城市供水系统脆弱性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市供水系统是城市建设与发展的重要基础设施,是生命线工程之一。“9·11”事件之后,美国政府认为城市供水系统也可能成为恐怖袭击的目标,要求服务人口超过3300人的供水系统都要进行脆弱性分析,专家学者对此进行了大量的研究,并将研究成果应用于水司的日常管理中。而国内在这一领域的研究还很少,缺乏系统的城市供水系统脆弱性分析方法。本文为了填补国内在这一研究领域的空白,也为了给供水部门提升系统安全性提供科学依据,力求在国内外现有研究基础上,提出一种城市供水系统脆弱性分析方法。
     首先,在分析了脆弱性、承灾体脆弱性、生态系统脆弱性、水资源脆弱性、地下水脆弱性的概念之后,结合城市供水系统的特点,提出城市供水系统脆弱性的概念,为下文进行脆弱性定量化分析奠定基础。
     其次,根据城市供水系统脆弱性的概念,确定其计算方法为威胁水平与功能缺失程度的乘积。分析总结城市供水系统面临的自然威胁和人为威胁。对于自然威胁,利用查阅历史资料的方法确定其威胁水平以及供水系统的功能缺失程度;对于人为威胁,利用美国Sandia国家实验室开发的马尔科夫潜在影响模型(Markov Latent Effects model,MLE)确定其威胁水平,利用EPANET模拟城市供水系统在人为威胁发生后不能满足用户对水量、水质、水压要求的程度,进而确定整个供水系统的功能缺失程度。
     最后,利用本文所提出的城市供水系统脆弱性分析方法,对天津KGWL供水系统的脆弱性进行了定量化分析。通过查阅资料确定其潜在的自然威胁为地震,并确定了地震的威胁水平以及供水系统功能缺失程度;通过实地调研设定了10种人为威胁模式,利用MLE计算其威胁水平,对比KGWL供水系统在人为威胁发生前后的运行状态确定其功能缺失程度。最终得出KGWL供水系统脆弱性分析结果,提出改进其系统安全性的措施,并通过计算验证了这些措施能够降低系统的脆弱性。
     通过本文的研究,提出了一套城市供水系统脆弱性定量化分析的方法,能够为供水部门进行安全评价提供参考依据,具有一定的理论意义和实用价值。
Urban water supply system is not only an important infrastructure for urban construction and development, but also one part of the lifeline project. After the attack of September 11, 2001, the U.S. government believed that the urban water supply system may also become a target of terrorist attacks, and required that the vulnerability analysis should be carried on when the service population of the system is more than 3300. Experts have conducted a great deal of research, and the results were successfully applied to the water supply system for its daily management by the water supply department. However, domestic research in this area was infrequence, and systemic vulnerability analysis methods for urban water supply system were lacked. In order to fill the gaps and provide scientific reference to enhance the security of urban water supply system by water supply department, the vulnerability analysis methods for unban water supply system need to be developed based on the home and abroad research.
     First of all, the concepts of the vulnerability, vulnerability of hazard bearing body, ecological system vulnerability, water resource vulnerability, and groundwater vulnerability were analyzed respectively. Combining with the character of urban water supply system, the concept of vulnerability for urban water supply system was put forward, which lay a foundation for the following quantitative calculation of vulnerability.
     Secondly, based on the concept of vulnerability of urban water supply system, the calculating method of vulnerability of urban water supply system was determined as the product of threat level and function loss. The natural and man-made threats to water supply system were summarized simultaneously. As for the natural threats, the threat level and the degree of function loss was determined by using historical information. The man-made threat level was determined by the Markov Latent Effects model (MLE) developed by the U.S. Sandia National Laboratory. The extent that the urban water supply system can not meet the requirement of users, such as water quantity and quality, and the pressure, were simulated by EPANET when the man-made threat happened, then the function loss degree of the whole water supply system was determined.
     Finally, the vulnerability of Tianjin KGWL water supply system was analyzed based on the vulnerability analysis method proposed in this paper. Through field survey, earthquake was identified as the potential natural threat, and then its threat level and function loss was calculated. As for the man-made threat, 10 kinds of potential threats were ascertained through field survey and the threat level was calculated by using MLE. The degree of function loss was determined by comparing the running state between man-made threat occurred before and after. Eventually, the result of the vulnerability of Tianjin KGWL water supply system was calculated. Some measures to improve the security were provided, which could reduce the vulnerability of the system verified by computing.
     A set of quantificational analysis method on vulnerability of urban water supply system was presented in this paper. This method can provide reference for the security assessment by water supply department, and has a certain theoretical and practical value.
引文
[1] Ezell B C. Toward a systems-based vulnerability assessment methodology for water supply systems[C]. Risk-Based Decision-Making in Water Resources X: Proceedings of the 10th United Engineering Foundation Conference, 2002:91-103.
    [2]张勇,王东宇,杨凯.1985-2005年中国城市水源地突发污染事件不完全统计分析[J].安全与环境学报,2006,6(2):79-84.
    [3]张勇,徐启新,杨凯,等.城市水源地突发性水污染事件研究述评[J].环境污染治理技术与设备,2006,7(12):1-4.
    [4] Kroll D, King K. Laboratory and flow loop validation and testing of the operational effectiveness of an on-line security platform for the water distribution system[C]. Proceedings of the 8th Annual Water Distribution Systems Analysis Symposium, 2006:34-45.
    [5] Huston P T, Kendall D R, Fischer B W, et al. Applying security and vulnerability assessment to large water wholesaling agencies[C]. New Pipeline Technologies, Security, and Safety International Conference on Pipeline Engineering and Construction, 2003:147-155.
    [6] US Congress. Public health security and bioterrism preparedness and response act of 2002, http://www.epa.gov/safewater/watersecurity/pubs/security_act.pdf.
    [7] Peter S B. Threats on tap:understanging the terrorist threat to water[J]. Journal of Water Resources Planning and Management. 2005, 128(3):163-167.
    [8] Vulnerability assessment factsheet, www.epa.gov/ogwdw/security/index.html, 2002.
    [9] Tidwell V C, Silva C J, Jurado S. An integrated approach to vulnerability assessment[C]. Part of Impacts of Global Climate Change World Water and Environmental Resources Congress, 2005:79-90.
    [10] Walski T M, Chase D V, Savic D A, et al. Advanced Water Distribution Modeling and Management[M]. Haestad Press, 2003, Chapter11:499-519.
    [11]马力辉,刘遂庆,信昆仑.供水系统脆弱性评价研究进展[J].给水排水,2006,32(9):107-110.
    [12] Flax L K, Jackson R W, Stein D N. Community vulnerability assessment tool methodology[J]. Natural Hazards Review, 2002, 3(4):163-176.
    [13] Ezell B C, Farr J V, Wiese I. Infrastructure risk analysis of municipal water distribution system[J]. Journal of Infrastructure Systems, 2000, 6(3):118-122.
    [14] Regan M, Robert J, Jim U. The threat ensemble vulnerability assessment (TEVA) program for drinking water distribution system security[C]. Part of Critical Transitions in Water and Environmental Resources Management, 2004:1-8.
    [15]吴小刚,张土乔.城市给水管网系统的故障风险评价决策技术[J].自然灾害学报,2006,15(2):73-78.
    [16]李蝶娟,张世法,竺士林,等.太原市供水风险和外区调水水价预测[J].水科学进展,2000,11(1):43-48.
    [17]赵雪莲,陈华丽.基于GIS的洪灾遥感监测与损失风险评价系统[J].地质与资源,2003,12(1):54-60.
    [18]徐启新,车越,杨凯.中美水源地管理体系的比较研究[J].上海环境科学,2003,22(7):487-490.
    [19]陈佐.突发性环境污染事故分析与应急反应机制[J].铁道劳动安全卫生与环保,2002,29(1):45-47.
    [20]孙振世.浅谈我国突发性环境污染事故应急反应体系的建设[J].中国环境管理,2003,22(2):5-8.
    [21]鲁娟.给水管网脆弱性评估研究[D].合肥:合肥工业大学,2007.
    [22]王小丹,钟祥浩.生态环境脆弱性概念的若干问题探讨[J].山地学报,2003,21(增刊):21-25.
    [23]商彦蕊.自然灾害综合研究的新进展—脆弱性研究[J].地域研究与开发,2000,19(2):73-77.
    [24]汪朝辉,王克林,熊鹰,等.湖南省洪涝灾害脆弱性评估和减灾对策研究[J].长江流域资源与环境,2003,12(6):586-592.
    [25]樊运晓,罗云,陈庆寿.承灾体脆弱性评价指标中的量化方法探讨[J].灾害学,2000,15(2):78-81.
    [26]沈珍瑶,杨志锋,曹瑜.环境脆弱性研究述评[J].地质科技情报,2003,22(3):91-94.
    [27]杨勤业.环境脆弱形势及其制图—生态环境综合整治和恢复技术研究(第一集)[M].北京:科学技术出版社,1992:55-59.
    [28]赵平,彭少麟,张经炜.生态系统的脆弱性与退化生态系统[J].热带亚热带植物学报,1998,6(3):179-186.
    [29]周劲松.山地生态系统的脆弱性与荒漠化[J].自然资源学报,1997,12(1):10-16.
    [30]赵跃龙,张玲娟.脆弱生态环境定量评价方法的研究[J].地理科学,1998,18(1):73-79.
    [31]赵桂久,刘燕华,赵名茶.生态环境综合整治与恢复技术研究—退化生态综合整治、恢复与重建示范工程技术研究[M].北京:科学技术出版社,1995:78-84.
    [32]叶正伟,朱传国,陈良.洪泽湖湿地生态脆弱性的理论与实践[J].资源开发与市场,2005,21(5):416-420.
    [33]姚建.岷江上游生态脆弱性分析及评价[D].四川:四川大学,2004.
    [34]邹君,刘兰芳,田亚平,等.地表水资源的脆弱性极其评价初探[J].资源科学,2007,29(1):92-98.
    [35]唐国平,李秀彬,刘燕华.全球气候变化下水资源脆弱性及其评估方法[J].地球科学进展,2000,15(3):313-317.
    [36]杨燕舞,张雁秋.水资源的脆弱性及区域可持续发展[J].苏州城建环保学院学报,2002,15(4):85-88.
    [37]刘绿柳.水资源脆弱性及其定量评价[J].水土保持通报,2002,22(2):41-44.
    [38]孙才志,潘俊.地下水脆弱性的概念、评价方法与研究前景[J].水科学进展,1999,10(4):444-449.
    [39]严明疆,徐卫东.地下水脆弱性评价的必要性[J].新疆地质,2005,23(3):268-271.
    [40] Duijvenbooden W V, Waegeningh H G. Vulnerability of soil and groundwater to pollutants[C]. International Conference on Vulnerability of Soil and Ground- water to Pollutants, 1987:1143.
    [41]马金珠,高前兆.干旱区地下水脆弱性特征及评价方法探讨[J].干旱区地理,2003,26(1):44-49.
    [42] National Research Council. Goundwater Vulnerability Assessment:Predicting Relative Contamination Potential Under Conditions of Uncertainty[M]. Washington:National Academy Press, 1993:204-206.
    [43]姜桂华.地下水脆弱性研究进展[J].世界地质,2002,21(1):33-38.
    [44]徐增亮.环境地质学[M].青岛:青岛海洋大学出版社,1992.
    [45]辛欣,杜超,邵文彬,等.DRASTIC指标体系法在地下水脆弱性评价中的应用[J].东北水利水电,2005,23(10):45-63.
    [46]杨晓婷.关中盆地地下水脆弱性评价指标体系与评价方法研究[D].西安:长安大学,2002.
    [47]吕谋,裘巧俊,李乃虎,等.浅谈城市供水系统安全性[J].青岛建筑工程学院学报,2005,26(1):1-4.
    [48] Yacov Y H, Nicholas C M, James H L, et al. Reducing vulnerability of water supply to attack[J]. Journal of Infrastructure System, 1998, 4(4):164-177.
    [49]杨宗贵.城镇供水安全建设问题探讨[J].福建建设科技,2006,(3):51-52.
    [50] Neil S G. Water utility security:multiple hazards and multiple barriers[J]. Journal of Infrastructure System, 2003, 9(2):81-88.
    [51]范懋功.美国供水系统的安全措施简介[J].给水排水,2002,28(9):10-12.
    [52] Tiffany J S, Ellen C E, Charles B. Comparative analysis of water assessment methodology[J]. Journal of Infrastructure System, 2006, 12(2):96-106.
    [53] Li H P. Hierarchy risk assessment of water supply system[D]. England: Loughborough University, 2007.
    [54] Cooper J A. The Markov Latent Effects approach to safety assessment and decision-making[R]. Sandia National Laboratories of USA, 2001.
    [55] Consuelo J S. Modeling threat assessments of water supply systems using Markov Latent Effects methodology[R]. Sandia National Laboratories of USA, 2006.
    [56] Tidwell V C, Cooper J A, Silva C J. Threats assessment of water supply systems using Markov Latent Effects modeling[J]. Journal of Water Resources Planning and Management, 2005, 131(3):218-227.
    [57]裴同英.规划区域供水管网安全与优化[D].天津:天津大学,2008.
    [58]魏秀平.永定河洪灾特性分析[J].河北水利科技,2000,21(2):32-35.
    [59]郭青平,万日明,万莹.天津市洪水资源化探讨[J].海河水利,2003,(2):23-25.
    [60]卫鹏飞,张翠芳.天津滨海新区新构造分区与地震活动[J].华北地震科学,1999,17(2):52-58.
    [61]马淑芹,栗连弟,岳秀霞.天津及邻区1999-2000年地震震源机制研究[J].地震地磁观测与研究,2001,22(3):17-22.
    [62]高小旺,李荷,王菁,等.供水系统抗震设防标准的研究[J].建筑科学,1999,15(4):10-15.
    [63]柳春光,张安玉.供水管网地震功能的失效分析[J].工程力学,2007,24(3):142-146.
    [64]王锡财,王彬,周光全.云南大姚6.1级地震多层砖砌体和框架房屋震害研究[J].灾害学,2004,19(3):44-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700