色谱与电色谱纯化头孢菌素C及蛋白质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色谱是分离纯化化学物质和生物物质的常用技术。电色谱,又称电层析,是电泳与色谱相结合的分离技术,即在色谱分离过程中引入电场以提高色谱的分离性能,是近年来国内外液相色谱技术的一个重要发展方向。
     本文将色谱技术与轴向电场耦合,研究了此种电色谱在生物物质(包括小分子头孢菌素C和大分子蛋白)分离方面的作用,并与色谱技术的分离效果作了比较。
     本文的实验内容,包括分离纯化头孢菌素C钠盐,从鸡卵清中分离溶菌酶,以及分离牛血清白蛋白、牛血红蛋白、牛胰核糖核酸酶和溶菌酶4种蛋白的混合物;用HPLC检测头孢菌素C,用Bradford法测定蛋白含量,用SDS-聚丙烯酰胺凝胶电泳检测蛋白的分离效果。
     首先考察了在HPLC测定头孢菌素C的过程中,样品中有机溶剂含量的影响,发现乙醇等有机溶剂对测定有干扰,但可以通过用水稀释样品以减少这种干扰。
     用HP-20大孔吸附树脂为固定相,探索了在通电和不通电情况下分离头孢菌素C的效果。结果发现,色谱分离能够使头孢菌素C钠盐水溶液的纯度从87.3%提高到93.5%,提取收率87.0%;电色谱可以将纯度从89.0%提高到93.3%,提取收率94.5%,收率比色谱有所提高。电色谱法在分离亲水性小分子头孢菌素C方面展示了良好的分离效果。
     在蛋白分离方面,采用CM-52羧甲基纤维素为固定相,研究了从天然鸡卵清中分离溶菌酶,结果发现用聚焦电色谱法和普通离子交换色谱法从天然鸡卵清中分离溶菌酶都是可行的,且分离效果接近,然而聚焦电色谱法所需时间缩短了近一半,提高了分离效率。分离4种蛋白的混合物(牛血清白蛋白、牛血红蛋白、牛胰核糖核酸酶和溶菌酶),结果通电和不通电两种情况在各自的最适pH组合下的分离效果接近,但通电时牛血清白蛋白和溶菌酶的回收率明显提高。
     综上所述,电色谱法在生物物质的分离方面有着良好的效果,特别是在产品回收率以及分离时间方面优势突出,表明了电色谱技术潜在的应用价值。同时也应看到,色谱与电泳技术的整合是一个复杂的过程,还需要更多的实验研究。
Chromatography is a common method to purify chemical and biological substances. Electrochromatography, a novel separation technique which has been attempted at home and abroad recently, couples liquid chromatography with electrophoresis by introducing an electric field into the column in order to improve the capacity of separation.
     In this thesis, the role of electrochromatography in purification and separation of biological materials was investigated and compared with chromatography in many ways.
     Experiments include purification of cephalosporin C, separation of lysozyme from egg white and separation of the mixture of bovine serum albumin, bovine hemoglobin, bovine pancreas ribonuclease and lysozyme. The amounts of cephalosporin C and protein were determined by HPLC and Bradford method respectively, and the separation effect of proteins was examined with SDS-polyacrylamide gel electrophoresis.
     The influence of organic solvents on determination of cephalosporin C by HPLC was first investigated. Experimental results showed that ethanol had the greatest negative impact. However, by diluting the cephalosporin C solution containing ethanol to certain extent, this influence could be effectively eliminated.
     Macroporous resin HP-20, which is commonly used to separate cephalosporin C, was attempted to purify CPC-Na in solution with/without electric field. Experimental results showed that the electrochromatography behaved better in separation of cephalosporin C than chromatography in terms of recovery. The purity of cephalosporin C was increased from 89.0% to 93.3% by electrochromatography, while from 87.3% to 93.5% by chromatography. Recovery rates by electrochromatography and chromatograph were 94.5% and 87.0% respectively. It was shown that electrochromatography had better performance on separation of hydrophilic small molecule cephalosporin C.
     Carboxymethyl cellulose CM-52 was selected as the separation medium to separate lysozyme from egg white. Experimental results showed that although focusing electrochromatography had the same separation effect as ordinary ion-exchange chromatography, it only consumed nearly half of the time compared with the latter, thus greatly improving separation efficiency. The mixture of bovine serum albumin, bovine hemoglobin, bovine pancreas ribonuclease and lysozyme was separated with or without electric field respectively in most suitable series of pH. Experimental results showed that separation effects were close in both conditions. However, the recovery yields of bovine serum albumin and lysozyme were markedly increased with electric field.
     In conclusion, electrochromatography has good separation performance of biological substances, especially in the product recovery and separation time, which illustrates its potential in industrial applications. However, it should also be seen that coupling liquid chromatography with electrophoresis is a complex process, and more experimental studies are needed in future.
引文
[1]童海宝.生物化工[M].北京:化学工业出版社, 2001年
    [2]席全胜,钱欣国,甘人宝. EGF家族研究进展[J].生命的化学, 1999, 19(3): 135-137
    [3]陈红,张承红.超临界流体萃取及其在我国的研究应用进展[J].化学进展, 1999, 11(3): 227-238
    [4]俞俊棠,唐孝宣.生物工艺学[M].上海:华东化工学院出版社, 1991年
    [5]毛忠贵.生物工业下游技术[M].北京:中国轻工业出版社, 1999年
    [6]严希康.生化分离工程[M].北京:化学工业出版社, 2001年
    [7] Richardson P, Hoare M, Dunnill P. A new biochenmical engineering approach to the fractional precipitation of proteins [J]. Biotech Bioeng, 1990, 36(4): 354-366
    [8] Cole KD. Preparative concentration and size fractionation of DNA by porous media using a combination of flow and low electric field strength [J]. Biotechnol Prog, 1997, 13: 289-295
    [9] Nurok D. Planar electrochromatography [J]. J Chromatogr A, 2004, 1044: 83-96
    [10] Nurok D, Koers JM, Carmichael MA. Role of buffer concentration and applied voltage in obtaining a good separation in planar electrochromatography [J]. J Chromatogr A, 2003, 983: 247-253
    [11] Howard AG, Shafik T, Moffatt F, et al. Electroosmotically driven thin-layer electrochromatography on silica media [J]. J Chromatogr A, 1999, 844: 333-340
    [12] Nurok D, Koers JM, Novotny AL, et al. Apparatus and initial results for pressurized planar electrochromatography [J]. Anal Chem, 2004, 76: 1690-1695
    [13] Tate PA, Dorsey JG. Characterization of flow and voltage profiles in planar electrochromatography [J]. J Chromatogr A, 2005, 1079: 317-327
    [14] Knox JH, Kriz J, Adamcova E. Retention relationships for aromatic-hydrocarbons eluted from capped and uncapped octadecyl silica-gels [J]. J Chromatogr, 1988, 447(1): 13-27
    [15]魏伟,王义明,罗国安等.毛细管电色谱研究进展[J].分析化学, 1997, 3: 361-365
    [16] Yamamoto H, Baumann J, Erni F. Electrokinetic reversed-phase chromatography with packed capillaries [J]. J Chromatogr, 1992, 593: 313-319
    [17] Tsuda T. Electrochromatography using high applied voltage [J]. Anal Chem, 1987, 59: 521-523
    [18] Tsuda T. Chromatographic behavior in electrochromatography [J]. Anal Chem, 1988, 60: 1677-1680
    [19] Tellez CM, Cole KD. Preparative electrochromatography of proteins in various types of porous media [J]. Electrophoresis, 2000, 21: 1001-1009
    [20] Nerenberg ST. Adapter for a macromolecule separation device [P]. US Patent, No. 3640813, 1972
    [21] Keim C, Ladisch M. New system for preparative electrochromatography of proteins [J]. Biotech Bioeng, 2000, 70: 72-81
    [22] Ivory CF, Gobie WA. Continuous counteracting chromatographic electrophoresis [J]. Biotechnol Prog, 1990, 6: 21-32
    [23] Rathore AS, Reynolds KJ, Colón LA. Joule heating in packed capillaries used in capillary electrochromatography [J]. Electrophoresis, 2002, 23: 2918-2928
    [24] Salak J, Roch P. Isolation of immunoglobin M from human serum by gel chromatography and electrochromatography on a column of Sephadex G-200 [J]. J Chromatogr, 1972, 71: 459-463
    [25] Whitehead JS, Kay E, Lew JY. A preparative column eletrophoresis apparatus using Sephadex G-25 [J]. Anal Biochem, 1971, 40: 287-291
    [26] Otsuka S, Listowsky I. High-resolution preparative electrochromatography for purification of twosubunit types of ferritin [J]. Anal Biochem, 1980, 102: 419-422
    [27] Rudge SR, Basak SK, Ladisch MR. Solute retention electrochromatography by electrically induced sorption [J]. AIChE J, 1993, 39: 797-808
    [28] Cole KD, Cabezas Jr H. Recent progress in the electrochromatography of proteins [J]. Appl Biochem Biotechnol, 1995, 54: 159-172
    [29] Cole KD, Todd P, Srinivasan K, et al. Free-solution electrophoresis of proteins in an improved density gradient column and by capillary electrophoresis [J]. J Chromatogr A, 1995, 707: 77-85
    [30] Cole KD, Cabezas H. Improved preparative electrochromatography column design [J]. J Chromatogr A, 1997, 760: 259-263
    [31] Keim C, Ladisch M. Model for temperature profiles in large diameter electrochromatography columns [J]. AIChE J, 2003, 49: 402-410
    [32] Basak SK, Velayudhan A, Kohlmann K, et al. Electrochromatographic separation of proteins [J]. J Chromatogr A, 1995, 707: 69-76
    [33] Tan G, Shi Q, Sun Y. Retention behavior of protein in size-exclusion electrochromatography with a low-voltage electric field perpendicular to the liquid phase steamline [J]. Electrophoresis, 2005, 26: 3084-3093
    [34] Liu Z, Yin G, Feng S, et al. Oscillatory electroosmosis-enhanced intra/inter-particle liquid transport and its primary applications in the preparative electrochromatography of proteins [J]. J Chromatogr A, 2001, 921: 93-98
    [35] Yin G, Liu Z, Zhou R, et al. Mass transport characteristics and chromatographic behavior of preparative electrochromatography on hydroxyapatite [J]. J Chromatogr A, 2001, 918: 393-399
    [36] Tan G, Shi Q, Sun Y. Oscillatory transverse electric field enhances mass transfer and proteincapacity in ion-exchange electrochromatography [J]. J Chromatogr A, 2005, 1098: 131-137
    [37] Tan G, Dong X, Sun Y. Oscillatory transverse electric field enhances protein resolution and capacity of size-exclusion chromatography [J]. J Sep Sci, 2006, 29: 684-690
    [38] Yuan W, Zhao G, Dong X, et al. High-capacity purification of hen egg-white proteins by ion-exchange electrochromatography with an oscillatory transverse electric field [J]. J Sep Sci, 2006, 29: 2383-2389
    [39] Jia G, Dong X, Sun Y. Dye-ligand affinity electrochromatography with transverse and/or longitudinal electric field [J]. Sep Purif Technol, 2008, 59: 277-285
    [40] Rudge SR, Ladisch MR. Electrochromatography [J]. Biotechnol Prog, 1988, 4(3): 123-132
    [41] Janson JC, Lars R. Protein Purification: Principles, high resolution methods, and application [M]. New York: VCH, 1989
    [42] Sluyterman LAAE, Elgersma O. Chromatofocusing: Isoelectric focusing on ion-exchange columns. I. General principles [J]. J Chromatogr A, 1978, 150(1): 17-30
    [43] Sluyterman LAAE, Wijdenes J. Chromatofocusing: Isoelectric focusing on ion-exchange columns. II. Experimental verification [J]. J Chromatogr A, 1978, 150(1): 31-44
    [44] Sluyterman LAAE, Wijdenes J. Chromatofocusing. III. The properties of a DEAE-agarose anion exchanger and its suitability for protein separations [J]. J Chromatogr, 1981, 206(3): 429-440
    [45] Sluyterman LAAE, Wijdenes J. Chromatofocusing. IV. Properties of an agarose polyethyleneimine ion exchanger and its suitability for protein separations [J]. J Chromatogr, 1981, 206(3): 441-447
    [46] Sluyterman LAAE, Kooistra C. Ten years of chromatofocusing: A discussion [J]. J Chromatogr, 1989, 470(2): 317-326
    [47] Jungbauer A, Tauer C, Wenisch E, et al. Isolation of isoproteins from monoclonal antibodies andrecombinant proteins by chromatofocusing [J]. J Chromatogr, 1990, 512: 157-163
    [48] Shan L, Anderson DJ. Gradient chromatofocusing. Versatile pH gradient separation of proteins in ion-exchange HPLC: Characterization studies [J]. Anal Chem, 2002, 74(21): 5641-5649
    [49] Strong JC, Frey DD. Experimental and numerical studies of the chromatofocusing of dilute proteins using retained pH gradients formed on a strong-base anion-exchange column [J]. J Chromatogr A, 1997, 769(2): 129-143
    [50] Kang X, Frey DD. Chromatofocusing using micropellicular column packings with computer-aided design of the elution buffer composition [J]. Anal Chem, 2002, 74(5): 1038-1045
    [51] Bates RC, Frey DD. Quasi-linear pH gradients for chromatofocusing using simple buffer mixtures: Local equilibrium theory and experimental verification [J]. J Chromatogr A, 1998, 814(1-2): 43-54
    [52] Shan L, Anderson DJ. Effect of buffer concentration on gradient chromatofocusing performance separating proteins on a high-performance DEAE column [J]. J Chromatogr A, 2001, 909(2): 191-205
    [53] Kang X, Frey DD. High-performance cation-exchange chromatofocusing of proteins [J]. J Chromatogr A, 2003, 991(1): 117-128
    [54] Bjellqvist B, Ek K, Righetti PG, et al. Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications [J]. J Biochem Biophys Meth, 1982, 6(4): 317-339
    [55] Gokana A, Winchenne JJ, Ben-Ghanem A, et al. Chromatographic separation of recombinant human erythropoietin isoforms [J]. J Chromatogr A, 1997, 791(1-2): 109-118
    [56] Lasne F, Martin L, Crepin N, et al. Detection of isoelectric profiles of erythropoietin in urine: Differentiation of natural and administered recombinant hormones [J]. Anal Biochem, 2002, 311(2): 119-126
    [57] Breidbach A, Catlin DH, Green GA, et al. Detection of recombinant human erythropoietin in urine by isoelectric focusing [J]. Clin Chem, 2003, 49(6): 901-907
    [58] Nagano M, Gmeiner G, Reichel C, et al. Detection of isoforms of recombinant human erythropoietin by various plant lectins after isoelectric focusing [J]. Electrophoresis, 2005, 26(9): 1633-1645
    [59] Hunt G, Moorhouse KG, Chen AB. Capillary isoelectric focusing and sodium dodecyl sulfate - Capillary gel electrophoresis of recombinant humanized monoclonal antibody HER2 [J]. J Chromatogr A, 1996, 744(1-2): 295-301
    [60] Kim NS, Chang KH, Chung BS, et al. Characterization of humanized antibody produced by apoptosis-resistant CHO cells under sodium butyrate-induced condition [J]. J Microbiol Biotechnol, 2003, 13(6): 926-936
    [61] Rauch SD. Transferrin microheterogeneity in human perilymph [J]. Laryngoscope, 2000, 110(4): 545-552
    [62] Han KO, Moon KS, Yang J, et al. Effect of N-acetylcystein on butyrate-treated chinese hamster ovary cells to improve the production of recombinant human interferon-β-1a [J]. Biotechnol Prog, 2005, 21(4): 1154-1164
    [63] Hyuga M, Itoh S, Kawasaki N, et al. Analysis of site-specific glycosylation in recombinant human follistatin expressed in Chinese hamster ovary cells [J]. Biologicals, 2004, 32(2): 70-77
    [64] Stastna M, Slais K. Two-dimensional gel isoelectric focusing [J]. Electrophoresis, 2005, 26(18): 3586-3591
    [65] Wenisch E, Vorauer K, Jungbauer A, et al. Purification of human recombinant superoxide dismutase by isoelectric focusing in a multicompartment electrolyzer with zwitterionic membranes [J].Electrophoresis, 1994, 15(5): 647-653
    [66]曹伟然.头孢菌素C提取方法的进展[J].抗生素, 1981, 6(5): 47-56
    [67] Kalyanpur M, Skea W, Siwak M. Isolation of cephalosporin C from fermentation broths using membrane systems and high-performance liquid chromatography [J]. Development of Industrial Microbiology, 1985, 26: 455-470
    [68] Hano T.头孢菌素C的反应性萃取[J].国外医药抗生素分册, 1993, 14(5): 333-336
    [69]杨基础,马俊芬.头孢菌素C反应性萃取的初步研究,Ⅰ萃取体系的选择,Ⅱ萃取工艺条件[J].中国抗生素杂志, 1997, 22(4): 254-263
    [70]朱自强,关怡新等.双水相萃取在抗生素制备中的应用进展[J].国外医药抗生素分册, 1998, 19(3): 198-200
    [71] Yang WY. Extraction of cephalosporin C from whole broth and seperation of desacetyl cephalosporin C by aqueous two-phase partition [J]. Biotech Bioeng, 1994, 43(6): 439-445
    [72] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72: 248-254
    [73]国家药典委员会.中华人民共和国药典(2005年版,一部)[M].北京:化学工业出版社, 2005年
    [74]吴振洁,郭伟斌,张启国等.反相高效液相色谱法同时测定多种头孢菌素的研究(I) [J].色谱, 1999, 17(6): 518-521
    [75]涂晓真,杨志杰,付丽娟.反相高效液相色谱对多种头孢菌素的分离和测定[J].中国药师, 2003, 6(10): 634-635, 637
    [76]赵军,朱晨,韩玲.反相高效液相色谱法同时分离和测定多种头孢菌素[J].山东大学学报(理学版), 2006, 41(4): 145-147, 151
    [77]刘雪惠,任宝明,付亚冰.利用HPLC方法快速测定发酵液中头孢菌素C效价[J].黑龙江医药,1996, 9(3): 138-139
    [78]张君颖.高效液相色谱法测定头孢菌素C钠含量[J].黑龙江医药, 2003, 16(3): 174-175
    [79]侯春秋,王其南.头孢菌素的高效液相色谱法测定[J].国外医药抗生素分册, 1989, l0(2): 88-92
    [80]张静霞,唐克慧.头孢菌素类抗生素的质量分析方法[J].国外医药抗生素分册, 2008, 29(4): 164-169
    [81]孙涛,赵凤生.聚焦电层析分离牛血清白蛋白和牛血红蛋白[J].药物生物技术, 2009, 16(2): 136-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700