基于多领域建模的重卡制动系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于总质量大于8000kg的汽车一般采用动力制动系统,而气压制动系统因其结构简单、制动力大等优点而被重卡广泛采用。汽车的制动性能并不仅由制动系统决定,还与整车参数相关。因此要准确地研究汽车的制动性能,不仅需要对制动系统本身进行分析,还要对整车的其他系统进行研究。
     传统的汽车仿真研究方法及理论基本上都是针对单个领域的研究,不同的理论通常需要不同的软件平台支撑,这个仿真研究带来了很多麻烦。将不同理论结合起来在同一软件平台下进行仿真研究将会使效率得到很大提高,还可避免不同软件之间数据交换带来的数值求解问题。
     本文以重型卡车的制动性能为研究对象,首先分析了汽车制动系统的评价指标,再利用多领域统一建模软件对重卡的制动系统及整车系统进行建模,最后完成了对重卡制动性能的优化设计。
     本文的具体内容包括以下几个方面:
     1)研究了多领域统一建模相关理论,构建及扩充了基础模型库。分析了无因果建模理论及多领域统一建模语言Modelica的特点;研究了多体系统在多领域统一建模理论下的描述方法及建模原理;总结了与气压传动相关的流体力学和热力学理论,并建立了用于研究气压传动系统气压基础模型库,模型库为研究汽车制动性能提供基础元件。
     2)建立汽车制动系统动态仿真分析模型。对气压制动系统结构及关键部件工作原理进行了详细分析,在多领域统一建模平台MWorks上建立气压制动系统模型库,包括储气筒、制动阀、继动阀、制动气室及制动执行机构总成等部件模型,并在模型库基础上搭建完整的汽车制动系统模型。该制动系统模型可以仿真模拟得到汽车制动过程中系统内各元件随时间变化的气压和制动力矩等,较传统的经验公式更准确。
     3)建立重型卡车的整车动力学模型并联合制动系统模型进行仿真。整车动力学模型同时在MWorks中建立,根据实际车型的结构对整车进行系统划分,包括前桥板簧悬架、中后桥空气弹簧悬架、转向系统、轮胎路面模型等。板簧悬架根据梁单元模型建立,空气弹簧采用刚度试验曲线拟合方式建模,轮胎模型根据经典的Magic Formula公式建立。将整车模型与制动系统模型联合仿真,计算制动过程中汽车的减速度、速度和制动距离等关键指标。由于整车模型与制动系统模型在同一平台下构建,联合仿真时避免了多个软件交互引起的数据传递问题及求解器不同导致的数值求解问题。
     4)对汽车制动系统的优化仿真。首先以系统的静态特性优化为基础,使制动性能满足基本法规;在直线制动工况的基础上优化制动系统的动态特性,减小滞后时间、缩短制动距离;最后对转弯制动工况进行仿真,分析汽车制动时的方向稳定性。经优化后,汽车不仅满足相应的制动法规,提高了制动效能,同时缩短了制动距离,通过转弯制动仿真还可以判断汽车制动时的方向稳定性,能够代替部分道路试验。
The dynamic brake systems are used in the vehicle which is more than 8000 kilograms, and :he air brake system is widely used in the heavy trucke for its simple structure and larger brake force. The capacity of brake is not determined by the brake system only, and it is affected by the vehicle parameters. Thus, to research the brake capacity precislier, not only the brake system need to be studied, but also orther systems of vehicle need to be analized.
     The traditional simulation methods and theories of vehicle are researched on one-domain. The different theories are supported by different softwares, which lead to some troubles. If we research the different theories in a same software platform, the effectivness would be elevated much and the numerical problem caused by the data commutation among different softwares would be avoided.
     The brake capacity of heavy truck is mainly be researched in this thesis. Firstly, the evaluation indexes are studied, and then the brake system and vehicle model of heavy truck are built in the multi-domain modeling software, lastly the optimization of the brake capacity of heavy truck is completed.
     Several aspects which were discussed in detail in this thesis are listed as follows:
     Firstly, research the multi-domain modeling theory, and build and extend the model libiary. The the non-causal modeling theory and the characteristics of Modelica modeling language for multi-domain modeling are presented. The description theory and modeling principle of multibody system under the multi-domain modeling platform are analyzed. The hydrodynamics and thermodynamics theory effecting on the pneumatic transmision are summarized, and the pneumatic transmison library which provides the basic components to the vehicle brake system is built.
     Secondly, construct the brake system dynamic model. Analyze the structure and work of the key components in detail. Build the model of key components of air brake system on the multi-domain modeling platform MWorks, containing reserivor, brake valve, relay valve, brake chamber, and the assemebely mechanical subsystem of brake system, and then construct the integrate brake system model based on these components. The brake system can simulate the air pressure and brake torque varing with time, which is more accurate than traditional emprical formulas.
     Thirdly, construct the vehicle dynamic model of heavy truck, and simulate the brake performance combined with brake system model. Decompose the vehicle to several subsystems containing front leaf spring suspension, middle and rear air spring suspension, steering subsystem, and tire model, and then build these subsystems on the same platform MWorks. The leaf spring suspension is based on the beam element model; the air spring suspension is built through the experiments curve fitting of stiffness; tire employs the classic Magic Formula to achieve the model. Simulate the vehicle deceleration, velocity, and brake distance using the combined model of vehicle and brake system. Because the vehicle model and brake system model are built on the same platform, some problems induced by data exchange and solver difference between the different softwares can be avoided.
     Lastly, the optimization is conducted to enhance the performance of braking system. The static characteristic optimization is carried out as a basis to satisfy the basic rules of braking system. Then, the dynamic characteristic is optimaized through the straight-line brake simulation to decrease the delay time and braking distance. Finally, brake in-turn is simulated to analyze the handling stability during braking. After the optimization, the vehicle not only confirms the brake laws, elevate the brake efficiency, but also reduce the brake distance, and estimate the vehicle steering stability through the simulation of steering brake, which can replace some road test.
引文
[1]方泳龙.汽车制动理论与设计.第一版.北京:国防工业出版社,2005.
    [2]伊廷.气压制动系统在轻型载货车上的应用研究[D].天津:天津大学,2005年
    [3]方泳龙.汽车制动理论与设计(专家系统)[M].北京:国防工业出版社,2005.
    [4]王绍铣,夏群生,李建秋等.汽车电子学[M].北京:清华大学出版社,2005.
    [5]Takashi W., Shoichi M., Apparatus for Detecting Condition of Road Surface [P].United States Patent 6385525 B2,2002,5
    [6]Kazemi R., Hamedi B., Javadi B., A New Sliding Mode Controller for Four-Wheel Anti-lock Braking System (ABS) [C]. SAE Paper 2000-01-1639.
    [7]Schuyler S. S., et al. Variable rate brake pedal feca emulator [P]. United States patent 5729979.1998,5,24.
    [8]余卓平,管迪华.汽车防抱死制动装置抗路面不平度干扰的数字滤波算法[J]中国公路学报,1999,12(1);95-100.
    [9]余卓平.道路不平度对防抱制动系统的影响[J].汽车技术,1995(2):18-23.
    [10]宋健,孔磊,沈俊.特殊工况下的ABS控制算法.江苏大学学报[J].2006,27(2):117-121.
    [11]厉朴,宋健,于良耀.汽车防抱制动系统轮速信号异点剔除预处理算法[J].公路交通2001,18(4):120-122.
    [12]Kwak B., Park Y., Kim D., Dsign of Observer for Vehicle Stability Control System[C]. Seoul 2000 FISITA World Automotive Congress, F2000F328.
    [13]宋健,李勇.汽车防抱死制动系统控制方法的研究进展[J].公路交通科技,2002,19(6):140-145.
    [14]陈家瑞.汽车构造.第四版.北京:人民交通出版社,2003.
    [15]Suh M. W., Seok C. S., Kim Y. J., Hardware-in-The-Loop Simulation for ABS, SAE paper 980244.
    [16]Yang S., Gibson R.F. Brake vibration and noise:review, comments and proposals [J]. Int. J. Mater. Product Tech.,1997,12(4-6):496-513.
    [17]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [18]Baryon R. J., Danny R. M., Kenneth A.D., et al., Rough Road Detection Using Suspension System Information [P]. United States Patent 2005,10.
    [19]Kelling N.A., Leteinturier P., X-by-Wire:Opportunities, Challenges and Trends[C] SAE Paper 2003-01-0113.
    [20]Nick A. K., Patrick L., X-by-Wire:Opportunities, Challenges and Trends [C]//SAE Paper 2003-01-0113.
    [21]Joachim L. W., Bryan K., Vitual Design of a 42V Brake-by-Wire System[C]//SAE Paper 2003-01-0305.
    [22]曲再鹏.依维柯汽车均一路面EHB控制系统的研究[D].长春:吉林大学,2005.
    [23]David F.R., Wayne E.L., James W.Z., et al. Hydraulic Design Considerations for EHB Systems[C]. SAE Paper 2003-01-0324.
    [24]Martin S., Antonio P., Henrry H., etal. ELECTROMECH- ANICAL BRAKE WITH SELF-BOOSTING AND VARYING WEDGE ANGLE [P]. US,6986411B2, 2006-1-17.
    [25]张秋红.飞机全电刹车系统控制律的研究[D].西安:西北工业大学,2003.
    [26]Luigi P., Mauro V., Aldo S., Electro-Hydraulic Braking System Modelling and Simulation[C]. SAE Paper 2003-01-3336.
    [27]Richard J. B., Danny R. M., Kenneth A. D., et al. Rough Road Detection Using Suspension System Information [P]. United States Patent 2005,10.
    [28]Tamotsu Yamaura, Road Surface Condition Determination System for Automotive Vehicles and Anti-skid Braking System Having the Same [P]. United States Patent 6266602 B 1,2001,7.
    [29]Gregory P., Campau et al. Electro-Hydraulic Brake System with Four Wheel PushThrough [P]. United States patent 6860569,2005,5.
    [30]Adrew A., Improved Vehicle Performance Using combined Suspension and Braking Forces. Vehicle System Dynamics,27 (1997), pp.235-265.
    [31]L. Balogh, T. Streli, H. Nemeth and L. Palkovics, Modelling and simulating of self-energizing brake system, Vehicle System Dynamics, Vol.44, Supplement,2006, 236-377
    [32]Thuresson D., Thermomechaical analysis of friction brakes, SAE,2000-01-2775.
    [33]Eppler. S, Klenk. T, Wiedemann. J, Thermal simulation within the brake system design process, SAE,2002-01-2587.
    [34]Lee K., Numerical predction of brake fluid temperature rise during braking and heat soaking, SAE,1999-01-0483.
    [35]Hunter. J. E, Cartier. S. S, Temple. D. J, Mason. R. C, Brake fluid vaporization as a contributing factor in motor vehicle collisions, SAE,980371.
    [36]陈小悦.鼓式制动器低频振颤的研究[D].北京:清华大学,1988.
    [37]管迪华,宿新东.制动振动噪声研究的回顾、发展与评述[J].工程力学,2001,4:150-155.
    [38]Kinkaid N. M., O'Reilly O. M., Papadopoulos P., Automotive disc brake squeal:a review [J]. Journal of Sound and Vibration,2003,267:105-166.
    [39]Felske A., Hcppe G., Matthai H., A study on drum brake noise by holographic vibration analysis[C].SAE800221,1980.
    [40]管迪华,宿新东.制动振动噪声研究的回顾、发展和评述[J].工程力学,2004,21(4):150—155.
    [41]Felske A., Hcppe G., Matthai H., A study on drum brake noise by holographic vibration analysis [J].1980, SAE Paper No.800221.
    [42]Kondo K. Algebraic method for manipulation of dimensional relationships in geometric models. Computer-Aided Design,1992,24(3):141-147
    [43]孟树兴.汽车轴间制动力分配优化设计与制动性能计算机仿真研究.[硕士学位论文].合肥:合肥工业大学,2003.
    [44]杜小芳.汽车制动系统动态特性分析及仿真.[硕士学位论文].武汉:武汉汽车工业大学,2000.
    [45]Limpert R., Brake Design and Safety. SAE Order No. R-198,1999.
    [46]Limpert R., Engineer Design Handbook, Analysis and Design of Automotive Brake Systems. US Army Material Development and Readiness Command, DARCOM-P-706-358,1976.
    [47]Limpert R., Proportional braking of solid frame vehicles. SAE Paper No.710047.
    [48]Limpert R., An investigation of brake balance for straight and curved braking. SAE Paper No.741086.
    [49]Nakamura H., An investigation of braking force distribution. Japan Society of Automotive Engineers.
    [50]Eckhart R., Brake Design for Multi-Axle Vehicles. Commercial Vehicle Calculation TCP/PCD, November 2004.
    [51]刘志新.4WD越野汽车牵引力控制系统控制方法研究及仿真软件开发[D].长春:吉林大学,2003.
    [52]Fennel H., Ding E. L., A Model-Based Failsafe System for the Continental TEVES Electronic-Stability-Program (ESP)[C], SAE Paper 2000-01-1635.
    [53]李永堂等.液压系统建模与仿真.冶金工业出版社,2003:198264 246-264
    [54]羊拯民,李伟.汽车制动过程中瞬时车速和轮速的仿真计算.合肥工业大学学报,2000,23(3):304309.
    [55]刘国福,张纪,王跃科.汽车防抱制动系统车速估计方法的初步研究.汽车工程,2004,26(6):723-725.
    [56]Sakakura T., Shimosaka H and Ehara N., A study on the braking stability of an articulated vehicle by controlling braking force. In AVEC'98,1998, pp.637-642.
    [57]Elwell M. and Kimbrough S., An advanced braking and stability controller for tow-vehicle and trailer combinations. SAE paper 931878,1993.
    [58]Ashley L. D., Gary J. H., New Model for Simulating the Dynamics of Pneumatic Heavy Truck Brakes with Integrated Anti-Lock Control. SAE technical paper series, 2003-01-1322.
    [59]Kimbrough S. and Elwell M., An advanced braking an stability controller for two vehicle and trailer combinations. SAE Paper No.931878,1993.
    [60]Abe M., A theoretical analysis on vehicle cornering behaviors in acceleration and in braking, Proceedings of 9th IAVSD Symposium, Linkoping, Sweden,1985.
    [61]Limebeer D. J., Sharp R. S., and Evangelou S., The stability of motorcycles under acceleration and braking, Proc. IMechE Part C, J. Mech. Eng. Sci.215 (2001), pp. 1095-1109.
    [62]Per G. R., Robert R. S., Development of an Intelligent Air Brake Warning System for Commercial Vehicles. IDEA Program Transportation Research Board National Research Council. Contract Number IVHS-13.
    [63]Kenneth R., Buckholtz. Y., Reference Input Wheel Slip Tracking Using Sliding Mode Control[C]. SAE Paper 2002-01-0301.
    [64]Kazemi R., Hamedi B., Javadi B., A New Sliding Mode Controller for Four-Wheel Anti-lock Braking System (ABS)[C]. SAE Paper 2000-01-1639.
    [65]Eric B., Law E. H., A Feasibility Study of an Automotive Slip Control Braking System. SAE Paper 930762.
    [66]Belanger P.R., Estimation of Angular Velocity and Acceleration From Shaft Encoder Measurements. Proceedings of IEEE International Conference on Robot and Automatic, 1992:585592.
    [67].褚福磊,彭志科,冯志鹏,李志农,机械故障诊断中的现代信号处理方法,科学出版社,2009.
    [68]Subramanian S. C., Darbha S., Rajagopal K. R., Modeling the Pneumatic Subsystem of an S-cam Air Brake System. Trans. of the ASME, J. of Dynamic Systems, Measurement, and Control,2004, Vol.126:36-46.
    [69]Subramanian S. C., Darbha S., Rajagopal K. R., A Diagnostic System for Air Brakes in Commercial Vehicles. IEEE Transactions on Intelligent Transportation Systems, Vol.7, No.3, September 2006:360-376.
    [70]Bowlin C. L., Subramanian S. C., Darbha S., Pressure Control Scheme for Air Brakes in Commercial Vehicles. IEEE Proc. Intelligent Transportation Systems, Vol.153, No.1, March 2006:21-32.
    [71]绍宗安.键图法对汽车制动传动系统动态特性的模拟研究.汽车工程,1993,3:212-219.
    [72]Wu J.L., Zhang H. C., Zhang Y. Q., Chen L. P., Robust Design of a Pneumatic Brake System in Commercial Vehicles. SAE paper 2009-01-0408.
    [73]林慕义.工程车辆全动力制动系统.第一版.冶金工业出版社,2007.
    [74]Sungwook J., Hoon Y., Chulsoo K., Hyunsoo K., A Study on Regenerative Braking for A Parallel Hybrid Electric Vehicle, KSME International Journal, Vol.15, No.11, pp.1490-1498,2001.
    [75]Kang Chul-Goo, Analysis of the Braking System of the Korean High-speed Train Using Real-time Simulations, Journal of Mechanical Science and Technology 21 (2007) 1048-1057.
    [76]N. D'ALFIO, A. MORGANDO and A. SORNIOTTI, Electro-hydraulic brake systems: design and test through hardware-in-the-loop simulation, Vehicle System Dynamics, Vol.44, Supplement,2006,378-392.
    [77]Karthikeyan P., Sonawane D. B. and Subramanian S. C., Model-Based Control of an Electropneumatic Brake System for Commercial Vehicles, Internationnal Journal of Automotive Technology, Vol.11, No.4, PP.507-515 (2010).
    [78]Li J, Yu F, Zhang J-W, Feng J-Z and Zhao H-P, The Rapid Development of A Vehicle Electronic Control System and Its Application to an Antilock Braking System Based on Hardware-in-the-loop Simulation, Proc Instn Mech Engrs, Vol.216,Part D:J Automobile Engineering.
    [79]Michael W. S., Vehicle Models for RTS Applications, Vehicle System Dynamics,32 (1999), pp.421-438.
    [80]Ellis J.R., Vehicle Dynamics. Business Books Ltd., London,1969.
    [81]Ellis J.R., Road Vehicle Dynamics. John R. Ellis Inc, Akron, Ohio,1989.
    [82]Leucht P.M., The Directional Dynamics of the Commercial Tractor-semitrailer Vehicle during Braking. SAE Technical Paper 700371,1970.
    [83]Chen C. and Tomizuka M., Dynamics modeling of articulated vehicles for automated highway systems. Proceedings of the American Control Conference, Seattle, Washington,1995, pp.653-657.
    [84]Chen C. and Tomizuka M., Lateral Control of Commercial Heavy Vehicles. Vehicle System Dynamic.33(2000), pp.391-420.
    [85]Magnus G., Olof L., A 9-DOF Tractor-Semitrailer Dynamic Handling Model for Advanced Chassis Control Studies. Vehicle System Dynamics,41:1,51—82.
    [86]Mikulcik E.C., The Dynamics of Tractor-Semitrailer Vehicles:The Jackknifing Problem. PhD Thesis, Cornell University,1968.
    [87]Mikulcik E.C., The Dynamics of Tractor-semitrailer Vehicles:The jackknifing problem. SAE Technical Paper 710045,1971.
    [88]Chen and Shieh, Jackknife prevention for articulated vehicles using model reference adaptive control, Proc. IMechE, Vol.225, Part D:J. Automobile Engineering.
    [89]Kyongsu Yi, Taeyoung Chung, Jeontae Kim and Seungjong Yi, An investigation into di. erential braking strategies for vehicle stability control, Proc. Instn Mech. Engrs Vol. 217 Part D:J. Automobile Engineering.
    [90]Wang X. D., Hu Y. J., Li C. G., Wang X. L., Dynamic Characteristics Analysis of Brake System for Heavy-Duty Off-Highway Vehicle, SAE Technical Paper 2004-01-2638.
    [91]Tankut, A., Umit, O., Cem, H. and Anne-Marie, I. Pneumatic Brake System Modeling for Systems Analysis. SAE paper 2000-01-3414,2000.
    [92]Dongyoon H. and Reza L., Modeling to Predict Rollover Threat of Tractor-Semitrailers. Vehicle System Dynamics.2003, Vol.39, No.6, pp.401-414.
    [93]Tulga E., Burit K., Hosam K., Fathy and Jeffrey L. Stein, Model reduction in vehicle dynamics using importance analysis. Vehicle System Dynamics, Vol.47, No.7, July 2009,851-865
    [94]张越今著.汽车多体动力学及计算机仿真,吉林科学技术出版社,1998.
    [95][德]H-P威鲁麦特.车辆动力学模拟及其方法[M].北京:北京理工大学出版社,1998.
    [96]黄华,周凡利Modelica语言建模特性研究[J].系统仿真学报,2006年8月
    [97]唐国元,宾鸿赞.车辆动力学时间离散建模及面向对象方法的仿真实现.机械与电 子,2004,(3):75-78
    [98]土德平,郭孔辉,宗长富.车辆动力学稳定性控制的理论研究,汽车工程,2000,22(1):7-9
    [99]刘贤喜。机械系统虚拟样机技术的研究,中国农业大学博士学位沦为,北京,2001.10.
    [100]http://www.mdi.com.cn
    [101]李伯虎,王行仁,黄柯棣等.综合仿真系统研究.系统仿真学报,2000,12(5):429-434
    [102]李伯虎,柴旭东,毛媛.现代仿真技术发展中的两个热点—ADS, SBA系统仿真学报,2001,13(1):101—105
    [103]柴旭东,李伯虎,熊光楞.复杂产品协同仿真平台的研究与实现.计算机集成制造系统一CIMS,2002,8(7):580-584
    [104]赵治国.车辆动力学及其非线性控制理论、技术的研究.西北工业大学博士论文,2002.
    [105]Anderson D., Shade G., Hamill S. and O'Heron P., Development of a Multi-body Dynamic Model of a Tractor-semitrailer for Ride Quality Prediction. SAE Technical Paper 2001-01-2764,2001.
    [106]Elmqvist H. A Structured Model Language for Large Continuous Systems:[PhD thesis]. Sweden:Lund Institute of Technology,1978
    [107]Astrom K. J., Elmqvist H, Mattsson SE. Evolution of continuous-time modeling and simulation. In Proceedings of the 12th European Simulation Multi-conference, Manchester, UK,1998
    [108]Modelica WWW Site [EB/OL]. Modelica Group[2006-12-12], www.modelica.org
    [109]Mattsson S. E., Otter M., Elmqvist H., Modelica hybrid modeling and efficient simulation. In Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, USA,1999
    [110]Elmqvist H., Mattsson S. E., Otter M. Object-oriented and hybrid modeling in Modelica. The Journal of European system automatics,2001,35(1):1—10
    [111]RUdiger F., Formulation of dynamic optimization problems using Modelica and their efficient solution. In Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany,2002
    [112]Simic D., Ginliani H., Kcal C., et al. Simulation of Hybrid Electric Vehicles. Proceedings of the 5th International Modelica Conference, Vienna, Austria, Sep.2006, pp25-32.
    [113]Borutzky W., Barnard B. and ThomaJ. U., Describing bond graph models of hydraulic components in Modelica, Mathematics and Computers in Simulation',2000, Vol.53, No.4-6, pp.381-387.
    [114]Kossenko I., Implementation of unilateral multibody dynamics on Modelica. Proceedings of the 4th International Modelica Conference, Hamburg, Germany,2005, pp.13-23.
    [115]Micheletti S., Perotto S. and Schiavo F., Modelling heat exchangers by the finite element method with grid adaption in Modelica. Proceedings of the 4th International Modelica Conference, Hamburg, Germany,2005, pp.2I9-228.
    [116]Nystrom, K. and Fritzson, P. Parallel simulation with transmission lines in Modelica. Proceedings of the Sth International Modelica Conference, Vienna, Austria,2006, pp.325-331.
    [117]Beater P. and Clauss C. Multi-domain systems:pneumatic, electronic and mechanical subsystems of a pneumatic drive modeled with Modelica. Proceedings of the 3rd International Modelica Conference, Linkoping, Sweden,2003, pp.369-376.
    [118]Ziehn T., Reichl C. and Arnold E., Application of the Modelica library Wastewater for optimisation purposes. Proceedings of the 4th International Modelica Conference, Hamburg, Germany,2005, pp.351-356.
    [119]Elmqvist H., Mattsson S. E. and Olsson H., New methods for hardware-in-the-loop simulation of stiff Models. Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany,2002, pp.59-64.
    [120]Farnqvist D., Strandemar K. and Johansson K. H., et al. Hybrid modeling of communication networks using Modelica. Proceedings of the 2nd International Modelica Conference, Oberpfaffenhofen, Germany,2002, pp.209-213.
    [121]Simulationx WWW Site [EB/OL]. httpa/www.simulationx.com
    [122]Ding J. W., Chen L. P., Zhou F. L. et al.An analyzer for declarative equation based models [A], Proceedings of the 5th International Modelica Conference, Vienna, Austria,2006, pp.349-357.
    [123]吴义忠,吴民峰,陈立平.基于Modelica语言的复杂机械系统统一建模平台研究.中国机械工程,2006,17(22):2391-2396.
    [124]吴义忠,刘敏,陈立平.多领域物理系统混合建模平台开发.计算机辅助设计与图形学学报.2006,18(01):120-124
    [125]Wu Y. Z., Zhou F. L., Chen L. P. et al.Domain library preprocessing in MWorks-a platform for modeling and simulation of mold-domain physical systems based on Modelica [A], Proceedings of the 5th International Modelica Conference, Vienna, Austria,2006, pp.733-740.
    [126]Fritzson P., Bunus P., Modelica—a general object-oriented language for continuous and discrete-event system modeling and simulation. In Proceedings of the 35th Annual Simulation Symposium, San Diego, USA,2002
    [127]王志煌.汽车液压制动系统前后桥制动力分配的电子控制.汽车研究与开发[J].2002(3),1-7,17.
    [128]Mills V., Samuels B., Dr John Wagner. Modeling and Analysis of Automotive Antilock Brake Systems Subject to Vehicle Payloa Shifting Vehicle System Dynamics,2002,37(4):283310.
    [129]Burrows. C. R., Peckham. R. G, Dynamic characteristics of a pneumatic flapper valve. Journal Mechanical Engineering Science,1977,19(3):113-121.
    [130]范翔,陶国良.气动元件流量特性测试系统的研究[J].机床与液压,2008,36(10):303-306.
    [131]陈乾斌,司冀,史维祥.关于气动元件流量特性测试系统的研究[J].液压气动与密封,2010,7:34-38.
    [132]万振,高峰,丁靖,吴学雷.多轴车制动的动力学模型及制动性能分析[J].中国机械工程,2008,19(3):365-369.
    [133]郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社,1991.
    [134]雷雨成,赵清亮等.汽车全工况操纵和制动动力学17自由度的建模与仿真[J].汽车工程,1996,18(6):325-329.
    [135]周继中.转弯制动工况下,汽车制动力分配车略仿真研究[M].上海:上海交通大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700