consumption in a high-speed railway. IEEE Transactions on Systems, Man and Cybernetics, Part A,1998,28(6):791-802.
    [47]IFEU, SGKV. Comparative Analysis of Energy Consumption and CO2 Emissions of Road Transport and Combined Transport Road/Rail. Institute for Energy and Environmental research (IFEU) and Association for Study of Combined Transport (SGKV),2002.
    [48]Jia L M, Zhang X D, Xie Z T. Automatic train control-An intelligent approach. IEEE TENCON'93, Beijing,338-342.
    [49]Jia W Z, Chen S K, Ho T K, et al. A heuristic algorithm for fixed train runtime. In: Challengers for Railway Transportation in Information Age, International Conference on Railway Engineering 2008. The institution of Engineering and Technology Hong Kong, 230-236.
    [50]Jong J C, Chang E F. Models for estimating energy consumption of electric trains. Journal of Eastern Asia Society for Transportation Studies,2005,6:278-291.
    [51]Jong J C, Chang S. Algorithm for generating train speed profiles. Journal of the Eastern Asia Society for Transportation Studies,2005,6:356-371.
    [52]Juang J G. Minimal energy control on trajectory generation. Information Intelligence and Systems Proceedings.1999,204-210.
    [53]Kanayama M, Miyoshi M, Seki Y, et al. Development of train control simulator. International Conference on Developments in Mass Transit Systems,1998,196-201.
    [54]Kawakami T. Dynamic power saving strategy and data system for future Shinkansen traffic control. In:Integration of Heterogeneous Systems Proceedings.1999,18-23.
    [55]Ke B R, Chen N. Signaling blocklayout and strategy of train operation for saving energy in mass rapid transit systems. IEE Pro.-Electr. Power Appl.,2005,152(2):129-140.
    [56]Keller J M, Tahani H. Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks. International Journal of Approximate Reasoning,1992,6(2):221-240.
    [57]Khanbaghi M, Malhame R P. Reducing travel energy costs for a subway train via fuzzy logic controls. IEEE International Symposium Intelligent Control, Columbus Ohio, USA,1994.
    [58]Khmelnitsky E. On an optimal control problem of train operation. IEEE Transction on Automatic Control,2000,45(7):1257-1266.
    [59]Ko H, Koseki T, Miyatake M. Application of dynamic programming to optimization of running profile of a train. Ninth International Conference on Computers in Railways, COMPRAIL Ⅸ, Dresden, Germany,2004,103-112.
    [60]Kokotovic P. Singh G. Minimum-energy control of a traction motor. IEEE Transaction on Automatic Control,1972,17(1):92-95.
    [61]Kosko B. Neural Networks and Fuzzy Systems:A Dynamical Systems Approach to Machine Intelligence, Prentice Hall,1992.
    [62]Kraay D, Harker P T, Chen B. Optimal pacing of trains in freight railroads:Model formulation and solution. Operations Research,1991,39(1):82-99.
    [63]Lee G H, Milroy I P, Tyler A. Application of pontryagin's maximum principle to the semi-automatic control of rail vehicles. In:Proceedings of Second Conference on Control Engineering, Newcastle,1982.
    [64]Lee J D, Lee J H, Cho C H, et al. Analysis of moving and fixed autoblock systems for Korean high speed railway. Computer in Railways Ⅶ,2000,833-851.
    [65]Li K P, Gao Z Y, Ning B. Cellular automaton model for railway traffic. Journal of Computational Physics,2005,209(1):179-192.
    [66]Li K P, Gao Z Y, Ning B. Modelling the railway traffic using cellular automation model. Inter. J. Mod. Phys. C,2005,16(6):921-932.s
    [67]Liu H D, Mao B H, Ding Y, et al. Train energy-saving scheme with evaluation in urban mass transit systems. Journal of Transportation Systems Engineering and Information Technology, 2007,7(5):68-73.
    [68]Liu R F, Golovitcher I M. Energy-efficient operation of rail vehicles. Transportation Research Part A,2003,37:917-932.
    [69]Lukaszewicz P. Energy Consumption and Running Time for Trains, Doctorial Thesis of Royal Institute of Technology, Stockholm,2001.
    [70]Lukaszewicz P. Energy-saving Driving Methods for Fright Trains, WIT Press,2004, 885-894.
    [71]Mamdani E H, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies,1975,7(1):1-13.
    [72]Mamdani E H. Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEE,1974,121(12):1565-1588.
    [73]Mao B H, Chen S K, Liu H D, et al. A simulation-based study for higher speed trains on busy railway mainlines. In:Proceedings of the seventh International Conference on Applications of Advanced Technology in Transportation, Cambridge, MA, United States,2002,305-312.
    [74]Meibom P. Technology analysis of public transport modes. Doctorial Thesis of Technical University of Denmark,2001.
    [75]Mellitt B, Goodman C J. Simulator studies of DC transit systems with inverting substations. IEE Proc.,1984,131(2):38-50.
    [76]Mellitt B, Goodman C J, Arthurton RIM. Simulator studies of energy saving with chopper control on the jubilee line. Proc. IEE,1978,125(4):304-310.
    [77]Mellitt B, Sujitjorn S, Goodman C J, et al. Energy minimisation using expert system for dynamic coast control in rapid transit trains. Conference on Railways Engineering,1987, 48-52.
    [78]Milroy I P, Johnson R A, Gaertner P S. Performance of AC diesel-electric locomotives in typical Australian tasks. In:Proceedings of the ASME/IEEE Joint 1996,35-40.
    [79]Milroy I P. Aspect of Automatic Train Control, Doctorial Thesis of Loughborough University, U.K.,1980.
    [80]Negnevitsky Michael. A Guide to Intelligent Systems, Addison Wesley/Pearson,2005.
    [81]Oshima H, Yasunobu S, Sekino S I. Automatic train operation system based on predictive fuzzy control. International Working on Artifical Intelligence for Industrial Applications, 1988.
    [82]Prime H A, Sujitjorn S, Goodman C J, et al. Energy reduction by dynamic train control. Proceedings of the 5th IFAC/IFIP/IFORS Conferences,1986,173-177.
    [83]Pudney P J, Howlett P G. Optimal driving strategies for a train journey with speed limits. J. Austral. Math. Soc. Ser. B,1994,36:38-49.
    [84]Richardson M B. Flywheel energy storage system for traction applications. IEE Int. Power Electronics, Machines and Drives,2002,275-279.
    [85]Schuler-Hainsch E. Einsparung von Traktionsenergie im Schienenfernverkehr durch Optimierung der Fahrweise (Germany).1988,37(12):831-836.
    [86]Sekine S, Imasaki N. Application of fuzzy neural network control to automatic train operation and tuning of its control rules. In:Proceedings of 1995 IEEE International Conference,1995,1741-1746.
    [87]Strobel H, Horn P. Energy optimum on board microcomputer control of train operation. Bridge between Control and Sciences and Technology,1985,16(3):219-230.
    [88]Sugeno M, Nishida M. Fuzzy control of model car. Fuzzy Sets Syst,1985,16:103-113.
    [89]Wang J, Cai Z X, Jia L M. Direct fuzzy neural control with application to automatic train operation. Control Theory and Applications,1998,15(3):391-399.
    [90]Wong K K, Ho T K. Coast control for mass rapid transit railways with searching methods. IEE Proc.- Electr. Power Appl.,2004,151(3):365-376.
    [91]Wong K K, Ho T K. Coast control of train movement with genetic algorithm. Evolutionary Computation,2003,2:1280-1287.
    [92]Wong K K, Ho T K. Energy reduction for train operation by coasting in metro systems. The 9th International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science,2003.
    [93]Wong K K. Hierarchical Real-time Train Control in DC Metro Systems, Doctrial Thesis of The Hong Kong Polytechnic University,2005.
    [94]Xuan V. Analysis of Necessary Conditions for the Optimal Control of A Train, Doctorial Thesis of University of South Australia,2006.
    [95]Yasunobu S, Miyamoto S, Takaoka T. Application of predictive fuzzy control to automatic train operation controller. In:Proc.of IECON'84.1984,657-662.
    [96]Yasunobu S, Miyamoto S, Ihara H. A fuzzy control for train automatic stop control. Trans. of the society of Instrument and Control Engineers,2002,2(1):1-9.
    [97]Yasunobu S, Sekino S. Automatic train operation and automatic crane operation systems based on predictive fuzzy control. In:Proc.2nd IFSA Congress. Tokyo, Japan,1987, 835-838.
    [98]Yasunobu S. Fuzzy control for automatic train operation system. In:Proc.4th IFAC/IFIP/IFORS Int. Congress on Congress on Control in Transportation Systems, Baden-Baden,1983.
    [99]Zadeh LA. Fuzzy algorithm. Information and Control,1968,12:99-102.
    [100]Zadeh LA. Fuzzy sets. Information and Control,1965,8:338-353.
    [101]Zadeh L A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Systems, Man, and Cybern.1973,3(1):28-44.
    [102]奥希泼夫,吴瑞,等译.列车合理操纵和机车实验.北京:中国铁道出版社,1984.
    [103]陈万里.基于模拟退火算法(SAA)的求解列车控制问题.安徽大学学报(自然科学版),2000,24(3):46-49.
    [104]程海涛.长大货物列车制动动力学及车辆柔性动力学研究.北京:铁道部科学研究院博士学位论文,1999.
    [105]程家兴,陈万里.列车控制问题的计算分析及自适应算法.安徽大学学报(自然科学版),2002,26(2):1-8.
    [106]程家兴.长途列车节能操纵的建模.系统仿真学报,1999,11(4):286-288.
    [107]程锦松.一种解列车节能操纵问题的改进算法.微机发展,2001,11(2):8-11.
    [108]崔世文,冯晓云.列车优化操纵与自动驾驶模式的研究与仿真.铁道机车车辆,2005,25(5):9-12.
    [109]丁勇,周方明,柏赟,等.自动闭塞区段追踪列车节能操纵仿真算法研究.系统仿真学报,2009,21(15):4593-4597.
    [110]丁勇,毛保华,刘海东,等.定时约束条件下列车节能操纵的仿真算法研究.系统仿真学报,2004a,16(10):2241-2244.
    [111]丁勇,毛保华,刘海东,等.列车节能运行模拟系统的研究.北方交通大学学报,2004b,28(2):76-81.
    [112]丁勇.列车运行计算与操纵优化模拟系统的研究.北京:北京交通大学博士学位论文,2005.
    [113]董海鹰,党建武.基于框架式模糊petri网列车专家控制系统知识表示研究.铁道学报,2000,22(3):112-115.
    [114]冯晓云,桂勋,朱金陵.机车司机操纵评价系统软件的开发.机车电传动,2002,3:51-55.
    [115]冯晓云.模糊预测控制及其在列车自动驾驶中的应用研究.成都:西南交通大学博士学位论文,2001a.
    [116]冯晓云,何鸿云,朱金陵.列车优化操纵原则及其优化操纵策略的数学描述.机车电传动,2001b,4:13-16.
    [117]逢增文.一种先进列车控制系统的研究与实现.北京:铁道部科学研究院硕士学位论文,1999.
    [118]付印平,高自友,李克平.路网中的列车节能操纵优化方法研究.交通运输系统工程与信息,2009a,9(4):90-96.
    [119]付印平.列车追踪运行与节能优化建模及模拟研究.北京:北京交通大学博士学位论文, 2009b.
    [120]傅世善.铁路信号显示.北京:中国铁道出版社,2001.
    [121]高旭.内燃机车空气制动机.北京:中国铁道出版社,2006.
    [122]苟先太,金炜东.有约束优化中遗传算法的应用.西南交通大学学报,1997,32(4):433-437.
    [123]国家发展和改革委员会交通运输司.国家《中长期铁路网规划》内容简介.交通运输系统工程与信息,2005,5(4):1-5.
    [124]国家统计局.中国统计年鉴2009.北京:中国统计出版社,2009.
    [125]韩长虎,郝建杰,徐强.列车制动耗能一般意义共识及机车优化操纵侧重点问题.铁道机车车辆,2004,24(2):47-49.
    [126]韩长虎,靳承林,董学良.内燃机车牵引运行优化操纵第一论断.内燃机车,2000,8:20-23.
    [127]韩长虎,梁少敏,王秀华.列车节能运行两个论断之探讨.内燃机车,2002,4:20-23.
    [128]何鸿云,朱金陵.列车牵引计算及操纵示意图计算机软件的开发.西南交通大学学报,2000,35(5):513-516.
    [129]贺允东.牵引动力改革是铁路节能降耗的主要途径.铁道学报,1996,18(1):21-28.
    [130]胡思继.铁路行车组织.北京:中国铁道出版社,1999.
    [131]黄良骥,程琳香,唐涛.遗传算法模糊神经网络在列车驾驶中的应用.辽宁工程技术大学学报(自然科学版),2001,20(5):640-643.
    [132]黄良骥,唐涛.地铁列车自动驾驶系统分析与设计.北方交通大学学报,2002,26(3):36-39.
    [133]贾利民,张建华,张锡第,等.高速铁路运行控制的现状与展望.中国铁道科学,1996,17(4):95-100.
    [134]贾利民.列车运行过程的智能控制.中国铁道科学,1992,(1):65-78.
    [135]蒋兆远.列车安全监控系统的研究.铁道学报,2000,22(5):24-27.
    [136]蒋兆远.列车优化操纵指导装置(上).内燃机车,1995,4:1-10.
    [137]蒋兆远.列车优化操纵指导装置(下).内燃机车,1995,5:1-4.
    [138]金炜东,高庆,高世廉,等.地铁列车运营过程仿真研究.铁道学报,1996,18(2):31-35.
    [139]金炜东,靳蕃,李崇维,等.列车优化操纵速度模式曲线生成的智能计算研究.铁道学报,1998a,20(5):47-52.
    [140]金炜东,王自力,李崇维,等.列车节能操纵优化方法研究.铁道学报,1997,19(6):58-62.
    [141]金炜东.满意优化问题与列车操纵优化方法研究.成都:西南交通大学博士学位论文,1998b.
    [142]李波,王自力.基于实数遗传算法的列车优化操纵曲线研究.铁道机车车辆,2007,27(增1):97-101.
    [143]李波,王自力.遗传算法在列车优化操纵曲线方面的应用.内燃机车,2008,3:5-10.
    [144]李国勇.人工智能及其应用.北京:电子工业出版社,2009.
    [145]李连成,吴文化.我国交通运输业能源利用效率及发展趋势.综合运输,2008,3:16-20.
    [146]李群.铁路列车运行安全模糊神经网络控制方法分析.北京:北方交通大学博士学位论文,1996.
    [147]李夏苗,谢如鹤.论交通运输与能源的关系.综合运输,1999,(10):23-27.
    [148]李玉生,侯忠生.基于遗传算法的列车节能控制研究.系统仿真学报,2007,19(2):384-387.
    [149]刘海东,陈绍宽,褚琴,等.具有固定运行时分的列车运行控制系统研究.北方交通大学学报,2002,26(5):24-27.
    [150]刘海东,毛保华,丁勇,等.列车自动驾驶仿真系统算法及其实施研究.系统仿真学报,2005a,17(3):577-580.
    [151]刘海东,毛保华,何天健,等.不同闭塞方式下城轨列车追踪运行过程及其仿真研究.铁道学报,2005b,27(2):120-125.
    [152]刘贺文,赵海东,贾利民.列车运行自动控制(ATO)算法的研究.中国铁道科学,2000,21(4):38-43.
    [153]刘剑锋,丁勇,刘海东,等.城市轨道交通多列车运行模拟系统研究.交通运输系统工程与信息,2005,5(1):79-82.
    [154]刘剑锋.基于模糊模型预测控制的重载组合列车机车制动控制策略研究.长沙:中南大学博士学位论文,2008.
    [155]刘云.列车运行仿真系统的建模与实现.铁道学报,1995,17(专辑):20-26.
    [156]卢衍丹,唐涛.基于模型库的列车自动驾驶仿真系统设计.铁道学报,2001,23(6):50-54.
    [157]卢衍丹,唐涛.面向对象的列车自动驾驶仿真系统建模.系统仿真学报,2002,14(1):8-10.
    [158]路飞,宋沐民,李晓磊,等.基于事件的控制技术在地铁列车运行中的应用.中国铁道科学,2006,27(4):106-111.
    [159]路飞,宋沐民,李晓磊.基于移动闭塞原理的地铁列车追踪运行控制研究.系统仿真学报,2005,17(8):1944-1950.
    [160]路飞.移动闭塞条件下地铁列车的运行优化.济南:山东大学博士学位论文,2007.
    [161]马大炜,张波.中高速列车共线运行的仿真研究.中国铁道科学,2003,24(3):119-124.
    [162]毛保华,何天键,袁振洲,等.通用列车运行模拟软件系统研究.铁道学报,2000,22(1):1-6.
    [163]毛保华,姜帆,刘迁,等.城市轨道交通.北京:科学出版社,2001.
    [164]毛保华.列车运行计算与设计.北京:人民交通出版社,2008.
    [165]毛节铭,王海鹰.列车优化操纵计算机辅助系统.西南交通大学学报,1995,30(3):317-322.
    [166]宁滨.轨道交通系统中的列车运行追踪模型及交通流特性研究.北京:北京交通大学博士学位论文,2005.
    [167]彭其渊,石红国,魏德勇.城市轨道交通列车牵引计算.成都:西南交通大学出版社,2005.
    [168]饶忠.列车牵引计算(第二版).北京:中国铁道出版社,2002.
    [169]邵华平,贾利民,覃征.基于计算机技术的一体化列车智能控制系统.中国铁道科学,2004,25(2):56-61.
    [170]石红国,彭其渊,郭寒英.城市轨道交通牵引计算模型.交通运输工程学报,2005,5(4):20-26.
    [171]石红国,彭其渊,郭寒英.城市轨道交通牵引计算算法.交通运输工程学报,2004,4(3):30-33.
    [172]石红国.列车运行过程仿真及优化研究.成都:西南交通大学博士学位论文,2006.
    [173]宋瑞.智能铁路系统行车制理论及通过能力的研究.成都:西南交通大学博士学位论文,1997.
    [174]孙晓炜,陈永生.基于模糊预测控制策略的ATO仿真.计算机工程与应用,2002,5: 214-217.
    [175]孙中央.列车牵引计算规程与实用教程.北京:中国铁道出版社,1999.
    [176]唐涛,黄良骥.列车自动驾驶系统控制算法综述.铁道学报,2003,25(2):98-102.
    [177]田长海,梁洪忠,等.列车动态模拟系统的研究.中国铁道科学,1995,16(1):14-26.
    [178]铁道部.机车操作规程.北京:中国铁道出版社,2000.
    [179]铁道部.列车牵引计算规程.北京:中国铁道出版社,1998.
    [180]铁道部.中国铁道年鉴2008.北京:中国铁道出版社,2008.
    [181]汪希时,丁正庭.论提高区间通过能力的最优化闭塞系统-移动自动闭塞系统.北方交通大学学报,1989,13(1):44-49.
    [182]王金平.内燃货物列车操纵.北京:中国铁道出版社,2005.
    [183]王立新.模糊系统与模糊控制教程.北京:清华大学出版社,2003.
    [184]王奇钟.关于列车操纵问题的探讨与建议.铁道机车车辆,2004,24(6):38-41.
    [185]王奇钟.节能列车操纵的思路及方法.铁道机车车辆,2008,28(4):64-67.
    [186]王卓,王艳辉,贾利民,等.基于ANFIS的高速列车制动控制仿真研究.铁道学报,2005,27(3):113-117.
    [187]王自力.列车节能运行优化操纵的研究.西南交通大学学报,1994,29(3):275-280.
    [188]魏东.非线性系统神经网络参数预测及控制.北京:机械工业出版社,2008.
    [189]吴桂云,武妍.一种基于模糊神经网络的正则化学习算法的地铁列车运行控制.计算机工程与应用,2004,(2):201-204.
    [190]吴海俊.模糊神经网络在列车制动控制中的建模及应用.北京:北京交通大学硕士学位论文,2008.
    [191]吴萌岭,程光华,王孝延,等.列车制动减速度控制问题的探讨.铁道学报,2009,31(1):94-97.
    [192]武福,王志伟,程瑞琪,等.列车运行模拟系统建模与实现.兰州铁道学院学报,2002,21(3):92-95.
    [193]武妍,施鸿宝.基于神经网络的地铁列车运行过程的集成型智能控制.铁道学报,2000,22(3):10-15.
    [194]徐强,孙永胜,韩长虎.列车节能运行第三论断.内燃机车,2008,4:34-37.
    [195]徐瑞华,江志彬,邵伟中,等.城市轨道交通列车运行延误及其传播特点的仿真研究.铁道学报,2006,28(2):7-10.
    [196]薛艳冰,马大炜.列车牵引能耗计算方法.中国铁道科学,2007,5:84-87.
    [197]杨兆昆.东风8B型内燃机车乘务员.北京:中国铁道出版社,2004.
    [198]杨肇夏,毛保华,何天健.铁路运输模拟系统的现状与发展.北方交通大学学报,2002,26(5):1-8.
    [199]杨志刚.LKJ2000型列车运行监控记录装置.北京:中国铁道出版社,2003.
    [200]余进,钱清泉,何正友.两级模糊神经网络在高速列车ATO系统中的应用研究.铁道学报,2008,30(5):52-56.
    [201]张吉礼.模糊-神经网络控制原理与工程应用.哈尔滨:哈尔滨工业大学出版社,2004.
    [202]张济民,吴汶麒,张树京.列车节能运行模型和操纵策略优化.上海交通大学学报,2000,34(增):35-38.
    [203]张济民,吴汶麒,张树京.准移动闭塞列车安全间隔时间的计算.铁道学报,1999,21(3):6-10.
    [204]张建华,贾利民,张锡第.新型模糊预测控制及其在列车自动运行过程中的应用.中国铁道科学,1996,17(4):101-109.
    [205]张沛山.内燃机车操纵和保养.北京:中国铁道出版社,1992.
    [206]张琦,王建英.基于神经网络的高速列车运行模拟系统的研究.中国铁道科学,1998,19(3):18-25.
    [207]张天清.东风8B型内燃机车运用与保养.北京:中国铁道出版社,2005.
    [208]赵爱菊.机车优化操纵的微机指导系统.铁道学报,1990,12(1):1-9.
    [209]赵海东,刘贺文,杨佛惠,等.高速铁路运行控制系统研究.中国铁道科学,2000,21(1):31-36.
    [210]赵明,汪希时.移动闭塞条件下列车追踪运行控制研究.铁道学报,1997,9(3):61-68.
    [211]赵振宇.模糊理论与神经网络基础与应用.北京:清华大学出版社,1996.
    [212]周方明,毛保华,柏赟,等.基于串口通信的列车实时数据通信的设计.交通运输系统工程与信息,2009,9(4):53-58.
    [213]朱金陵,李会超,王青元,等.列车节能控制的优化分析.中国铁道科学,2008,29(2):104-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700