基于受激发射损耗原理的超分辨成像与纳米加工关键技术的理论模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文“基于受激发射损耗原理的超分辨成像与纳米加工关键技术的理论模拟与实验研究”,将矢量衍射积分理论运用于连续光受激发射损耗(CW STED)显微系统的研制中。并在此基础上,探讨了CW STED显微系统在远场光学超分辨成像技术、宏观纳米结构制备技术、流体动力学等研究领域中的基础性科学性与技术问题。该研究工作,为进一步探索具有更高空间分辨能力的超分辨光学技术,并拓展该项技术的在相关学科领域的应用奠定了理论与实验基础
     STED显微技术的核心思想是利用具备一定空间结构的消激发光束选择消除荧光激发,从而压缩了荧光点扩散函数达到突破衍射极限的目的。因此,在STED技术中,消激发光的空间结构、光强分布等因素极大的影响了STED显微技术的分辨率。论文首先阐述了利用矢量衍射积分理论描述高数值孔径汇聚光系统光线的方法,并在此基础上建立了计算连续激光CW STED显微系统焦点光场分布的理论模型。通过使用多种光束偏振态配合多种光学相位调制方案,计算获得了焦平面处消激发光的仿真图案,并且对能够有效压缩激点扩散函数的消激发光空间结构的特点,以及它们在STED系统的分辨率改进方而做了详细分析与讨论。此外,由于光学系统的初级像差的存在会对消激发光的分布造成影响,造成STED系统分辨率的下降。本文利用焦点光场的计算模型,模拟了初级像差,特别是多重初级像差同时存在时激发光、消激发光在焦点的光强分布的空间特点,并进行了具体系统的分析。这些工作对于更深入的认识STED显微成像技术的关键技术具有理论指导意义。
     STED显微技术为远场纳米加工提供了新的理念,在本论文中,基于自己搭建的CW STED系统,我们探索了使用具有环形结构的可见光加工纳米柱/纳米孔技术。在我们搭建的可见光激光直写系统中,采用了中心波长为532nm的CW绿光,通过相位为0-2Pi旋转变化的涡旋相位板对激光波前进行调制来获得环形结构的曝光光束。当曝光光束照射到正光刻胶表面时,由于这种中空的环形光束结构使得光照区域的中央不能被曝光从而形成柱状的纳米结构;当使用负性光刻胶时,经曝光后产生的是纳米孔结构。实际制备实验中,我们在一类正光刻胶薄膜表面成功的制造出了纳米柱阵列,AFM显微镜测量结果显示所制造的纳米柱直径大小可以达到1/11入射波长—远小于衍射极限尺寸。实验制造中存在的图案的变形,通过比较多像差衍射积分理论进行模拟计算,能够得到合理可信的解释。
     本论文的第三部分工作,基于我们搭建的CW STED系统,开展了激光与多种荧光试剂的相互作用的研究。实验测试了多种荧光试剂的激发与消激发效果,并对某些试剂在强的激发光与消激发光共同作用下所引发的独特的非线性效应做了分析与探讨。研究结果为进一步提高CW STED技术分辨能力、研究荧光分子的非线性效应提供了重要的参考。我们搭建的这套CW STED显微系统,对涂覆了荧光颗粒的样品成像,具有70nm的分辨力。基于这套CW STED显微系统结合激光诱导荧光漂白测速技术可以实现对纳米通道内流体速度剖面的测量,这将为芯片实验室、纳米传感器等的研究做出重要贡献。
     本博士论文中,首先通过数值模拟的方法,研究了STED显微技术中影响分辨率的关键技术,为进一步改进STED显微技术奠定了理论模拟基础。其次,基于CWSTED系统,提出了一种新型、简单、经济的利用CW可见光制造纳米尺度以下纳米柱与纳米孔的方法。此外,利用自建的CW STED系统,研究了多种荧光试剂的受激发射损耗的效果。本论文的工作为完善远场光学超分辨成像的理论与技术、进一步提高其分辨能力、扩展其在相关研究领域的应用提供了一些新的思路与方法。
A number of techniques of nano imaging, fabricating, fluid velocity measuring based on the continuous wave (CW) stimulated emission depletion (STED) system have been studied by using vectorial diffraction integral theory and a self-made CW STED system in this Ph D project. It lays theoretical and experimental foundation for resolution improving and new application developing of the far-field super resolving technology.
     The core ideology of STED technology is to confine the point spread function (PSF) of the fluorescence to a sub-diffraction size with a certain structural depletion beam. Therefore,the spatial structure and the intensity distribution properties are a kind of dominating factors of the resolution.In this project, the theoretical model for focal field calculation of CW STED system has been built up based on vectorial diffraction integral theory which is applied for focusing light investigating in high numerical aperture system.The depletion focal patterns engineered by applying the variety of phase plates with different polarized laser are obtained in the calculation; the characters of the efficient PSF compressing STED structures, as well as the improvements on resolution, are analyzed and discussed in detail.. In addition, the primary aberrations cause the decline of the resolution. Therefore, the primary aberration effects, especially the combined influence of the primary aberrations on depletion beam have been studied by utilizing the theoretical model. The study is instructive for the insightful understanding of the key element of the STED technology.
     The STED technology has inspired new approaches for the far-field nano fabrication. In this project, a nanopillar/pore fabrication method based on a CW visible laser direct writing system derived from a CW STED system is proposed. In the experiment, a visible laser with center wavelength at532nm is modulated by a0-2Pi spiral phase plate to generate a donut-shaped exposure beam. The photoresist at the center of the focal spot will not be exposed due to the zero intensity dark core of the donut-shaped pattern. A kind of nanopillar structure will be obtained when a positive-tone photoresist is adopted, while nanopore structure will be fabricated when using a negative-tone photoresist in lithography. In the experimental fabrication, a kind of nanopillar array has been obtained successfully on a positive film with the pillar's diameter can achieve1/11of the incident wavelength, far smaller than the diffraction limitation. The transformation of the experiment results are explained reasonably with the multiple aberrations theory. This study has proposed and realized a novel, simple, efficient and cost-saving nanopillar/pore fabricating method with CW visible light.
     In the third part of the thesis, a STED system using CW lasers is built up and applied for the fluorescence depletion efficiency study. Moreover, the nonlinearly phenomenon that might be induced by the strong excitation and depletion field in some reagents are analyzed and discussed; it provides valuable references for resolution improving and the nonlinearly fluorescence effect studying in STED technology. In addition, the imaging of fluorescent particles has been obtained based on the CW STED system with the resolution achieving70nm. The velocity profile in nano channels also been measured by combining the system with laser induced photobleaching method, which will make a great contribution for the key technologies of lab-on-chip and nano sensing.
     In this project, the theoretical model for CW STED system has been built up for the study of the key techniques of the STED technology firstly. Then, based on CW STED system, a novel, simple and cost-saving nanopillar/pore fabrication method has been proposed. In addition, the depletion efficiency of variety dyes has been studied with a self-made CW STED system. The super resolution imaging and micro fluid measuring has been presented. In sum, this doctoral project provides some new thoughts and approaches for further improving the resolution and exploring the new applications of the far-field super-resolution technology.
引文
[1]Hooke R.1665. Micrographia London.1961.
    [2]Yang J, Xu W. Scanned-cantilever atomic force microscope with large scanning range. Chinese Optics Letters.2006;4(10):580-2.
    [3]杨金涛,徐文东.针尖扫描原子力显微镜的光点跟踪设计[J].中国激光.2006;33(1):26-30.
    [4]吴世法,章健,潘石,简国树,李银丽,孙伟,et al.原子力与光子扫描隧道组合显微镜.光学学报.2005;25(8):1099-104.
    [5]Davidson MW, Abramowitz M. Optical microscopy. Encyclopedia of imaging science and technology.2002.
    [6]Bradbury S, Bracegirdle B. Introduction to light microscopy. RMS Microscopy Handbooks,42:Oxford, UK.:Bios Scientific publishers; 1998.
    [7]Holthoff K, Witte OW. Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. The Journal of neuroscience.1996;16(8):2740-9.
    [8]Shaw PJ, Rawlins DJ. The point-spread function of a confocal microscope:its measurement and use in deconvolution of 3-D data. Journal of Microscopy. 1991;163(2):151-65.
    [9]Williams CS, Becklund OA. Introduction to the optical transfer function:Wiley New York etc; 1989.
    [10]Rayleigh L.XH. On the manufacture and theory of diffraction-gratings. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1874;47(310):81-93.
    [11]Born M, Wolf E. Principles of optics:electromagnetic theory of propagation, interference and diffraction of light:CUP Archive; 1999.
    [12]Henry B, Adler J, Hibberd S, Cheema M, Davis S, Rogers T. Epi-fluorescence Microscopy and Image Analysis Used to Measure Diffusion Coefficients in Gel Systems. Journal of pharmacy and pharmacology.1992;44(7):543-9.
    [13]Lakowicz JR. Principles of fluorescence spectroscopy:Springer; 2009.
    [14]刘立新,屈军乐,林子扬,陈丹妮,胡涛,郭宝平,et al.用于双光子激发荧光寿命显微成像的高重复频率皮秒扫描相机.2006.
    [15]Suhling K, French PM, Phillips D. Time-resolved fluorescence microscopy. Photochemical & Photobiological Sciences.2005;4(1):13-22.
    [16]Festy F, Ameer-Beg SM, Ng T, Suhling K. Imaging proteins in vivo using fluorescence lifetime microscopy. Molecular Biosystems.2007;3(6):381-91.
    [17]Agard DA, Sedat JW. Three-dimensional architecture of a polytene nucleus. Nature. 1983;302(5910):676-81.
    [18]Agard DA. Optical sectioning microscopy:cellular architecture in three dimensions. Annual review of biophysics and bioengineering.1984;13(1):191-219.
    [19]McNally JG, Karpova T, Cooper J, Conchello JA. Three-dimensional imaging by deconvolution microscopy. Methods.1999;19(3):373-85.
    [20]Carrington WA, Lynch RM, Moore E, Isenberg G, Fogarty KE, Fay FS. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science.1995;268(5216):1483-7.
    [21]Minsky M. Microscopy apparatus. Google Patents 1961.
    [22]Axelrod D. Cell-substrate contacts illuminated by total internal reflection fluorescence. The Journal of cell biology.1981;89(1):141-5.
    [23]Axelrod D. Total internal reflection fluorescence microscopy. Methods Cell Biol. 1989;30:245-70.
    [24]Bailey B, Farkas DL, Taylor DL, Lanni F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation.1993.
    [25]Lanni F, Taylor DL, Waggoner AS. Standing wave luminescence microscopy. Google Patents 1986.
    [26]Lanni F, Taylor DL, Bailey B. Field synthesis and optical subsectioning for standing wave microscopy. Google Patents 1995.
    [27]Bailey B, Krishnamurthi V, Farkas DL, Taylor DL, Lanni F. Three-dimensional imaging of biological specimens with standing wave fluorescence microscopy. IS&T/SPIE 1994 International Symposium on Electronic Imaging:Science and Technology:International Society for Optics and Photonics; p.208-13.
    [28]Krishnamurthi V, Bailey B, Lanni F. Image processing in 3-D standing-wave fluorescence microscopy. PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING:SPIE INTERNATIONAL SOCIETY FOR OPTICAL; p.18-25.
    [29]Stryer L, Haugland RP. Energy transfer:a spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America.1967;58(2):719.
    [30]Hamada K, Fujita K, Kobayashi M, Kawata S. Observation of cell dynamics by laser scanning Raman microscope. Biomedical Optics (BiOS) 2007:International Society for Optics and Photonics; p.64430Z-Z-6.
    [31]Cheng J-X, Jia YK, Zheng G, Xie XS. Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. Biophysical journal. 2002;83(1):502-9.
    [32]Evans CL, Potma EO, Puoris' haag M, Cote D, Lin CP, Xie XS. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(46):16807-12.
    [33]Hell S, Stelzer EH. Properties of a 4Pi confocal fluorescence microscope. JOSA A. 1992;9(12):2159-66.
    [34]Hell SW, Stelzer EH, Lindek S, Cremer C. Confocal microscopy with an increased detection aperture:type-B 4Pi confocal microscopy. Optics letters.1994;19(3):222-4.
    [35]Stelzer EH, Lindek S. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis:confocal theta microscopy. Optics Communications.1994;111(5):536-47.
    [36]Gustafsson MG, Agard DA, Sedat JW. Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses. IS&T/SPIE's Symposium on Electronic Imaging:Science & Technology:International Society for Optics and Photonics; p.147-56.
    [37]Gustafsson M, Agard D, Sedat J. I5M:3D widefield light microscopy with better than 100nm axial resolution. Journal of Microscopy.1999; 195(1):10-6.
    [38]Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MG. I 5 S:Wide-Field Light Microscopy with 100-nm-Scale Resolution in Three Dimensions. Biophysical journal.2008;94(12):4971-83.
    [39]Neil M, Juskaitis R, Wilson T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Optics letters.1997;22(24):1905-7.
    [40]Neil M, Juskaitis R, Wilson T. Real time 3D fluorescence microscopy by two beam interference illumination. Optics Communications.1998;153(1-3):1-4.
    [41]Zipfel WR, Williams RM, Webb WW. Nonlinear magic:multiphoton microscopy in the biosciences. Nature biotechnology.2003;21(11):1369-77.
    [42]Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proceedings of the National Academy of Sciences. 2003;100(12):7075-80.
    [43]Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. Optics letters. 1994;19(11):780-2.
    [44]Klar TA, Hell SW. Subdiffraction resolution in far-field fluorescence microscopy. Optics letters.1999;24(14):954-6.
    [45]Hell SW, Kroug M. Ground-state-depletion fluorscence microscopy:A concept for breaking the diffraction resolution limit. Applied Physics B.1995;60(5):495-7.
    [46]Bretschneider S, Eggeling C, Hell SW. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Physical Review Letters. 2007;98(21):218l03.
    [47]Heilemann M, Dedecker P, Hofkens J, Sauer M. Photoswitches:Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser & Photonics Reviews.2009;3(1-2):180-202.
    [48]Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV. Photoactivatable fluorescent proteins. Nature Reviews Molecular Cell Biology.2005;6(11):885-90.
    [49]Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homo log. Journal of Biological Chemistry.2000;275(34):25879-82.
    [50]Hofmann M, Eggeling C, Jakobs S, Hell SW. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proceedings of the National Academy of Sciences of the United States of America.2005;102(49):17565-9.
    [51]A Schwentker M, Bock H, Hofmann M, Jakobs S, Bewersdorf J, Eggeling C, et al. Wide-field subdiffraction RESOLFT microscopy using fluorescent protein photoswitching. Microscopy research and technique.2007;70(3):269-80.
    [52]Andresen M, Stiel AC, Folling J, Wenzel D, Schonle A, Egner A, et al. Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nature biotechnology.2008;26(9):1035-40.
    [53]Bossi M, Folling J, Dyba M, Westphal V, Hell SW. Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New journal of physics.2006;8(11):275.
    [54]Thompson RE, Larson DR, Webb WW. Precise nanometer localization analysis for individual fluorescent probes. Biophysical journal.2002;82(5):2775-83.
    [55]Gelles J, Schnapp BJ, Sheetz MP. Tracking kinesin-driven movements with nanometre-scale precision. Nature.1988;331(6155):450-3.
    [56]Van Oijen A, Kohler J, Schmidt J, Muller M, Brakenhoff G. Far-field fluorescence microscopy beyond the diffraction limit. JOSA A.1999;16(4):909-15.
    [57]Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proceedings of the National Academy of Sciences.2000;97(17):9461-6.
    [58]Heinlein T, Biebricher A, Schluter P, Roth CM, Herten DP, Wolfrum J, et al. High-Resolution Colocalization of Single Molecules within the Resolution Gap of Far-Field Microscopy. ChemPhysChem.2005;6(5):949-55.
    [59]Gordon MP, Ha T, Selvin PR. Single-molecule high-resolution imaging with photobleaching. Proceedings of the National Academy of Sciences of the United States of America.2004;101(17):6462-5.
    [60]Lidke KA, Rieger B, Jovin TM, Heintzmann R. Superresolution by localization of quantum dots using blinking statistics. Opt Express.2005;13(18):7052-62.
    [61]Bates M, Huang B, Zhuang X. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Current opinion in chemical biology.2008;12(5):505-14.
    [62]Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods.2006;3(10):793-6.
    [63]Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006:313(5793):1642-5.
    [64]Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical journal.2006;91(11):4258-72.
    [65]Heintzmann R, Jovin TM, Cremer C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. JOSA A.2002;19(8):1599-609.
    [66]Gustafsson MG. Nonlinear structured-illumination microscopy:wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America.2005; 102(37):13081-6.
    [67]Chiu W, Baker ML, Jiang W, Dougherty M, Schmid MF. Electron cryomicroscopy of biological machines at subnanometer resolution. Structure.2005;13(3):363-72.
    [68]Larabell CA, Le Gros MA. X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution. Molecular Biology of the Cell. 2004;15(3):957-62.
    [69]Pohl DW, Denk W, Lanz M. Optical stethoscopy:Image recording with resolution λ/20. Applied Physics Letters.1984;44:651.
    [70]Betzig E, Trautman J, Harris T, Weiner J, Kostelak R. Breaking the diffraction barrier:optical microscopy on a nanometric scale. Science.1991;251(5000):1468-70.
    [71]Betzig E, Trautman JK. Near-field optics:microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science.1992;257(5067):189-95.
    [72]Betzig E, Chichester RJ. Single molecules observed by near-field scanning optical microscopy. Science.1993;262(5138):1422-5.
    [73]Binnig G, Rohrer H. Scanning tunneling microscopy. Surface Science. 1983;126(1):236-44.
    [74]Gimzewski JK, Joachim C. Nanoscale science of single molecules using local probes. Science.1999;283(5408):1683-8.
    [75]Marti O, Elings V, Haugan M, Bracker C, Schneir J, Drake B, et al. Scanning probe microscopy of biological samples and other surfaces. Journal of Microscopy. 1988;152(3):803-9.
    [76]Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proceedings of the National Academy of Sciences.2000;97(15):8206-10.
    [77]Klar TA, Engel E, Hell SW. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Physical Review E.2001;64(6):066613.
    [78]Dyba M, Hell SW. Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution. Physical Review Letters.2002;88(16):163901.
    [79]Dyba M, Keller J, Hell S. Phase filter enhanced STED-4Pi fluorescence microscopy: theory and experiment. New journal of physics.2005;7(1):134.
    [80]Keller J, Schonle A, Hell SW. Efficient fluorescence inhibition patterns for RESOLFT microscopy. Opt Express.2007;15(6):3361-71.
    [81]Meyer L, Wildanger D, Medda R, Punge A, Rizzoli SO, Donnert G, et al. Dual-Color STED Microscopy at 30-nm Focal-Plane Resolution. Small. 2008;4(8):1095-100.
    [82]Wildanger D, Rittweger E, Kastrup L, Hell SW. STED microscopy with a supercontinuum laser source. Opt Express.2008; 16(13):9614-21.
    [83]Wildanger D, Medda R, Kastrup L, Hell S. A compact STED microscope providing 3D nanoscale resolution. Journal of Microscopy.2009;236(1):35-43.
    [84]Wildanger D, Buckers J, Westphal V, Hell SW, Kastrup L. A STED microscope aligned by design. OPTICS EXPRESS.2009; 17(18):16100-10.
    [85]Moneron G, Hell SW. Two-photon excitation STED microscopy. OPTICS EXPRESS.2009; 17(17):14567-73.
    [86]Kasper R, Harke B, Forthmann C, Tinnefeld P, Hell SW, Sauer M. Single-Molecule STED Microscopy with Photostable Organic Fluorophores. Small.2010;6(13):1379-84.
    [87]Reuss M, Engelhardt J, Hell SW. Birefringent device converts a standard scanning microscope into a STED microscope that also maps molecular orientation. OPTICS EXPRESS.2010; 18(2):1049-58.
    [88]Dyba M, Jakobs S, Hell SW. Immunofluorescence stimulated emission depletion microscopy. Nature biotechnology.2003;21(11):1303-4.
    [89]Willig K, Keller J, Bossi M, Hell S. STED microscopy resolves nanoparticle assemblies. New journal of physics.2006;8(6):106.
    [90]Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature. 2006;440(7086):935-9.
    [91]Nagerl UV, Willig KI, Hein B, Hell SW, Bonhoeffer T. Live-cell imaging of dendritic spines by STED microscopy. Proceedings of the National Academy of Sciences.2008; 105(48):18982-7.
    [92]Ullal CK, Schmidt R, Hell SW, Egner A. Block copolymer nanostructures mapped by far-field optics. Nano letters.2009;9(6):2497-500.
    [93]Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photonics.2009;3(3):144-7.
    [94]Sahl SJ, Leutenegger M, Hilbert M, Hell SW, Eggeling C. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. Proceedings of the National Academy of Sciences.2010;107(15):6829-34.
    [95]Liu KS, Siebert M, Mertel S, Knoche E, Wegener S, Wichmann C, et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science.2011;334(6062):1565-9.
    [96]Berning S, Willig KI, Steffens H, Dibaj P, Hell SW. Nanoscopy in a living mouse brain. Science.2012;335(6068):551-.
    [97]Kant R. An analytical method of vector diffraction for focusing optical systems with Seidel aberrations Ⅱ:Astigmatism and coma. Journal of Modern Optics. 1995;42(2):299-320.
    [98]Ignatovsky V. Diffraction by a lens having arbitrary opening. Trans Opt Inst Petrograd.1919;1.
    [99]Ignatovsky V. Diffraction by a parabolic mirror having arbitrary opening. Trans Opt Inst Petrograd.1920; 1(5).
    [100]Wolf E. Electromagnetic diffraction in optical systems. I. An integral representation of the image field. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences.1959;253(1274):349-57.
    [101]Richards B, Wolf E. Electromagnetic diffraction in optical systems.Ⅱ. Structure of the image field in an aplanatic system. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences.1959;253(1274):358-79.
    [102]Boivin A, Wolf E. Electromagnetic field in the neighborhood of the focus of a coherent beam. Physical review.1965;138(6B):B1561.
    [103]Hardy A, Treves D. Structure of the electromagnetic field near the focus of a stigmatic lens. JOSA.1973;63(1):85-90.
    [104]Singh RK, Senthilkumaran P, Singh K. Focusing of a vortex carrying beam with Gaussian background by an apertured system in presence of coma. Optics Communications.2008;281 (5):923-34.
    [105]Singh RK, Senthilkumaran P, Singh K. Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam. JOSA A. 2008,25(6):1307-18.
    [106]Singh RK, Senthilkumaran P, Singh K. Focusing of linearly-, and circularly polarized Gaussian background vortex beams by a high numerical aperture system afflicted with third-order astigmatism. Optics Communications.2008;281(24):5939-48.
    [107]Singh RK, Senthilkumaran P, Singh K. Effect of primary coma on the focusing of a Laguerre-Gaussian beam by a high numerical aperture system; vectorial diffraction theory. Journal of Optics A:Pure and Applied Optics.2008;10(7):075008.
    [108]Deng S, Liu L, Cheng Y, Li R, Xu Z. Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy. OPTICS EXPRESS. 2010; 18(2):1657-66.
    [109]Deng S, Liu L, Cheng Y, Li R, Xu Z. Investigation of the influence of the aberration induced by a plane interface on STED microscopy. OPTICS EXPRESS. 2009; 17(3):1714-25.
    [110]Biss D, Brown T. Primary aberrations in focused radially polarized vortex beams. OPTICS EXPRESS.2004;12(3):384-93.
    [111]Rajesh K, Suresh NV, Anbarasan P, Gokulakrishnan K, Mahadevan G. Tight focusing of double ring shaped radially polarized beam with high NA lens axicon. Optics & Laser Technology.2011;43(7):1037-40.
    [112]Miyamoto Y, Bito K, Ozaki Y, Wada A, Takeda M. Characterization and compensation of phase distortions in holograms for generating and detecting doughnut beams. Optical Review.2013;20(2):127-31.
    [113]Kottler F. Elektromagnetische Theorie der Beugung an schwarzen Schirmen. Annalen der Physik.1923;376(15):457-508.
    [114]Baker B, Copson E.1950The mathematical theory of Huygens'principle. Oxford:Clarendon Press.
    [115]Hein B, Willig KI, Hell SW. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proceedings of the National Academy of Sciences.2008; 105(38):14271-6.
    [116]Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW. Mitochondrial cristae revealed with focused light. Nano letters.2009;9(6):2508-10.
    [117]Scott TF, Kowalski BA, Sullivan AC, Bowman CN, McLeod RR.Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography. Science.2009;324(5929):913-7.
    [118]Li L, Gattass RR, Gershgoren E, Hwang H, Fourkas JT. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science. 2009;324(5929):910-3.
    [119]Cao Y, Gan Z, Jia B, Evans RA, Gu M. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization. OPTICS EXPRESS.2011; 19(20):19486-94.
    [120]Courtial J, Padgett MJ. Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle. Optics Communications. 2000;173(1):269-74.
    [121]Torok P, Munro P. The use of Gauss-Laguerre vector beams in STED microscopy. OPTICS EXPRESS.2004;12(15):3605-17.
    [122]Klar T, Dyba M, Hell S. Stimulated emission depletion microscopy with an offset depleting beam. Applied Physics Letters.2001;78(4):393-5.
    [123]Beijersbergen M, Coerwinkel R, Kristensen M, Woerdman J. Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications.1994;112(5):321-7.
    [124]Youngworth K, Brown T. Focusing of high numerical aperture cylindrical-vector beams. OPTICS EXPRESS.2000;7(2):77-87.
    [125]Zhao D, Zhu J, Wang S. Azimuthally polarized Bessel-Gauss beam propagation through axisymmetric optical systems. Journal of optics.1997;28(1):3.
    [126]Zhan Q, Leger J. Focus shaping using cylindrical vector beams. OPTICS EXPRESS.2002;10(7):324-31.
    [127]Ganic D, Gan X, Gu M. Focusing of doughnut laser beams by a high numerical-aperture objective in free space. OPTICS EXPRESS.2003;11(21):2747-52.
    [128]Braat JJ, Dirksen P, Janssen AJ, van de Nes AS. Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system. JOSA A.2003;20(12):2281-92.
    [129]Atkinson KE. An introduction to numerical analysis:John Wiley & Sons; 2008.
    [130]Bahlmann K, Hell SW. Depolarization by high aperture focusing. Applied Physics Letters.2000;77(5):612-4.
    [131]Harke B, Ullal CK, Keller J, Hell SW. Three-dimensional nanoscopy of colloidal crystals. Nano letters.2008;8(5):1309-13.
    [132]Moh K, Yuan X-C, Bu J, Burge R, Gao BZ. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Applied optics. 2007;46(30):7544-51.
    [133]Beuret C, Racine G A, Gobet J, et al. Micro fabrication of 3D multidirectional inclined structures by UV lithography and electroplating. Micro Electro Mechanical Systems,1994, MEMS'94, Proceedings, IEEE Workshop on. IEEE,1994:81-85.
    [134]Kearney P A, Moore C E, Tan S I, et al. Mask blanks for extreme ultraviolet lithography:Ion beam sputter deposition of low defect density Mo/Si multilayers. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1997,15(6):2452-2454
    [135]Minsky M S, White M, Hu E L. Room-temperature photoenhanced wet etching of GaN. Applied physics letters,1996,68(11):1531-1533.
    [136]Klaassen E H, Petersen K, Noworolski J M, et al. Silicon fusion bonding and deep reactive ion etching:a new technology for microstructures. Sensors and Actuators A:Physical,1996,52(1):132-139.
    [137]Yu Z Y, Masuzawa T, Fujino M. Micro-EDM for three-dimensional cavities-development of uniform wear method. CIRP Annals-Manufacturing Technology,1998,47(1):169-172.
    [138]Schuster R, Kirchner V, Allongue P, et al. Electrochemical micromachining. Science,2000,289(5476):98-101.
    [139]Tseng A A, Notargiacomo A, Chen T P. Nanofabrication by scanning probe microscope lithography:A review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2005,23(3):877-894.
    [140]Sakamoto S, Fujita M, Kim K, et al. Characterization of self-assembling nano-sized structures by means of coldspray ionization mass spectrometry. Tetrahedron, 2000,56(7):955-964.
    [141]Reyntjens S, Puers R. A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering,2001, 11(4):287.
    [142]Chou S Y, Krauss P R, Renstrom P J. Nanoimprint lithography. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1996, 14(6):4129-4133.
    [143]Bae Y C, Soane D S, Crocker C. Rapid prototype three dimensional stereo lithography:U.S. Patent 5,545,367.1996-8-13.
    [144]Mueller B, Kochan D. Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Computers in Industry,1999,39(1):47-53.
    [145]Agarwala M, Bourell D, Beaman J, et al. Direct selective laser sintering of metals. Rapid Prototyping Journal,1995,1(1):26-36.
    [146]Zein I, Hutmacher D W, Tan K C, et al. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials,2002,23(4): 1169-1185.
    [147]Du K, Wathuthanthri I, Mao W, Xu W, Choi C-H. Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnology.2011;22(28):285306.
    [148]Du K, Wathuthanthri I, Liu Y, Xu W, Choi C-H. Wafer-Scale Pattern Transfer of Metal Nanostructures on Polydimethylsiloxane (PDMS) Substrates via Holographic Nanopatterns. ACS Applied Materials & Interfaces.2012;4(10):5505-14.
    [149]Du K, Liu Y, Wathuthanthri I, Choi C-H. Dual applications of free-standing holographic nanopatterns for lift-off and stencil lithography. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures. 2012;30(6):06FF4-FF4-8.
    [150]Andrew TL, Tsai H-Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning. Science.2009;324(5929):917-21.
    [151]Thiel M, Fischer J, Von Freymann G, Wegener M. Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Applied Physics Letters.2010;97(22):221102-3.
    [152]Chang H, Hsieh Y, Chen T, Chen Y, Liang C-T, Lin T, et al. Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters. OPTICS EXPRESS.2007;15(15):9357-65.
    [153]Chattopadhyay S, Huang Y, Jen Y-J, Ganguly A, Chen K, Chen L. Anti-reflecting and photonic nanostructures. Materials Science and Engineering:R: Reports.2010;69(1):1-35.
    [154]Lo H-C, Hsiung H-I, Chattopadhyay S, Han H-C, Chen C-F, Leu JP, et al. Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Biosensors and Bioelectronics.2011;26(5):2413-8.
    [155]Yuqing M, Jianrong C, Keming F. New technology for the detection of pH. Journal of biochemical and biophysical methods.2005;63(1):1-9.
    [156]Wang F, Yu H, Li J, Sun X, Wang X, Zheng H. Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. Optics letters.2010;35(1):40-2.
    [157]Schmidt H, Hawkins AR. Optofluidic waveguides:I.Concepts and implementations. Micro flu id ics and nanofluidics.2008;4(1-2):3-16.
    [158]ten Bosch A. A model for nanopore gas permeation. Separation and purification technology.2006;47(3):156-61.
    [159]Dekker C. Solid-state nanopores. Nature nanotechnology.2007;2(4):209-15.
    [160]Kim H-M, Cho Y-H, Lee H, Kim SI, Ryu SR, Kim DY, et al. High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano letters.2004;4(6):1059-62.
    [161]Kim HM, Kang TW, Chung KS. Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods. Advanced Materials. 2003;15(7-8):567-9.
    [162]Kikuchi A, Kawai M, Tada M, Kishino K. InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate. Japanese Journal of Applied Physics.2004;43(12):L1524-L6.
    [163]Xu H, Lu N, Qi D, Gao L, Hao J, Wang Y, et al. Broadband antireflective Si nanopillar arrays produced by nanosphere lithography. Microelectronic Engineering. 2009;86(4):850-2.
    [164]Szabo Z, Volk J, Fulop E, Deak A, Barsony I. Regular ZnO nanopillar arrays by nanosphere photolithography. Photonics and Nanostructures-Fundamentals and Applications.2012.
    [165]Villanueva G, Plaza J, Sanchez-A mores A, Bausells J, Martinez E, Samitier J, et al. FIB and DRIE combination for nanotip fabrication. Electron Devices,2005 Spanish Conference on:IEEE; p.443-6.
    [166]Yue S, Gu C. Nanopores fabricated by focused ion beam milling technology. Nanotechnology,2007 IEEE-NANO 2007 7th IEEE Conference on:IEEE; p.628-31.
    [167]Kim JH, Kim JY, Choi BI. Multi-scale analysis and design of nano imprint process. Nanotechnology,2003 IEEE-NANO 2003 2003 Third IEEE Conference on: IEEE; p.263-6.
    [168]Lee D, Pan H, Sherry A, Ko SH, Lee M-T, Kim E, et al. Large-area nano imprinting on various substrates by reconfigurable maskless laser direct writing. Nanotechnology.2012;23(34):344012.
    [169]Haske W, Chen VW, Hales JM, Dong W, Barlow S, Marder SR, et al.65 nm feature sizes using visible wavelength 3-D multiphoton lithography.2007.
    [170]Willig KI, Harke B, Medda R, Hell SW. STED microscopy with continuous wave beams. Nature methods.2007;4(11):915-8.
    [171]Han KY, Willig KI, Rittweger E, Jelezko F, Eggeling C, Hell SW. Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano letters.2009;9(9):3323-9.
    [172]Rankin BR, Kellner RR, Hell SW. Stimulated-emission-depletion microscopy with a multicolor stimulated-Raman-scattering light source. Optics letters. 2008;33(21):2491-3.
    [173]Kuang C, Zhao W, Wang G. Far-field optical nanoscopy based on continuous wave laser stimulated emission depletion. Review of Scientific Instruments,2010,81(5): 053709-053709-4.
    [174]Piruska A, Branagan S, Cropek DM, Sweedler JV, Bohn PW. Electrokinetically driven fluidic transport in integrated three-dimensional microfluidic devices incorporating gold-coated nanocapillary array membranes. Lab on a Chip. 2008;8(10):1625-31.
    [175]Bottenus D, Oh Y-J, Han SM, Ivory CF. Experimentally and theoretically observed native pH shifts in a nanochannel array. Lab on a Chip.2009;9(2):219-31.
    [176]Mukhopadhyay R. What does nanofluidics have to offer? Analytical chemistry. 2006;78(21):7379-82.
    [177]Schoch RB, Han J, Renaud P. Transport phenomena in nanofluidics. Reviews of Modern Physics.2008;80(3):839.
    [178]Wang G. Laser induced fluorescence photobleaching anemometer for microfluidic devices. Lab on a Chip.2005;5(4):450-6.
    [179]Wang G, Jiang H. Method and apparatus for fluid velocity measurement based on photobleaching. Google Patents 2007.
    [180]Wang GR, Sas I, Jiang H, Janzen WP, Hodge CN. Photobleaching-based flow measurement in a commercial capillary electrophoresis chip instrument. Electrophoresis. 2008;29(6):1253-63.
    [181]Kuang C, Zhao W, Yang F, Wang G. Measuring flow velocity distribution in microchannels using molecular tracers. Microfluidics and nanofluidics. 2009;7(4):509-17.
    [182]Kuang C, Wang G. A novel far-field nanoscopic velocimetry for nanofluidics. Lab Chip,2009,10(2):240-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700