SINS制导工具误差补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的不断发展和制导技术的不断完善,捷联制导工具误差成为当前影响导弹制导精度的主要因素。而受加工水平和制造工艺的限制,单纯依靠提高陀螺仪和加速度计的加工精度来减小捷联制导工具误差的代价变得愈发昂贵。相比之下,采用仪表级或者系统级的捷联制导工具误差补偿方法,则是一种更为经济而有效的途径。但是,捷联制导工具误差补偿的有效性主要取决于惯性仪表误差模型的准确性、误差系数的稳定性和补偿方法的完善性。因此,本文从理论和实际两个方面深入系统地研究了捷联制导工具误差分离与补偿中的一系列问题,在试验设计、模型结构确定、辨识算法、天地检验、误差补偿等几个方面做出了一系列细致而富有成效的工作:
     首先,建立了捷联制导工具误差模型。根据干扰力拒的类型和刚体转动的动力学原理,推导了陀螺仪和加速度计的静态和动态误差模型。基于捷联导航原理,推导出捷联制导工具误差模型。该模型物理意义明确,可根据仿真研究和工程应用的需要进行扩充或简化处理;
     其次,为了提供高精度的遥、外测速度差数据以作为捷联制导工具误差模型估计的观测量,本文结合载体具有高动态、高过载的飞行特性,深入研究了高动态环境下的捷联导航算法,重点考虑位置解算中的涡卷效应补偿算法、速度解算中的划桨效应补偿算法和姿态解算中的圆锥效应补偿算法,从而大大减小了捷联导航算法误差。考虑到在对导航数据的野值鉴别过程中容易出现“误判”和“漏判”的情形,本文提出了利用基于模糊聚类和神经网络的模糊预测系统来检测野值和滤除野值的方法,该方法能够克服常用野值识别和剔除方法效果差的缺点。这样,根据靶场提供的惯性测量元件脉冲输出能够进行真实弹道复现,从而为误差系数分离提供精确的遥测数据;
     接着,考虑到SINS制导工具误差模型阶次高、复共线性严重的特点,本文采用先结构辨识、后参数估计的序贯辨识方案。在结构辨识中,常用的方法由于将模型中的强相关项全部剔除而给工程应用带来损失,因此,本文提出了新的有益思想,即在保留一定相关性的基础上进行辨识:将输出向量ΔW与环境函数矩阵S构成增广矩阵A,然后采用“比定阶行列式”来剔除相关向量的方法,这样既可以尽可能多地保留了对落点影响大的强相关参数,又可以对落点影响小的强相关参数给予剔除;在参数估计中,改进了特征根估计中特征根和特征向量的筛选方法,提出“近零”准则,从而大大提高了参数估计的精度;
     再者,鉴于天地模型“一致性”检验是飞行试验和SINS制导工具误差系数分离的主要目的,因此,本文又深入分析了造成天地模型不一致的原因,提出了采用基于F统计的线性回归模型假设检验方法来进行捷联制导工具误差模型的天地“一致性”检验;
     最后,鉴于飞行环境剧烈变化可能会对惯性仪表误差系数稳定性带来一定的影响,因此本文深入地分析了SINS制导工具误差系数与外界环境的关系,提出了基于过载变化大小的分段辨识和分段实时补偿的算法。这不仅能够降低捷联制导工具误差模型的复共线性程度、减小计算量,从而有利于误差模型估计精度的提高,而且能够大大提高SINS制导精度。
With the developnent of computer technology and the guidance technology, SINS guidance instrument errors become the key factors to influence the homing precision of missile. Limited by the processing and manufacturing level, however, the improvement of inertial navigation system accuracy merely by increasing the machining accuracy of inertial devices such as gyroscopes and accelerometers has become more and more costly. By contrast , a more economic method is the system level or the instrument level guidance instrument compensation based on the inertial instruments. The effectiveness of compensation depends on the accuracy of inertial instrument error model, the stability of the error coefficients and the perfection of compensation method. Therefore, many problems in SINS guidance instrument error separation and compensation are deeply and systematically investigated from both theory and practical aspects. A series of research work have been done in the respects of experimental design, model structure identification, identification algorithm, consistence check between the flight and the ground, error compensation.
     Firstly, the SINS guidance instrument error model is built. Static and dynamic error models of inertial sensors are deduced from the types of interferential torque and dynamic principle. The SINS guidance instrument error model is deduced based on the principle of SINS. The physical meaning of error model is very explicit. And the dimension of it is easy to be augmented or reduced according to the need of simulation study or engineering application.
     Then the algorithm of SINS in high dynamic circumstance is deeply investigated in order to provide the high-precision velocity error between the telemetric velocity and tracking velocity as the observation of the SINS guidance instrument error model. The scrolling compensation in position solution, sculling compensation in velocity solution and the coning compensation in attitude solution are emphasized so that the algorithmic error is decreased. On the other hand, because of false-negative judgments and miss judgments of outlier values, the fuzzy forecasting system based on fuzzy cluster analysis and neural network is brought out to detect and delete the abnormal values. The ballistic is reconstructed accurately based on the pulse outputs of inertial instruments.
     Next, considering the characteristics of high grades and serious multiliearity of SINS guidance instrument error model, the scheme of structure identification first and parameters identification later is applied. The common method, that all strong-correlation terms of the model are eliminated, can bring the loss in the engineering application, so the new method is proposed that the identified model reserves some correlation. The augmented matrix A is constructed by the outputΔW and the matrix S. The“determinating order based on ratio of determinant”is brought out to screen the strong-correlation terms in the structure identification. The latent root estimation is improved in screening the eigenvalues and eigenvectors. Thus the estimation precision is improved greatly.
     The consistence check of guidance instrument error coefficients of flight test and ground test is the purpose of flight experiment. The causes of inconsistency of the two models are analyzed. The hypothesis test of linear regression model based on F statistics is proposed to check the consistence.
     Finally, the instability of error coefficients is probably caused by the change of the flight environments, therefore, the relation between the error coefficients and flight environment is analyzed. The approach is presented to identify SINS guidance instrument error models and compensate the error in the segmented sections corresponding to the change of vertical acceleration of aircraft. It can decrease the multiliearity of model and computational complexity greatly so that the identification accuracy of error model and guidance precision is improved greatly.
引文
1陈兵舫,张育林,杨乐平. H-鲁棒滤波在惯导初始对准中的应用.中国惯性技术学报. 2002, 8 (4): 58-60
    2冯绍军,袁信. H-滤波及其在惯导地面自对准中的应用.南京航空航天大学学报.1998, 30(4): 383-387
    3刘为任,张玉龙,熊正南.鲁棒控制在惯性导航系统初始对准中的应用.中国惯性技术学报. 1999, 7(3): 6-8
    4钟万登.液浮惯性器件.宇航出版社,1994: 348-379
    5沙钰.弹道导弹精度分析概论.国防科技大学出版社.1995:3-98
    6翁海娜,李滋刚等.液浮陀螺漂移的实验建模研究.中国惯性技术学报. 1999, 7 (2):303-309
    7周哲,庄良杰,熊正南,洪文学.基于小波分析的陀螺漂移趋势项提取.中国惯性技术学报. 1999,7(3): 58-60
    8缪玲娟.小波分析在光纤陀螺信号滤波中的应用研究.宇航学报. 2000, 21 (1) : 42-46
    9 I. Y. Bar-Itzhack, N. Bermant. Control Theoretic Approach to Inertial Navigation Systems. Journal of Guidance, Control and Dynamics. 1988, 11(3): 237-245
    10 I. Y. Bar-Itzhack, D. Goshen-Meskin. Unified Approach to Inertial Navigation System Error Modeling. Journal of Guidance, Control and Dynamics. 1992,
    15(3): 648-653
    11胡恒章.陀螺仪漂移测试原理及试验技术.国防工业出版社. 1981:2-4
    12 J. H. Frazier. Application of Extended Kalman Filtering to a Dynamic laboratory Calibration of an Inertial Navigation System. AD-763718. 1976:33-37
    13 R. A. Kitzersw. Design, Development and Laboratory Test Results of Kalman Filter system-level IMU Calibration Technique. AD-A046257. 1978:56-64
    14 R. W. Weinman, J. V. Rutkoskie. Development, Performance Assessment and Verification of a Calibration and Alignment Technique for Precision IMU. AIAA81-1735. 1981: 6-15
    15 D. M. Henderson. Shuttle Onboard IMU Alignment Methods. N76-29348. 1976: 2-19
    16杨志超.误差理论.中安工业大学出版社,1987: 1-30
    17 W. Baarda. A Testing Procedure for Use in Geodetic Networks. Netherlands Geod Comm, Publ. On Geodesy, New Ser. 1968, 2(5): 12-18
    18 A. J. Pope. The Statistics of Tesiduals and the Detection of Outliers. NOAA Tech. ReP. 1965: 34-52
    19 Y. Q. Chen, M. Kavouras and A. Chrzaowski. A Strategy for Detection of Outlying Bservations in Measurements of High Precision. Can. Surveyor, 1983: 529-540
    20 M. Markatou and X. He. Bounde-influence and High Breakdown Point Testing Procedures in Linear Models. Stat.Assn. 1989: 543-549
    21 P. J. Humber. Robust Estimation of a Location Paremeter. Ann. Math. Statist. 1964: 73-101
    22 P. J. Rousseeuw, A. M. Leoy. Robust Regression and Outlier Detection. Wiley, New York, 1983: 1-60
    23 M. Markatou, T. P. Hettmansperger. Robust Bounded-influence Tests in Linear Models. Stat. Assn. 1985:187-190 24陶本藻.稳健估计的应用问题.地矿测绘. 2000,16(1): 1-3
    25 R. W. Serth, Z. Lu. and W. A. Heenan. Gross Error Detection Algorithm Based on Residuals. Proceedings of the ISA’90 International Conference and Exhibition, New Orleans, LA, USA. 1990: 1153-1164
    26 M. Tanaka, T. Katayama. Robust Identification and Smoothing for Linear System with Outliers and Missing Data. Proc of the 11th Triennial Congress of the International Federation of Automatic Control, NY, USA. 1990: 117-122
    27 J. P. Norton, S, M. Veres. Outliers in Bound-based State Estimation and Identification. Proceedings-IEEE International Symposium on Circuits and System, Chicago, IL, USA. 1993: 790-793
    28 T. L. Alexander, N. Balakrishnan. Efficient Estimation of the Mean of an Exponential Distribution when Two Outliers are Present. Microelectrom Reliab. 1995, 35(1):57-63
    29 Y. Q. Yang, R. B. Ten and Q. J. Lui. Astrdy of Gross Detection and Data Reconciliation in Process Industries. Computers Chem. Engineering. 2002: 217-222
    30 M. Sanchez, G. Sentoni, et al. Gross Measurements Error detection/Identification for an Industrial Ethylene Reactor. Computers Chem. Engineering. 1996, 20: 1559-1564
    31 S. Hekimoglu. The Finite Sample Breakdown Points of the Conventional Iterative Outlier Detection Procedures. Journal of Surveying Engineering. 1997, 123(1): 15-31
    32 S. Hekimoglu, Robustitying Conventional Outlier Detection Procedures. Journal of Surveying Engineering, 2005,125(2): 69-86
    33 M. B. Do. Revealing Gross Errors in Critical Measurements and Sets via Forecasting State Estimators. Electric Power System Research. 2003: 25-32
    34 K. Rakesh. Outlier-Resistant Algorithms for Detecting a Change in a Stochastic Process. IEEE Transaction on Information Theory.1989, 35(3): 521-535
    35 G. Davi, A. Recardo and P. Marques. The Outlier Process. Neural Networks for Signal Process, Proceedings of the 1991 IEEE Workshop. 1991: 60-69
    36 A. N. Barosso, M. F. Moura. An ML Algorithm for Outliers Detection and Source Localization. ICASSP-92.1992: 425-428
    37 I. P. Norton, S. M. Veres. Outliers in Bound-based State Estimation and Identification. 1993 IEEE International Symposium. 1993: 790-793
    38 V. L. Brailovsky. An Approach to Outlier Detection Based on Bayesian Probabilistic Model. Pattern Recognition 1996, Proceeding of the 13th International Conference. 1996: 70-73
    39 C. Zhang, P. M. Wong, O. Selinus. A Comparison of Outlier Detection Methods: Exemplified with an Environment Geochemical Data Set. ICONIP’05, 2005: 183-187
    40 J. Michael, A. Rangarajan. Outlier Process: Unifying and Robust Statistics. Proc. Of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA., USA, 1994:15-22
    41 P. Thomas, G. Bloch. From Batch to Recursive Outlier-robust Identification of Non-linear Dynamic System with Neural Network. IEEE International Conference on Neural Network, Washington, DC, USA, 2002:178-183
    42陈隶湘,罗飞路,朱霞辉.自由曲面视觉测量中一种有效的粗差剔除方法.计算机应用研究. 1997,13(5): 40-42
    43 S. Y. John, H. L. Andy. Unmasking Outliers in Tow-way Contingency Tabes. Computational Statistics and Data Analysis, 2004: 69-79
    44 Y. Kharin, E. Zhuk. Filtering of Multivariate Sample Containing“Outliers”for Clustering. Pattern Recognition Letters. 1998: 1077-1085
    45 W. H. Wei, W. K. Fung. The Mean-shift Outlier Model in General Weighted Regression and its Applications. Computational Statistics and Data Analysis. 1999: 429-441
    46康斌兵,王正明.异常数据设别的搜索方法.中国空间科学技术. 1999, 19(1): 1-6
    47 S. Kosinski. A Procedure for the Detection of Multivariate Outliers. Computational Statistics and Data Analysis. 1999: 145-161
    48 A. Hadi, H. Nyquist. Frechet Distance as a Tool for Diagnosing Multivariate Data. Linear Algebra and its Applications. 1999, 28(9): 183-201
    49沈一鹰,刘永坦.复信号检测中门限值估计的野值剔除.现代雷达. 1999(3): 39-43
    50 J. X. Pan, W. K. Fung and K. T. Fang. Multiple Outlier Detection in Multivariate Data Using Projection Pursuit Techniques. Journal of Statistical Planning and Inference . 2002, 8(3): 15-167
    51 M. A. Mugglestione, V. Barnett and R. Nirel. Modeling and Analysis Outliers in Spatial Lattice Data. Mathematical and Computer Modeling. 2003, 3(2): 1-10
    52 K. Carling. Resistant Outlier Rulers and the Non-Gaussian Case. Computational Statistics & Data Analysis. 2002: 249-258
    53刘利生.外测数据事后处理.国防工业出版社,2000: 25-32
    54陈以恩.遥测数据处理.国防工业出版社,2002: 69-86
    55 S. K. Upadhyay, V. Shastri. Bayes Estimation for the Pareto Failure-Model Using Gibbs Sampling. IEEE Transactions on Reliability, 1997, 46 (1):56~59.
    56 A. Kleyner, et al. Bayesian Techniques to Reduce the Sample Size in Automotive Electronics Attribute Testing. Microelectron Reliab, 1997, 37(6): 879~883.
    57 L. Roemer, Cowling. David. Bayesian Method in Nondestructive Testing. Materials Evaluation, 2003, 59(1):63-68
    58 T. F. Li. Bayes Empirical Bayes Approach to Estimation of the Failure Rate in Exponential Distribution. Communications in Statistics-Theory and Method, 2002: 1457-1465.
    59 A. A. Soliman. Comparison of Linear and Quadratic Bayes Estimators for theRayleigh Distribution. Communications in Statistics Theory and Methods, 2004, 29 (1): 95-107
    60 C. Saunders, A. Gammerman and V. Vovk. Ridge Regression Learning algorithm in Dual Variables. Proceedings of the15th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann, 2003: 515~521.
    61 B. W. Kibria. Performance of Some New Ridge Regression Estimators. Commun. Statist. Simula. 2003:419-435.
    62 A. Fikri, Y. Guzin and T. K. Alan. The Moments of the Operational almost Unbiased Ridge Regression Estimator. Applied Mathematics and Computation, 2004, 153 (3): 673-684.
    63 G. Jurgen. Restricted Ridge Estimation. Statistics&Probability Letter, 2003, 65 (1):57-63.
    64 L. Firinguetti, H. Rubio. A Note on the Moments of Stochastic Shrinkage Parameters in Ridge Regression. Commun. Statist. Simulation, 2003, 29(3): 955– 970
    65 T. K. Wan. On Generalized Ridge Regression Estimators under Collinearity and Balanced Loss. Applied Mathematics and Computation, 2002, 129: 455-467.
    66 T. Baoguang. Several Optimalities of Combining Ridge and Principal Components Estimator. Chinese Quarterly Journal of Mathematics, 2005, 15(1):14-18.
    67陈希孺,王松桂.近代实用回归分析.广西人民出版社,1984: 57-79
    68王正明.改进的特征根估计.应用数学. 1990: 85-88
    69沙钰等.特征向量矩阵分析.国防科技大学出版社,1990: 69-86
    70张湘平.战略导弹制导系统误差模型辨识.哈尔滨工业大学硕士论文, 1992: 20-72
    71 K. Ohtani. Inadmissibility of the Stein-rule Estimator under the Balanced Loss Unction. Journal of Econometrics, 2003: 193-201.
    72 R. Rosipal, L. J. Trejo. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. Journal of Machine learning Research, 2003(2): 97-123.
    73 S. Lakshminarayanan, S. L. Shah and K. Nandakumar. Modeling and Control of Multivariable Processes: Dynamic PLS Approach. AIChE Journal, 1997, 43 (9): 2307-2322 .
    74 Y. Zheng. On-line Adaptive Multiloop PID Controller Design Based on Dynamic PLS Decoupling Structure for Linear and Nonlinear MIMO processes .Tai wan: Chung Yuan Christian University, 2003:3-99
    75 S. J. Qin. Recursive PLS Algorithms for Adaptive Data Modeling. Computers& Chemical Engineering, 1998, 22 (4-5):503-514.
    76 M. Kano, et al. Inferential Control System of Distillation Compositions Using Dynamic PLS Regression .Journal of Process Control. 2004:157-166.
    77 P. G. Savage. Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithm. Journal of Guidance, Control and Dynamics. 1998, 21(1): 19-28
    78 P. G. Savage. Strapdown Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position algorithm. Journal of Guidance, Control and Dynamics. 1998, 21(2): 208-221
    79 R. B. Miller. A new Strapdown Attitude Algorithm. Journal of Guidance. 1983. 6(3): 287-291
    80 J. G. Lee, J. Y. Yong, and G. M. John. Extension of Strapdown Attitude Algorithm for High-frequency Base Motion. Journal of Guidance. 1990, 13(4): 673-680
    81 M. Howard, H. James. Study of Strapdown Navigation Attitude Algorithms. Journal of Guidance, Control and Dynamics. 2000, 18(2): 287-290
    82 Z.G. Valery, M.L.Vladdimir and A.L.Yury. A Optimization of Strapdown Attitude Algorithm for Stochastic Motion. Journal of the Institute of Navigation. 1997, 44(2): 163-169
    83 A. L. Yury, M.L.Vladimir and A.G.Valery. Two New Class of Strapdown Navigation Algorithms. Journal of Control and Dynamics. 2005, 23(1): 34-44
    84 J. E. Bortz. A New Mathematic Formulation for Strapdown Inertial Navigation. IEEE Transaction on Aerospace and Electronic System. 1971, 7(1):61-66
    85 J. E. Jordan. An Accurate Strapdown Direction Cosine Algorithm. Report NASA TND-5384. 1969: 235-324
    86 G. P. Chan, J. K. Kwang. Formalized Approach to Obtain Optimal Coefficients for Coning Algorithms. AIAA Journal of Guidance, Control and Dynamics. 2003, 22(1): 165~168.
    87 M. B. Ignagni. Duality of Optimal Strapdown Sculling and ConingCompensation Algorithms. Navigation: Journal of the Institute of Navigation. 2002, 45(2): 85~95.
    88 Y. A. Litmanovich, V. M. Lesyuchevsky and V. Z. Gusinsky. Two New Classes of Strapdown Navigation Algorithms. AIAA Journal of Guidance, Control and Dynamics. 2002, 23(1): 34~44.
    89 Y. F. Jiang, Y. P. Lin. Improved Stradown Coning Algorithms, IEEE Transaction on Aerospace and Electronic Systems. 1992, 28(2): 484-489
    90张金槐.线性模型参数估计及其改进.国防科技大学出版社, 1999: 23-36
    91张金槐,蔡洪.飞行器试验统计学.国防科技大学出版社, 1995:63-99
    92方崇智,萧德云.过程辨识.清华大学出版社,1993.7:293-336
    93 C. M. Woodaide. Estimation of the Order of Linear Systems, Automatica. 1971(7): 727-733
    94杨克绍,包学游.矩阵分析.哈尔滨工业大学出版社,1988:63-92
    95 J. T. Webster, R. L. Mason. Latent Root Regression Analysis. Technometrics. 1973:16-83
    96陈希儒,王松桂.近代实用回归分析.广西人民出版社,1984:9-98
    97 M. C. Lamine, W. Coakley. Robust Estimation in Structured Linear Regression. The Annals of Statistics. 2003, 24(6): 2593-2607
    98 X. M. He, Q. M. Shao. A General Bahadur Representation of Mestimators and Its Application to Linear Regression With Nonstochastic Designs.The Annals of Statistics. 2003, 24(6): 2608-2630
    99 F. R. Hampel, E. M. Ronchetti and W. A. Stahel. Robust Statistics: The Approach Based on Influence Functions. Wiley, New York. 1986: 235-324
    100归庆明,黄维彬,张建军.抗差泛岭估计.测绘学报. 1998,27(3):211-216
    101 P. Vanicek, M. R. Craymer and E. J. Krakiwsky. Robustness Analysis of Geodetic Horizontal Networks. Journal of Geodesy. 2003, 75: 199-209
    102 Y. X. Yang. Estimators of Covariance Matrix at Robust Estimation Based on Influence Functions. ZFV. 1997, 3: 166-173
    103 W. Andreas and K. B. Fritz. Short Static GPS Sessions: Robust Estimation Results. GPS Solutions. 2002, 5(3): 70-79
    104 Y. Yang, L. Song and T. Xu. Robust Estimator for Correlated Observations Based on Bifactor Equivalent Weights. Journal of Geodesy. 2002,7(6): 353-358
    105周江文,黄幼才等.抗差最小二乘法.华中理工大学出版社,1997:92-99
    106陈希孺.数理统计引论.科学出版社,1981: 34~44.
    107陆元九.惯性器件.中国宇航出版社,2005: 23-36
    108贺杰,黄显林.再入飞行器的捷联制导工具误差分段补偿研究.系统工程与电子技术. 2007, 29(1): 125-129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700