高动态环境下捷联惯导虚拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捷联惯性导航系统与平台式惯性导航系统相比,具有体积小、重量轻、成本低等诸多优点,是惯性导航系统的发展趋势。捷联惯性导航系统的性能测试和验证是一项复杂的工程。导航系统实物试验时间长、成本高,而虚拟试验技术则能够从一定程度上弥补该不足。针对这一情况,论文对捷联惯性导航虚拟试验技术展开研究。
     论文研究了捷联惯性导航的原理及其算法。针对捷联惯性导航系统性能测试需要高精度航迹与惯性器件测量数据,而实际试验数据获取周期长、成本高的问题,研究了捷联惯性相关算法仿真,通过飞行仿真算法和惯性器件仿真算法为捷联惯性导航系统的性能测试提供支持。针对仿真算法中飞行仿真算法忽略飞行动力学,无法满足捷联惯性导航虚拟试验要求的情况,论文研究了基于动力学模型的飞行仿真算法,提出了基于三自由度飞行器模型的航迹模拟算法。通过数字仿真测试,验证了算法的有效性和正确性。
     针对捷联惯性导航虚拟试验建模问题,提出了一种基于捷联惯性导航逆向求解的误差辨识算法。该算法采用捷联惯性导航的逆向运算获得惯性器件理想输出,然后根据惯性器件的误差特性建立误差模型,最后通过参数估计手段获得误差模型中的各项参数,为虚拟试验系统参数的设置提供支持。仿真结果表明该算法是正确的、有效的,具有一定的理论意义和工程价值。
     在捷联惯性导航虚拟试验建模研究基础上,进行了虚拟试验系统软件设计。虚拟试验系统分为两个部分,一是针对试验数据的惯性器件误差辨识,为实际系统虚拟试验提供支持;二是实际系统的虚拟试验,在获得惯性器件误差模型基础上,利用航迹模拟算法和惯性器件仿真算法进行实际系统的虚拟试验。软件测试结果表明,虚拟试验与实物试验的重合度高,能够在一定程度上代替实物试验。
Compared with platform inertial navigation systems, the strapdown inertial navigation system has many advantages, such as small volume, light weight, low cost, and these characteristics are the development trend of inertial navigation systems. Testing and validation of strapdown inertial navigation system performance is a complex project. The physical test need a long time and high cost, and the application of virtual test technology in the strapdown inertial navigation system test has been very urgent. In view of this situation, the Virtual Test Technology of SINS was studied.
     The principle and method of strapdown inertial navigation were studied. The performance testing of strapdown inertial navigation system needs flight track data and inertial measurement data, while to obtain the actual flying has some problems, such as long periods and high costs. The simulation algorithm of strapdown inertial navigation was studied. The flight simulation algorithm and inertial sensor simulation algorithm provide the foundation to testing the performance of strapdown inertial navigation system.
     Flight simulation algorithm ignores the flight mechanics before and it can not meet the requirements of strapdown inertial navigation system’s virtual test. In allusion to the flight mechanics, a new trajectory simulation algorithm which was based on three degrees of freedom vehicle model was proposed. Digital simulation tests verified the validity and correctness of the algorithm. In order to identify the actual error model of inertial navigation system from flight test data, a new identification method was proposed. The test results show that the method is effective and has some reference values and some directing significance for engineering application.
     Based on SINS Virtual Test modeling algorithm, software of virtual experimental system has been designed. Virtual test system was divided into two parts, one is error recognition, to provide support to virtual test for the actual system; the other is virtual test of the actual system, based on inertial error model, use flight simulation algorithms and inertial device simulation algorithms to do virtual testing of the actual system, instead of physical testing. The results show that the virtual testing and physical testing had high degree of coincidence and the virtual testing can replace real test in a certain extent.
引文
[1] Anderson, E. W.:‘The principles of navgation’(Hollis and Carter, 1996).
    [2]邓正隆,惯性技术基础,哈尔滨:哈尔滨工业大学出版社,2006:3~15。
    [3]房建成,宁晓琳,天文导航原理及应用,北京:北京航空航天大学出版社,2006:4~10。
    [4]边少锋,李文魁,卫星导航系统概论,北京:电子工业出版社,2005:34~37。
    [5]陈永冰,钟斌,惯性导航原理,北京,国防工业出版社,2007:5~20。
    [6]朱家海,惯性导航,北京,国防工业出版社,2008:3~10。
    [7]顾启泰,刘学斌,近代制导、导航和控制系统的进展,导航,1998,1:1~8。
    [8]董永康,吕志伟,吕月兰,等,布里渊光纤环形激光器及其应用,激光技术,2004,28(5):498-502。
    [9]蔺玉亭,孙付平,朱新慧,光纤陀螺的发展及其在惯导中的应用前景,测绘工程,2005,13(1):41-43。
    [10]冷宗圣,光纤陀螺的研究发展及其应用,中国科技信息,2006,(6):116~117。
    [11] Neil. Barbour, Inertial Components– Past, Present, and Future, AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001, A2001-4290.
    [12] G. Pavlath, Challenges in the Development of the IFOG, AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, 2003: 11-14.
    [13] Neil. Barbour, G. Schmidt, Inertial Sensor Technology Trends, IEEE Sensors Journal, 2001, 1(4): 332-339.
    [14] Test and evaluation management guide, 2001 Fourth edition, Published by the Defense Acquisition University Press, 2001.
    [15]张宝珍,国外军工试验与测试技术发展动向分析,计算机测量与控制,2009,17(1):1-8。
    [16] Wagner R, Digital designs and virtual tests continue to be subject of debate, National Defense Magazine, 2007.
    [17] Wang G G, Definition and review of virtual prototyping, Dept. of Mechanical and Industrial Engineering, University of Manitoba, Canada, 2002: 232-245.
    [18]赵雯,胡德风,武器系统虚拟试验验证技术发展研究,计算机测量与控制,2008,16(1):1-3。
    [19] Erwin S I, Virtual weapons Lab sought by air force, National Defense Magzine, 2006, 52(1): 302-306.
    [20] Joint synthetic battlespace: applying simulation to acquisition, mission effectiveness, and course of action analysis, 2001.
    [21] McCollom N, F-35 Joint Strike Fighter Autonomic Logistics and Prognostics and Health Management, DoD Maintenance Symposium & Exhibition Presentations, 2006.
    [22] Wallage J, Virtual rollout of the 787, Boeing workers watch com2puter simulations of new plane [EB/OL], http: // seat tlepi. nwsource. com/business/294997_787rollout07. html . 2007. [ 23 ] Stackpole B, Boeingps global collaboration environment pioneers.groundbreaking 787 dreamliner development effort [EB/OL], http: / / www. Design news. com/article/CA6441587. html. 2007.
    [24]张宝珍,等,国外军工虚拟试验/测试与仿真验证共性关键技术及应用研究(国防科技情报研究报告),北京:中国航空工业发展研究中心,HY2008-007。
    [25] D. H. Titterton, J. L. Weston. Strapdown Intertial Navigation Technology, 2nd ed. London: IEE, 2005.
    [26]刘放,陈明,高丽.捷联惯导系统软件测试中的仿真飞行轨迹设计及应用,测控技术,2003,22(5):15-19。
    [27]杨立忠,王学青,孙宝琛,一种飞行器虚拟航迹生成软件的设计与实现,航空兵器,2007,4(2):37-43。
    [28]李欣,彭世蕤,一种空间三维航迹建模新方法.雷达科学与技术,2007,5(5):563-963。
    [29] Ferrante J, A Kalman Filter2based Radar Track Data Fusion Algorithm Applied to a Select ICBM Case, Radar Conference, Proceedings 2004 of the IEEE, 2004: 457-462.
    [30]张婷,轨迹发生器设计与仿真,微计算机信息,2008,24(4):241-242。
    [31] He M K, Wang Z M, Zhu J B, Decentralized estimation of sensor systematic error and target state vector, Science in China (Series E), 2003, 46(3): 287-294.
    [32]温永智,吴杰,郑伟,车载试验辨识SINS工具误差方法研究,弹箭与制导学报,2007,27(5):174-176。
    [33]张光天,王秀萍,王丽霞,捷联惯性导航技术,北京:国防工业出版社,2007,131~139。
    [34] Jordan, J. W., An accurate strap-down direction cosine algorithm, Report TND-5348, NASS, Washington, DC, Sept, 1969.
    [35] Bortz J E, A new mathematical formulation for strap-down inertial navigation, IEEE Transaction on Aerospace and Electronic Systems, 1971, (1): 61-66.
    [36] Lee J G, Yoon Y J ,Mark J G, Extension of strap-down attitude algorithm for high-frequency basemotion, Journal of Guidance, Control and Dynamics, 1990, 13(4): 738~743
    [37] Paul G. Savage, Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms, Journal of Journal of Guidance, Control, and Dynamics, 1998.1, 21(1): 19-28.
    [38] Paul G. Savage, Strapdown Inertial Navigation Integration Algorithm Design Part 2: Velocity and Position Algorithms, Journal of Journal of Guidance, Control, and Dynamics, 1998.3, 21(2): 208-221.
    [39]孙丽,秦永元,捷联惯导系统姿态算法比较,中国惯性技术学报,2006,14(3):7-10。
    [40]熊智,刘建业,林雪原,曾庆化,激光陀螺捷联惯性导航系统中惯性器件误差补偿技术,上海交通大学学报,2003,37(11):1795-1799。
    [41]袁信,俞济祥,陈哲,导航系统,北京,航空工业出版社,1993:2~5。
    [42]卢惠民,飞行仿真数学建模与实践,北京:航空工业出版社,2007。
    [43]何铁春,周世勤,惯性导航加速度计,北京:国防工业出版社,1983。
    [44] Phillips, W. F., Dynamics of Flight, Wiley, New York, 2004.
    [45]范胜林,孙永荣,袁信,捷联系统陀螺静态漂移参数标定,中国惯性技术学报,2000,8(1):42~46。
    [46] Miao ling-juan, Zhang fang-sheng, Shen jun, et al, Data Analysis and Modeling of Fiber Optic Gyroscope Drift, Journal of Beijing Institute of Technology, 2002, 11(1): 50-55.
    [47] Wang Zhengming, Zhou Haiyin, A new method for estimating system error of guidance instrument, SCIENCE IN CHINA (Series E), 1998, 41(3): 263-270.
    [48]袁宇,王明海,基于环境函数分析的制导工具误差补偿方法研究,弹箭与制导学报,2006,26(3):279-282。
    [49]程国旗,蔡宗平,王跃钢,惯性制导系统误差补偿评估模型研究,电光与控制,2005,12(3):19-22。
    [50]李鹏波,胡德文,系统辨识基础,北京:中国水利水电出版社,2005。
    [51] Stéphane Blin, Michel J. F. Digonnet, Gordon S. Kino, Noise analysis of an air-core fiber optic gyroscope, IEEE Photonics Technology Letters, 2007, 19(9): 1520-1522.
    [52]熊智,刘建业,林雪原,曾庆化,激光陀螺捷联惯性导航系统中惯性器件误差补偿技术,上海交通大学学报,2003,37(11):1795-1799。
    [53]徐小平,王峰,胡钢,系统辨识的研究现状,现代电子技术,2007,15:112-116。
    [54] Eykhoff P, System Identification-Parameter and State Estimation, John Wiley & Sons, 1974.
    [55] Pott s J C, Gradens T D, Yadav S B, The Development and Evaluation of an Improved Genetic Algriths Based on Migration and Artificial Selection. IEEE Trans. on Systems, Man and Cybernetics, 1994, 24 (1): 73–68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700