东昆仑五龙沟金矿集中区化探异常与遥感异常响应及成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以青海省东昆仑五龙沟金矿集中区为研究区,提出并建立了“基于单元格定量统计”的化探异常与遥感异常响应分析模型,建立了化探异常与遥感异常的响应模式;构建了“R-D成矿盲预测法”,依据化探异常与遥感异常的响应分析结果,遴选了地质异常因子,开展了成矿预测工作,取得了较好的效果。研究结果对于提高我国西部其它具有相似地质背景区域的找矿效率,加快资源勘查的进度具有重要的参考价值和应用前景。
     取得的主要研究成果如下:
     1、通过对研究区化探数据处理及评价,获得了化探异常变量。运用迭代法、趋势面法、分形法、聚类分析、因子分析等多种地球化学数据处理方法,通过整区与分区研究相结合,圈定出各类化探异常,揭示了研究区地球化学异常的空间展布规律。
     2、通过研究区遥感矿化蚀变信息提取和线性构造解译,获得了遥感异常变量。以典型蚀变矿物波谱特征为分析基础,改进了研究区ETM羟基异常和铁染异常的提取方法;利用ASTER遥感数据提取了研究区的含Al羟基、含Mg羟基、碳酸岩化和铁染异常。同时,初步提出了不同遥感蚀变异常的综合方法,综合结果为化探异常与遥感异常的响应分析提供了重要的遥感蚀变信息基础。在研究区线性构造解译基础上,对线性构造开展了密度、频度、异常方位等定量统计分析工作;通过研究区线性构造频度图和密度图,反映了研究区地质构造的空间展布特征。
     3、建立了研究区化探异常与遥感异常的响应分析模型。对化探异常与遥感异常的响应分析基础和优势进行了初步的探讨,建立了“基于单元格定量统计”的响应分析模型;提出了遥感异常与化探异常的“响应度”的概念。同时,基于GIS的空间分析功能,开展了化探异常与遥感异常的空间响应分析;在此基础上建立了化探异常与遥感异常的“强-强响应”、“强-弱响应”、“弱-弱响应”和“不响应”4种响应模式,讨论了化探异常与遥感异常不同响应模式的示矿效应。
     4、提出了“R-D成矿盲预测法”,并开展了相应的成矿预测工作。在成矿预测要素分析的基础上,利用化探异常与遥感异常的响应关系,遴选了9个地质异常变量,提出了“R-D成矿盲预测法”,克服了证据权法和特征分析法地质变量定性描述(存在与否或有利与否)的缺陷,将地质变量的空间特征作为预测因素参与到成矿预测中来;以1km×1km网格单元作为预测单元,将地质变量的异常等级、异常规模、异常展布方向等异常特征定量化,计算了预测单元的成矿有利度,预测了成矿远景区。通过与已知矿床(点)的对比分析,77%的已知金矿床(点)位于成矿远景区的影响范围内,取得了较好的效果。该方法较好地将“专家知识”与地质异常特征进行了有效地结合(或整合),计算简单、目的明确,是一种适合地质工作程度低、具研究区相同地质、地貌景观区的有效的靶区定位预测方法。
Selecting Wu Long Gou gold minerals concentrated district in East Kunlun Mountain in Qinghai Province as study area, this paper put forward a corresponding analysis model of remote sensing and goechemical anomaly, called "unit-based quantitative statistic method", set up the pattern of "corresponding degrees" that means correspondence between geochemical anomaly and remote sensing anomaly, and formed the method of "R-D metallogenic blind prognosis". According to the corresponding analysis, geological anomaly factors are selected to perform metallogenic predictation, and some innovative results have been achieved. The study results are expected to have great referential value and application prospects for elevating ore-hunting efficiency and speeding up mineral resources prospecting in similar areas.
     The main results of the research are as follows:
     1. Geochemical anomaly variables are acquired by geochemical data processing and evaluation in study area. By using methods of iteration, tendency analysis, fractal method, cluster analysis, principal factor analysis, together with geochemical zonation, spatial distribution of geochemical anomalies is revealed and delimited in this area.
     2. Remote sensing anomaly variables are acquired by extracting mineral alteration information and explaining linear structures on remote sensing data getting from the study area. Based on spectral characteristics of typical altered mineral, the method is improved to extract ETM remote sensing data of hydroxyl and ferric anomaly. Information of A1-OH hydroxy anomaly, Mg-OH hydroxy alterations, carbonatization alterations and ferric alterations are extracted by applying ASTER remote sensing data. The integrated approach to different alterations anomalies reflected by remote sensing is preliminaryly presented. Results offer an important information basis for the corresponding analysis on geochemical anomaly and remote sensing anomaly. Based on the deciphering of the linear structures in studied area, a quantitative analysis is made on density, frequentness and abnormal position of the linear structure. Finally, the spatial characters of linear structures in studied area are reflected clearly through studying density and frequency diagram of the structure.
     3. The corresponding analysis model of remote sensing and geochemical anomaly is set up. By exploring corresponding analysis basis and advantages on geochemical anomaly and remote sensing anomaly, the model of "unit quantitative statistic method" is built, and the concept of "corresponding degrees" from correspondence between geochemical anomaly and remote sensing anomaly is put forward. Based on the spatial analysis of GIS, spatial corresponding analysis is made between geochemical anomaly and remote sensing anomaly. Then, the following 4 corresponding models of "intense-intense corresponding", "intense-weak corresponding", "weak-weak corresponding", and "no-corresponding" are put forward in the paper. Finally, the illumination of metallogenic prognosis in different corresponding models is explored in the study.
     4. The method of "R-D metallogenic blind prognosis" is formed. Based on analyzing the metallogenic prediction elements by using corresponding analysis of geochemical and remote sensing anomalies, 9 geological anomaly variables are selected and "R-D metallogenic blind prognosis" is put forward. These methods help to overcome defects in qualitative description of geological variables, in the weights-of-evidence analysis and characteristic analysis. Spatial characteristics of the geological variables are taken as prognosis element in metallogenic prognosis prediction. Taking 1km×1km grid cell as prognosis unit, anomaly grade, anomaly size, anomaly azimuth of geology variable are quantified in the study, the advantageous degree of metallogenic prognosis of prognosis unit is calculated and the metallogenic prospect area is hopefully predicted.
     Through comparative analysis between metallogenic prospect area and known deposits,77% of known gold deposits are located in the metallogenic prospect area. The "R-D metallogenic blind prognosis" method combines "expert knowledge" with geology anomaly characters (concordance) preferably and effectively. With the advantages of simple calculation and definite purpose, it is also an effective prediction method for target location, suitable for the areas of inadequate geological exploration, and of similar geology and landform features.
引文
[1]张建国.国外遥感化探技术的找气应用及发展概况[M].天然气地球科学,1991,2:72-77.
    [2]杨金根,郁锦新,王洁.油气化探和遥感数据的相关研究探索[J].石油物探快讯,1991,84(6):42-49.
    [3]谭青,吴亚军,陈长胜.遥感与化探异常在油气预测中的应用[J].国土资源遥感,1996,30(4):30-35.
    [4]王津义,舒文培.藏北油气遥感-化探-植物灰分-地物短波红外细分光谱试验研究[J].地球科学-中国地质大学学报,1996,21(2):215-220.
    [5]姚俊梅,夏响华,张友焱.油气勘探中的化探遥感综合评价技术[J].国土资源遥感,2000,45(3):25-30.
    [6]叶士衡,张东升.江西信江某区遥感、化探综合信息处理[J].物探化探计算技术,1992,14(3):232-234.
    [7]刘福权.浑江市幅区域化探异常遥感评价筛选研究[J].国土资源遥感,1996,28(2):29-36.
    [8]方洪宾,李志中.遥感化探信息综合分析在地质找矿中的应用[J].国土资源遥感,1998,38(4):33-36.
    [9]杨白安,徐国瑞,邹林,等.化探与遥感信息在青海两兰地区找矿预测中的应用[J].地质与勘探,39(6):42-45.
    [10]杨自安.西部高寒山区遥感与化探信息综合找矿定位预测研究[D].北京:中国地质大学(北京),2005.
    [11]吴德文,袁继明,张远飞,等.遥感与化探数据融合处理技术方法及应用研究[J].国土资源遥感,2005,65(3):44-47.
    [12]吴德文.遥感与地面观测数据的找矿信息提取和处理技术及应用[D].北京:中国地质大学(北京),2006.
    [13]丛丽娟,岑况,黄增芳,等.内蒙古西部朱拉扎金矿遥感蚀变异常与化探异常对比研究[J].华南地质与矿产,2008,1:29-34.
    [14]沈远超,曾庆栋,刘铁兵,等.隐伏金矿定位预测[J].地质与勘探,2001,(1):1.
    [15]朱裕生,李纯杰.成矿地质背景[M].北京:地质出版社,1997:1-143.
    [16]胡惠民.大比例尺成矿预测方法[M].北京:地质出版社,1995,:1-143.
    [17]邓勇,邱瑞山,罗鑫.基于证据权重法的成矿预测——以广东省钨锡矿的成矿预测为例[J].地质通报,2007,26(9):1228-1234.
    [18]胡旺亮,吕瑞英,高怀忠,等.矿床统计预测方法流程[J].地球科学:中国地质大学学报,1995,20(2):128-132.
    [19]赵鹏大,池顺都,等.矿产勘查理论与方法[M].武汉:中国地质大学出版社,2001:1-113.
    [20]朱裕生.矿产资源潜力评价在我国的发展[J].中国地质,1999,11:31-34.
    [21]赵鹏大,王景贵,饶明辉,等.中国地质异常[J].地球科学:中国地质大学学报,1995,20(2):117-127.
    [22]赵鹏大,孟宪国.地质异常与矿产预测[J].地球科学:中国地质大学学报,1993,18(1):39-47.
    [23]赵鹏大,池顺都.当今矿产勘探问题的思考[J].地球科学:中国地质大学学报,1998,23(1):111-114.
    [24]赵鹏大,陈永清.地质异常矿体定位的基本途径[J].地球科学:中国地质大学学报, 1998,23(2):112119.
    [25]程裕琦,陈毓川,赵一鸣.初论矿床地成矿系列问题[J].中国地质科学院报,1979,1(1):32-58.
    [26]程裕琦,陈毓川,赵一鸣,等.再论矿床地成矿系列问题——兼论中生代某些矿床地成矿系列[J].地质论评,1983,29(2):127-139.
    [27]陈毓川,朱裕生,等.中国矿床成矿模式[M].北京:地质出版社,1993:1-33.
    [28]陈毓川.矿床的成矿系列[J].地学前缘,1994,1(3-4):90-94.
    [29]翟裕生.成矿系列研究问题[J].现代地质:中国地质大学研究生院学报,1992,6(3):300-307.
    [30]曾健年,范永香,等.现代成矿预测若干理论评述[J].矿产与地质,1996,10(6):361-367.
    [31]翟裕生,熊永良.关于成矿系列的结构[J].地球科学,1987,12(4):375-380.
    [32]翟裕生,姚书振,等.成矿系列研究[M].武汉:中国地质大学出版社,1996:1-28.
    [33]张贻伙.矿床模型导论[M].北京:地震出版社,1993:1-227.
    [34]朱裕生,梅燕雄.成矿模式研究的几个问题[J].地球学报,1995,2:182-189.
    [35]王世称,王於天.综合信息解译原理与矿产预测图编制方法[M].长春:吉林大学出版社,1989.
    [36]赵震宇,王世称,许亚明,等.综合信息矿产预测理论在危机矿山资源预测中的应用思考[J].世界地质,2000,21(3):283-286.
    [37]叶育鑫,杨永强,王十,等.危机矿山的综合信息矿产预测系统[J].资源与产业,2006,6(8):56-57.
    [38]李建威.矿产资源定量预测方法综述[J].地质科技情报,1995,14(4):57-64.
    [39]浦路平,赵鹏大,胡光道,等.GIS矿产资源评价中统一使用连续数据和离散数据的扩展证据权模型[J].地质科技情报,2008,27(6):102-106.
    [40]Lusted L B. Introduction to medical decision making[M]. Charles Thomas:Springfield,1968.
    [41]Ageterberg F P. Systematic approach to dealing with uncertainty of geoscience information in mineral exploration[C]//Weiss A. Application of Computers and Operations in the Mineral Industry:Proc.21st A PCOM Symp. Littleton(Las Vegas, Nevada)Colorado Society of Mining Engineers,1989:165-178.
    [42]Bonham-Carter G F, Agterberg F P, Wright D F. Weights of evidence modeling:A new approach to mapping mineral potential[M].//Agterber F P, Bonham-Carter G F. Statistical applications in the earth sciences. [S.1.]:Geol. Survey Canada,1989:171-183.
    [43]陈建平,陈勇,王全明.基于GIS的多元信息成矿预测研究——以赤峰地区为例[J].地学前缘(中国地质大学(北京):北京大学),2008,15(4):18-26.
    [44]陈永清,夏庆霖,黄静宁,等.“证据权”法在西南“三江”南段矿产资源评价中的应用[J].中国地质,2007,34(1):132-141.
    [45]丁清峰,孙丰月.专家证据权重法及其在东昆仑地区的应用[J].地质与勘探,2005,41(4):88-94.
    [46]丁清峰,孙丰月.基于专家证据权重法的成矿远景区划与评价——以东昆仑地区金矿为例[J].地质科技情报,2006,25(1):41-46.
    [47]Botbol J M. An application of characteristic analysis to mineral exploration, proceedings of 9th international symposium on techniqes for decision-making in the mineral industry. Special Volum 12[M]. Montreal, Canada:Canadian Institute of Mining and Metallurgy,1971:92-99.
    [48]肖克炎,孙建和,晋佩东,等.特征分析问题与对数线性模型研究及其应用[J].地球科学——中国地质大学学报,1995,20(2):185-190.
    [49]Lan Jun, Chen Huaxiang. The grey system and prediction of geological and resources [J]. Mathematical Geology,1992,24(6):653-662.
    [50]徐忠祥,吴国平.灰色系统理论与矿床灰色预测[M].武汉:中国地质大学出版社,1993.
    [51]刘光平,王京贵.关联分析在矿产资源研究中的应用[J].地质科技情报,1991,10(3):75-78.
    [52]徐忠祥,吴国平,周新良.灰色关联分析预测方法[J].地球科学,1994,19(1):87-93.
    [53]檀国平,刘光萍.GM(1,1)模型及其在矿床深部评价中的应用[J].有色金属矿产与勘查,1993,2(6):369-371.
    [54]王鸿儒,刘文滨,姜效典,等.模糊模式识别在成矿预测中的应用[J].地质与勘探,1990,26(4):28-33.
    [55]秦长兴,翟裕生.分形几何在矿石品位和储量估算中的应用[J].有色金属矿产与勘查,1994,3(6):363-367.
    [56]特科特DL.分形与混沌——在地质学和地球物理学中的应用[M].北京:地震出版社,1993:54-66.
    [57]徐驰,邓少汉.模式识别成矿预测技术及应用.中国地质学会数学地质专业委员会编,中国数学地质3[M].北京:地质出版社,1991:183-190.
    [58]刘吉平,张光前.论结构模式识别在成矿预测中的应用[J].地球科学,1994,19(1):127.
    [59]赵鹏大,池顺都.初论地质异常[J].地球科学——中国地质大学学报,1991,16(3):241-248.
    [60]范永香,阳正熙.成矿规律与成矿预测[M].徐州:中国矿业大学出版社,2003.
    [61]赵鹏大,陈永清,刘吉平,等.地质异常成矿预测理论与实践[M].武汉:中国地质大学出版社,1999.
    [62]肖克炎,黄文斌,晋佩东.特征分析模型研究[J].矿产与地质,1993,7(6):449-453.
    [63]郭少斌,刘招君,刘万洙,等.应用特征分析法预测松辽盆地扶余油层有利勘探区[J].石油实验地质,1994,16(2):157-163.
    [64]李堃,胡光道,段其发.基于MORPAS平台特征分析法的成矿远景区预测——以个旧西区锡多金属矿为例[J].地质科技情报,2009,28(4):65-70.
    [65]郝广成,常和平.成矿有利度分析方法在山东平邑铜石南部地区金矿综合信息成矿预测中的应用[J].山东地质,2002,18(2):16-19.
    [66]陈炳贵.香花岭地区成矿有利程度特征分析定量模型研究与应用[J].地球物理学进展,2010,25(2):663-373.
    [67]孙延贵,张国伟,郭安林,等.秦-昆三向联结构造及其构造过程的同位素年代学证据[J].中国地质,2004,31(4):372-378.
    [68]孙延贵,张国伟,王瑾,等.秦、昆结合区两期基性岩墙群40Ar/39Ar定年及其构造意义[J].地质学报,2004,78(1):65-71.
    [69]钟康惠,田承盛,寇林林,等.青海省都兰县五龙沟地区金矿成矿规律研究及大比例尺成矿预测[R].成都理工大学,2008:43-45.
    [70]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2004:98-105.
    [71]赵鹏大.定量地学方法及应用[M].北京:高等教育出版社,2004:54-55.
    [72]王建,白世彪,陈哗Surfer8地理信息制图[M].北京:中国地图出版社,2004.
    [73]阳正熙,吴堑虹,彭直兴,等.地学数据分析教程[M].北京:科学出版社,2008.
    [74]Allegre, C. J. and Lewin, E.. Scaling laws and geochemical distribution. Earth and Planetary Science Letters,1995,132:1-13.
    [75]李长江,麻土化.矿产勘查中的分形、混沌与ANN[M].北京:地质出版社,1999:1-140.
    [76]Mandelbrot, B. B.. How long is the coast of Britain? Statstical self-similatity and fractional dimension. Sci.,1967,156:636-638.
    [77]Cheng Q, Agterberg F P, BallanWne S B. The separation of geochemical anomalies from background by factal methods [J]. Journal of Geochemical exploration,1994,51:109-130.
    [78]Cheng Q. The perimeter-area factal model and its apphcation to geology [J]. Mathematical Geology,1995,27:69-82.
    [79]施俊法.地球化学异常的空间分形结构:理论与应用[D].中国地质大学(北京)博士论文,2000:1-66.
    [80]龚庆杰,张德会,韩东昱.一种确定地球化学异常下限的简便方法[J]地质地球化学,2001,29:215-220.
    [81]韩东昱,龚庆杰,向运川.区域化探数据处理的几种分形方法[J].地质通报,2004,23(7):714-719.
    [82]庄培仁,赵不亿.遥感技术及地质应用研究[M].北京:地质出版社,1986.
    [83]王润生,杨文立.遥感线性体场的定量分析[J].国土资源遥感,1992,(3):19-53.
    [84]廖崇高,陈建平,刘登中.兰坪盆地遥感地质及化探综合分析在成矿预测中的应用[J].国土资源遥感,1999,42(4):17-18.
    [85]冯佐海,梁金城,李肖峰等.平桂地区遥感线性构造的分析特征及其地质意义[J].地球学报,2002,23(6):563-566.
    [86]赵不亿,秦小光.遥感构造的定量分析方法[J].地质科技情报,1988,7(1):127-136.
    [87]陈建平,胡明铭,李巨初.康滇地轴中南段区域构造格架的遥感地质统计分析[J].成都理工学院学报,1999,26(1):78-81.
    [88]刘燕君,金丽芳.矿产信息的遥感地面模式[M].北京:地质出版社,1993.
    [89]潘彤,罗才让,伊有昌,等.青海省金属矿产成矿规律及成矿预测[M].北京:地质出版社,2006.
    [90]于学政,邓晋福,罗照华.青藏高原隆升与东昆仑地区金矿遥感地质研究[M].北京:地质出版社,1999.
    [91]李厚民,沈远超,胡正国,等.青海东昆仑五龙沟金矿床成矿条件及成矿机理[J].地质与勘探,2001,37(1):65-69.
    [92]谢学锦.勘查地球化学:发展史·现状·展望[J].地质与勘探,2002,38(6):1-9.
    [93]吴锡生,纪宏金,陈明.化探数据处理的发展、现状与趋势[J].物探化探计算技术,1994,16(1):84-88.
    [94]李随民,姚书振.基于MAPGIS的分形方法确定化探异常[J].地球学报,2005,26(6):187-190.
    [95]孙忠军.矿产勘查中化探异常下限的多重分形计算方法[J].物探化探计算技术,2007,29(1):54-57.
    [96]申维.分形混沌与矿产预测[M].北京:地质出版社,2002:18.
    [97]曹殿华,王安建,王高尚,等.勘查地球化学异常多尺度分析方法——以赣东北德兴矿集区为例[J].现代地质,2008,22(6):1028-1033.
    [98]肖克炎,徐金芳,严光生,等.区域地球化学异常分析GIS系统及其应用[J].地质论评,2000,46(增刊):134-140.
    [99]L.H. Ahrens. The Lognormal Distribution of the Elements, Geoch. Cosmoch.Acta,1954,5(2).
    [100]Krige, D. G. Two-dimensional Weighted Moving Average Trend Surface for Ore Valuation. Proc. Symp. Math. Satist. Comput. Appl.S. Afr.Inst. Min. Metal., Johannes-burg,1966.
    [101]Levinson A A. Introduction to Exploration Geochemistry.2nd ed. Chicago: Wilmette Applied Pub,1976:1-924.
    [102]孟宪伟,窦明晓,余先川.地球化学场分解的理论与方法[J].地球科学进展,1994,9(6):59-64.
    [103]Xie Xuejin. Surficial Geochemical Expressions of Giant Ore Deposites[A]. Hodgson C J, Clark A H. Giant Ore Deposits Ⅱ[C]. Kingston, Canada:Queen's University, 1995:475-485.
    [104]谢学锦,刘大文,向运川,等.地球化学块体-概念和方法学的发展[J].中国地质,2002,29(3):225-233.
    [105]王学求.大型矿床地球化学定量评价模型和方法[J].地学前缘(中国地质大学,北京),2003,10(1):257261.
    [106]朱华平,张德全.区域化探异常的地球化学勘查评价方法技术进展综述[J].地质与勘探,2003,39(2):35-38.
    [107]王瑞廷,毛景文,任小华,等.区域地球化学异常评价的现状及其存在的问题[J].中国地质,2005,32(1):168-173.
    [108]任天祥,伍宗华,汪明启.近十年化探新方法新技术研究进展[J].物探与化探,1997,21(6):411-417.
    [109]朱有光,李泽九,胡以铿,等.区域地球化学异常系统评价的思路与方法[J].地质科技情报,1997,16(2):97-103.
    [110]杨利民,杨自安,罗铁良,等.青海两兰地区化探异常筛选评价的新方法研究[J].地质与勘探,2007,43)(5):77-81.
    [111]Erickson, R. L. Crustal abundance of elements and mineral reserves and resources, U.S. Geol. Surv. Profess paper,1973:21-25.
    [112]HAWKES H E. The Downstream Dilution of Stream Sediment Anomailies[J]. J Geochem Explor,1976,6:345-358.
    [113]Korb A R, et al. Portable FTIR Spectrometer for Field Measurements of Radiance and Emissivity. Applied Optics.1996,35:1679-1692.
    [114]Gupta R P. Remote Sensing Geology. Springer-Verlag Berlin Heidelberg,1991:1-356.
    [115]地质情报研究所.遥感专辑(第一辑),矿物岩石的可见—中红外光谱及其应用[M].北京:地质出版社,1980:193-206.
    [116]Hunt G R, Salisbury J W. Assessment of Landsat Filters for Rock Type Discrimi-nation. Based on Intrinsic Information in Laboratory Spectra [J].Geophysis, 1978,43:738-748.
    [117]燕守勋,张兵,赵永超等.矿物与岩石的可见—近红外光谱特性综述[J].遥感技术与应用,2003,18(4):191-199.
    [118]张廷斌,唐菊兴,黄丁发.矿化蚀变信息提取的TM/ETM+遥感影像模式[M].遥感信息,2009,2:47-51.
    [119]Colins W填绘热液蚀变岩带机载分光辐射计数据的分析及陆地卫星数据的应用[A].地质部情报研充所,遥感专辑—矿物岩石的可见—中红外光谱及其应用,第一辑[M].北京:地质出版社,1980:358-572.
    [120]Abrams, M. J, Ashley, R. P., Brown, L. C., Goetz, A. F. H., KaMe, A. B. Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanning images for the spectral region 0.46 to 2.36mm[J]. Geology,1977(5): 713-718.
    [121]Rowan, L. C., Goetz, A. F. H. and Ashley, R.P. Discrimination of Hydrothermally Altered and Unaltered Rocks in Visible and Near-infrared Multispectral Images [J]. Geophysics,1977(42):522-535.
    [122]刘燕君.遥感图象中矿产信息的再现及其意义[J].科学通报,1983(16):995-997.
    [123]赵元洪,张福祥,陈南峰.波段比值的主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,9(3):12-16.
    [124]Crosta A P, McM Moore J. Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minais Gerrain. Proceedings of the 7th (ERIM) Thematic Conference:Remote Sensing for Exploration Geology, Calgary,1989:1173-1187.
    [125]Loughlin W P. Principal component analysis for alteration mapping. Proceedings of the 8th Thematic Conference on Geologic Remote Sensing, Denver, USA.1991:293 306.
    [126]张满郎.金矿蚀变信息提取中的主成份分析[J].遥感技术与应用,1996,11(3):1-6.
    [127]马建文.利用ETM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,1(3):208-213.
    [128]张玉君,杨建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,36(2):46-53.
    [129]张玉君,杨建民,姚佛军.多光谱遥感技术预测矿床资源的潜能——以蒙古国欧玉陶勒盖铜金矿床为例[J].地学前缘(中国地质大学(北京);北京大学),2007,14(5):63-70.
    [130]Knlse. F. A, Lefkoff. A. B, Boardman. J. B., Heidebrecht. K. B. ect. The Spectral Image Processing System (SIPS) Interactive Visualization and Analysis of Imaging Spectrometer DataJ.Remote Sensing of Environment,1993(44):145-163.
    [131]刘志杰,韩先菊,刘荫椿.比值-特征主成份混合分析提取金矿蚀变信息——以赣南遂川地区威力[J].黄金地质,1998,4(1):74-77.
    [132]朱小鸽.多重主成份分析及在地质构造信息提取中的应用[J].遥感学报,2000,4(4):299-303.
    [133]陈松龄,卢福宏,高光明等.华北地台北缘内蒙古段金矿围岩蚀变的遥感识别[j].国土资源遥感,2001,48(2):13-18.
    [134]吴昀昭,田庆久,陈骏,等.新疆哈密黄山地区多金属矿床遥感地质信息提取与找矿模式研究[J].高校地质学报,2004,10(1):114-119.
    [135]傅文杰.基于光谱相似尺度的遥感矿化蚀变信息提取[J].地质找矿论丛,2008,23(2):161-164.
    [136]Williams R S, Southworth C S. Remote Sensing Makes Important Gains [J]. Geotimes, 1984,8:13-15.
    [137]Gupta R P. Remote Sensing Geology [J]. Springer-Verlag Berlin Heidelberg,1991.
    [138]甘甫平,王润生,马蔼乃,等.光谱遥感岩矿识别基础与技术研究进展[J].遥感技术与 应用,2002,17(3):140-147.
    [139]陈江,付建飞.先进星载热发射和反射辐射仪(ASTER)——地质学家的最佳选择[J].地质通报,2006,25(5):649-652.
    [140]张廷斌,钟康惠,易桂花,等.东昆仑五龙沟金矿集中区遥感地质信息提取与找矿[J].地质与勘探,2009,45(4):444-449.
    [141]易桂花,张廷斌,倪师军,等.五龙沟金矿集中区化探异常与遥感蚀变异常的综合分析[J].中国矿业,19(12):104-106.
    [142]Clark R N, Swayze G A. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice, and snow, and other materials [A]. In The USGS Tricorder Algorithm:in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop[C]. JPL Publication,1995:39-40.
    [143]Kruse F A, Perry S I, Caballero A. Integrated Multispectral and Hyperspectral Mineral Mapping, Los Menucos. Rio Negro [A]. In:Part Ⅱ: EO-1 Hyperion/AVIRIS Comparisons and Landsat TM/ASTER Extensions[C]. Argentina,2002.
    [144]Allegre C J, Lewin E. Scaling laws and geochemical distributions [J]. Earth and Planetary Letters,1995(132):1-13.
    [145]Qiuming Cheng, Agterberg F P, Bonham-Carter G F. A spatial analysis method for geochemical anomaly separation [J]. Explor Geochem,1996(56):183-195.
    [146]H. Kuyzl. Exploratory data analysis:Recent advance for the interpretation of geochemical data [J]. Explor Geochem,1988:1-22.
    [147]Rose, A. W., Danberg, E. C. and Keith, M. L. A Multiple Regression Technique for Adjusting Background Values in Streamsediment Geochemistry [J]. Econ. Geol., 1970(65):156-165.
    [148]K. Rankama and T. G. Sahama. Geochemistry [M].Chicago,1950.
    [149]Plant J A, slater D. Regional geochemistry-potential developments. Trans Instn Min. Metal [J]. (Sect. B:Appl. earth sci.) 1986(95):B63-B70.
    [150]Rose A W, Hawkers H E, and Webb J S. Geochemistry in mineral exploration (2nd ed) [M]. New York, 1979.
    [151]Bolviken B. Stoke P R and Feder J, et al. The fractal nature geochemical landscapes [J]. Geochemical Exploration,1992(43):91-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700