应用现代生物信息技术对湖北钉螺遗传多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血吸虫病是一种严重危害人类健康的传染病,也是我国目前面临的重要公共卫生问题之一。湖北钉螺(Oncomelania hupensis)是日本血吸虫唯一的中间宿主,在日本血吸虫病传播过程中起着关键作用。湖北钉螺分布于我国大陆长江中下游及以南的湖沼、山丘和高山地区,由于受地理隔离的严重应影响,以及孳生环境、自然因素的差异,湖北钉螺不同地理群体间发生了显著的遗传分化。鉴于其对血吸虫病流行病学研究、血吸虫病预防控制工作的重大意义,湖北钉螺遗传多样性的研究得到了广泛的关注,但相对现代生物信息技术的快速发展,湖北钉螺遗传多样性的研究仍显不足,研究手段极不丰富。
     本研究首先通过采集不同景观地区的湖北钉螺样本,建立湖北钉螺空间分布数据库,在此基础上应用基因组DNA的酶切片段与生物素标记的(AAT)17,(GA)25, (CCT)17,(AC)25,(CAG)17,(CA)18, (CAC)5, (TC)10, (GT)8和(TG)1 8等寡核苷酸探针杂交、分离、富集和克隆测序,完成湖北钉螺微卫星DNA库的构建,并据此挑选具有多态性的微卫星位点,对长江中下游地区的湖北钉螺群体的遗传结构进行了分析;应用长PCR技术和引物步移测序技术,结合SubPCR和克隆测序策略,测定湖北钉螺湖南岳阳株的线粒体基因组(mtDNA)全序列,并通过测定不同景观群体湖北钉螺个体线粒体基因(16S)和核糖体间隔区(ITS1--ITS2)片段序列,综合分析了湖北钉螺不同景观群体遗传分化和地理隔离之间的关系。为此,本研究获得以下结果:
     一、湖北钉螺空间遗传信息管理系统的构建
     1.基于景观遗传学的理念,以湖北钉螺空间分布研究、种群遗传学研究为目的,在初步收集了湖北钉螺不同地理景观群体基础上,利用计算机语言设计、编制了湖北钉螺空间遗传信息管理系统。该系统总体结构包括了两个部分,一是基础数据库,二是管理系统,其中基础数据库根据研究样本的分类层次划分为三个数据库,分别是采集点数据库、样本数据库和遗传信息数据库。
     2.初步完成数据库的构建,包括了73个采集点、676条记录及其相关遗传信息。管理系统安全稳定,通过二次编码和有效索引,可以实现对数据的查询、筛选、修改、导入和导出功能,便于管理和操作.该系统可以为各类地区的钉螺特征提供查询服务,为研究设计和统计提供方便,因此,对湖北钉螺分布和群体遗传研究具有一定的应用价值。
     二、基于微卫星DNA的湖北钉螺遗传多样性研究
     1.首次构建了湖北钉螺微卫星DNA库。共获得了209条微卫星DNA序列,经远程blast检索显示,与已知的微卫星DNA序列无明显的同源性。所获得的微卫星DNA序列中,完整重复序列79条,占37.8%,非完整重复序列101条,占48.33%,复合重复序列有29条,占13.88%;微卫星DNA序列中以双核苷酸重复占多数,三核苷酸重复序列重复次之,多核苷酸重复比较少见;重复序列以(CA)n和(GT)n数量最为丰富,重复次数最多的(CA)n可达98次。
     2.筛选并描述了微卫星DNA库中的部分多态位点。按照微卫星DNA分类原则,筛选了67个微卫星位点,并对其中20个位点进行了鉴定。有16对引物有明显的特异性扩增,其中14个位点具有多态性,多态性比例为70%。随机挑选7个位点进行湖北钉螺群体基因扫描,有6个位点可以获得良好的信号,即P84,T5-13,T5-11,T4-22,T6-27和P82。6个微卫星DNA位点中,除P84位点的观测杂合度和PIC值较低,分别为0.1667和0.1813,其余位点的观测杂合度和PIC值范围在0.36-0.8929和0.8437-0.9289间,具有较好的多态性。
     3.应用6个微卫星位点检测对长江中下游5个湖北钉螺群体的群体遗传结构。6个微卫星DNA位点中,共检测到188个等位基因,不同位点在群体间平均为15.83个;等位基因在不同群体中的分布无明显的集中趋势。群体内遗传分析显示,所有位点平均的观测杂合度、期望杂合度和PIC值分别为0.637、0.811和0.777,多态性明显,综合所有指标的信息,湖北群体遗传变异程度最高,江苏群体最低。群体间遗传结构分析表明,江苏和江西群体间具有较高的遗传分化程度,安徽与湖南群体间则分化程度较小。总群和群体内基因交流不高,因而杂合度较高;然而群体间分化系数表明群体间分化较低,遗传变异主要来自群体内的个体间。
     三、基于线粒体基因组的湖北钉螺遗传多样性研究
     1.首次获得的湖北钉螺线粒体基因组全序列。湖北钉螺线粒体基因组全序列全长15 182 bp (Genbank登记号:FJ997214),为闭合环状分子,A+T含量为67.32%。共编码37个基因,包括13个蛋白基因、22个tRNA基因、2个RNA基因和一段A+T富集区,其中轻链编码8个tRNA基因,其余基因由重链编码。
     2.对线粒体DNA全序列进行生物信息学分析。13个蛋白质编码基因均以ATG为启动子,以TAA或TAG为终止子,其中ND1以潜在的丁作为终止密码子,所有编码蛋白基因转录方向相同,密码子的碱基使用较强的AT偏好。线粒体基因组间隔区共21处合计145bp,长度范围为1-30bp,最长的间隔区为30bp;基因重叠区较短,且仅2处,分别为4bp和7bp。线粒体基因组含有22个转运RNA,除2个tRNASer (AGN)和tRNAGln、tRNAIle以外都能形成典型的三叶草结构,且存在一个特有的tRNA (tRNASeC)。
     3.基于核糖体DNA的ITS1-ITS2和mtDNA-16S基因序列分析湖北钉螺不同景观群体遗传多样性。不同的DNA分子序列的遗传特征将我国大陆湖北钉螺群体可分为4个主要类群,即长江中下游地区群体、云南和四川的高山型群体、广西内陆山丘型群体和福建沿海山丘型群体,2个DNA分子(ITS1-ITS2、16S)在不同采集点之间的遗传差异呈明显的地理聚集性,并与地理距离之间形成显著的相关性(P<0.001),相关指数分别为RITS1-ITS2=0.784,R16S=0.717,群体遗传分布格局符合距离隔离模型。
Schistosomiasis, the zoonotic infectious parasitic disease, is one of the major public health problems greatly threatening human health in China. Oncomelania hupensis, distributing in the southern areas to the Yangtze River, including marshland, mountainous and hilly regions, is the sole intermediate host of Schistosoma japonicum. Therefore O. hupensis plays a key role in the transmission of schistosomiasis japonica. Due to different geographical distribution, variation in ecological environment and natural factors, distinct genetic evaluation has occurred among O. hupensis generations. In view of Significance in the research of epidemiology, control and prevention of schistosomiasis, the investigation on genetic diversity of O. hupensis has attracted extensive attention. However, the studies and techniques applied in this field seem too far from adequacy to coping with the rapid development of bioinformatics in addressing these problems. Therefore, it is necessary to study on the population genetics and subspecies differentiation of O. hupensis in China.
     In this study, O. hupensis was sampled based on different landscape distribution, and geospatial database on bioinformatics of O. hupensis were established firstly. Secondly, after the establishment of microsatellite DNA database of O. hupensis, populations genetic structure of O. hupensis from middle-lower reaches of the Yangtze valley was analyzed based on its hybridization between restriction fragments of genomic DNA and oligonucleotide probe including (AAT)17, (GA)25 (CCT)17, (AC)25,(CAG)17, (CA)18, (CAC)5, (TC)10, (GT)8 and (TG)18 marked with biotin. Thirdly, the complete sequence of mtDNA from Hunan isolate of O. hupensis was detected by application of Long PCR and walking sequencing technology as well as SubPCR and clone sequencing. Additionally, the relationship between genetic variation of O. hupensis from different landscapes and geographic isolation on basis of mtDNA (16S) detection and ribosomal fragment (ITS1-ITS2) sequencing was explored in the line with the theory of landscape genetics.
     1. Establishment of management system on geospatial genetic information of O. hupensis
     1.1 In the line with the theory of landscape genetics, and aiming to investigate geospatial distribution and population genetics of O. hupensis, a management system on geospatial genetic information of O. hupensis was established in computer language. The system composed of 2 parts, one was the basic database which made up of 3 sub-datasets, i.e. collection sites, samples and genetic information datasets; the other was information management system which provide functions on accessing the datasets.
     1.2 Tthe database was primarily founded including 73 collection sites, 676 sample records and relevant genetic information of collected O. hupensis. Through second endoding and effective indexing, functions on accessing datasets, such as data query, filtration, amending, import and export, can be carried out which preserve further space for data amplification and online filling out. The system provides query service which facilitates study design and statistic analysis. Therefore, the system worth application in the study of distribution and population genetics in other samples in addition to O. hupensis.
     2. Genetic diversity of O. hupensis based on microsatellite DNA
     2.1 A total of 209 effective sequences were attained from our study, of which 79 were completely repeated (37.8%),101 were incompletely repeated (48.33%) and 29 were combined (13.88%). Among microsatellite DNA, double-nucleotides took the major part and treple-nucleotides took the second place following mutiple-nucleotides. In addition, the number of (CA)n and (GT)n ranked the first place, of which that of (CA)n repeated 98 times.
     2.2 Based on the classification of microsatellite DNA sequences,16 out of 20 selected primer pairs from 67 designed ones resulted in obvious specific amplification in accordance with expected bands, among which 14 sites were polymorphic accounting for 70% of the total polymorphism. After gene scanning on 7 sites randomly selected,6 ones, i.e., P84, T5-13, T5-11, T4-22, T6-27 and P82 were found to attain good signals. Of these 6 sites, only P84 showed low observed heterozygosis and polymorphism information content (PIC) value, with 0.1667 and 0.1813, respectively. For others, observed heterozygosis and PIC value were between 0.36-0.8929 and 0.8437-0.9289, respectively, which showed good polymorphism.
     2.3 In application with 6 microsatellite DNA sites, genetic diversity in 5 populations of O. hupensis were detected. Among 6 microsatellite DNA sites, P84、T5-11 and T4-22 were unbalanced to some degree. A total of 188 alleles genes were detected, of which the average number of sites among different populations was 15.83 without obvious central tendency. Analysis of population genetics revealed that the observed and expected heterozygosis, PIC value of all sites equaled to 0.637,0.811 and 0.777, respectively. It was found that genetic variation of O. hupensis was the highest in Jiangsu population while was the lowest in Hubei population. Results from analysis of population genetics showed that genetic differentiation was high between Jiangsu and Jiangxi populations, while low between Anhui and Hunan populations. As a result, gene exchanges were not frequent among population and species caused high heterozygosis. However, low differentiation coefficient showed that genetic variation mostly resulted from that of individuals.
     3. Landscape genetics of O. hupensis based on mitochondrial genomes
     3.1 The 15 182 bp-long complete sequence of O. hupensis mtDNA (Genbank registration No.:FJ997214) was sequenced, and it is a closed circular molecular with 67.32% AT content which encoded 37 genes, including 13 protein genes,2 RNA genes and AT Rich Region, of which 8 tRNA genes were light chain coded and the others were heavy chain coded.
     3.2 All of 13 protein-coding genes were found with ATG as promoter and TAA or TAG as terminator, among which potential T was the terminator of ND1. All of those protein genes coded had the same transcription direction with strong AT preference of codon base. The length of 21 total intergenic region of mtDNA was 145bp ranging from 1-30bp with 2 short gene overlapping with length of 4bp and 7bp, respectively. Totally 22 transferring RNA were found in mtDNA, all of which were typical cloverleaf structure with specific tRNA (tRNASeC) except for 2 tRNASer (AGN), tRNAGIn and tRNAIle.
     3.3 The genetic diversity of landscape populations were analysised based on ITS1-ITS2 of ribosomal DNA and mtDNA-16S sequences, O. hupensis in Mainland China could be divided into 4 populations, i.e., population in the middle-lower reaches of Yangtze Valley, mountainous population in Yunnan and Sichuan, inland hilly population in Guangxi and coastal hilly population in Fujian, all of which were in accordance with landscape ecological types. Obvious geographical aggregation of genetic diversity was observed between of 2 DNA molecular colleted in different point showed. As a result, there was a significant positive correlation (RITS1-ITS2= 0.784,R16S=0.717, P<0.01) between geographical distance and genetic variation which showed that population genetics distribution were in accordance with the Isolation-by-distance Model.
引文
1. 季维智,宿兵:遗传多样性研究的原理和方法.浙江科学技术出版社1999.
    2. 陈灵芝:中国的生物多样性. 北京科学出版社1993.
    3. 陈佩度:作物育种生物技术.中国农业出版社2001.
    4 方宣钧,吴为人,唐纪良:作物DNA标记辅助育种.科学出版社2001
    5. 任旭琴:遗传多样性及其研究方法.准阴工学院学报2002,11(5):6-8.
    6. 周德银,周以飞,潘大仁:大豆种质遗传多样性研究进展.武夷科学2003,23:217-224.
    7. Becker J, Vos P, Kuiper M, Salamini F, Heun M:Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 1995,249(1):65-73.
    8. 周延清:遗传标记的发展.生物学通报2000,35(5):17-18.
    9. 孙始威,吴克,陈燕妮等:分子遗传标记技术在海洋动物遗传研究中的应用.齐鲁渔业2009,26(1):6-10.
    10. Martin FN, Tooley PW:Identification of phytophthora isolates to species level using restriction fragment length polymorphism analysis of a polymerase chain reaction-amplified region of mitochondrial DNA. Phytopathology 2004,94(9):983-991.
    11. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et at: AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23(21):4407-4414.
    12. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF et al: Complementary DNA sequencing:expressed sequence tags and human genome project. Science 1991,252(5013):1651-1656.
    13. Hoskins RA, Phan AC, Naeemuddin M, Mapa FA, Ruddy DA, Ryan JJ, Young LM, Wells T, Kopczynski C, Ellis MC:Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res 2001.11 (6):1100-1113.
    14. Maliarchuk BA:Mitochondria DNA markers and genetic demographic processes in neolithic Europe. Genetika 1998,34(7):1009-1012.
    15. Hwang JS, Lee JS, Goo TW, Yun EY, Sohn HR, Kim HR, Kwon OY:Molecular genetic relationships between Bombycidae and Saturniidae based on the mitochondria DNA encoding of large and small rRN A. Genet Anal 1999,15(6):223-228.
    16. Sloof P, van den Burg J, Voogd A, Benne R:The nucleotide sequence of a 3.2 kb segment of mitochondrial maxicircle DNA from Crithidia fasciculata containing the gene for cytochrome oxidase subunit III, the N-terminal part of the apocytochrome b gene and a possible frameshift gene; further evidence for the use of unusual initiator triplets in trypanosome mitochondria. Nucleic Acids Res 1987,15(1):51-65.
    17. Obata M, Shimizu M, Sano N, Komaru A:Maternal inheritance of mitochondrial DNA (mtDNA) in the Pacific oyster (Crassostrea gigas):a preliminary study using mtDNA sequence analysis with evidence of random distribution of MitoTracker-stained sperm mitochondria in fertilized eggs. Zoolog Sci 2008,25(3):248-254.
    18 张大勇,姜新华:遗传多样性与濒危植物保护生物学研究进展.生物多样性1999,7(1):31-37.
    19. Manel S, Schwartz MK, Luikart G, Taberlet P:Landscape genetics:combining landscape ecology and population genetics. Trends Ecol Evol 2003,18(4):189-197.
    20. Holderegger R, Wagner H H:A brief guide to landscape genetics. Landscape ecology 2006, 21(6):793-796.
    21. Glenn TC, Schable NA:Isolating microsatellite DNA loci. Methods Enzymol 2005, 395:202-222.
    22. Rowe PS, Francis F, Goulding J:Rapid isolation of DNA sequences flanking microsatellite repeats. Nucleic Acids Res 1994,22(23):5135-5136.
    23. Brown MC, Guttman S, Glenn TC:Development and use of microsatellite DNA loci for genetic ecotoxicological studies of the fathead minnow (Pimephales promelas). Ecotoxicology 2001,10(4):233-238.
    24. Temu EA, Hunt RH, Coetzee M:Microsatellite DNA polymorphism and heterozygosity in the malaria vector mosquito Anopheles funestus (Diptera:Culicidae) in east and southern Africa. Acta Trop 2004,90(1):39-49.
    25. Weber JL, Polymeropoulos MH, May PE, Kwitek AE, Xiao H, McPherson JD, Wasmuth JJ: Mapping of human chromosome 5 microsatellite DNA polymorphisms. Genomics 1991, 11(3):695-700.
    26. Valdes AM, Slatkin M, Freimer NB:Allele frequencies at microsatellite loci:the stepwise mutation model revisited. Genetics 1993,133(3):737-749.
    27. Liao EC, Zon LI:Simple sequence-length polymorphism analysis. Methods Cell Biol 1999, 60:181-183.
    28. Panaud O, Chen X, McCouch SR:Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 1996,252(5):597-607.
    29. Schlotterer C, Vogl C, Tautz D:Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. Genetics 1997, 146(1):309-320.
    30. Wolstenholme DR:Animal mitochondrial DNA:structure and evolution. Int Rev Cytol 1992, 141:173-216.
    31. Baranski M, Loughnan S, Austin CM, Robinson N:A microsatellite linkage map of the blacklip abalone, Haliotis rubra. Anim Genet 2006,37(6):563-570.
    32. Baranski M, Rourke M, Loughnan S, Hayes B, Austin C, Robinson N:Detection of QTL for growth rate in the blacklip abalone (Haliotis rubra Leach) using selective DNA pooling. Anim Genet 2008,39(6):606-614.
    33. Sekino M, Hara M:Linkage maps for the Pacific abalone (genus Haliotis) based on microsatellite DNA markers. Genetics 2007,175(2):945-958.
    34. Evans DM, Cardon LR:Guidelines for genotyping in genomewide linkage studies: single-nucleotide-polymorphism maps versus microsatellite maps. Am J Hum Genet 2004, 75(4):687-692.
    35. Hara M, Sekino M:Genetic differences between hatchery stocks and natural populations in Pacific abalone (Haliotis discus) estimated using microsatellite dNA markers. Mar Biotechnol (NY) 2007,9(1):74-81.
    36. Schweiger O, Frenzel M, Durka W:Spatial genetic structure in a metapopulation of the land snail Cepaea nemoralis (Gastropoda:Helicidae). Mol Ecol 2004,13(12):3645-3655.
    37. Holland BS:Invasion without a bottleneck:Microsatellite variation in natural and invasive populations of the brown mussel Perna perna (L). Mar Biotechnol (NY) 2001,3(5):407-415.
    38. Worthington Wilmer J, Elkin C, Wilcox C, Murray L, Niejalke D, Possingham H:The influence of multiple dispersal mechanisms and landscape structure on population clustering and connectivity in fragmented artesian spring snail populations. Mol Ecol 2008, 17(16):3733-3751.
    39. Depraz A, Cordellier M, Hausser J, Pfenninger M:Postglacial recolonization at a snail's pace (Trochulus villosus):confronting competing refugia hypotheses using model selection. Mol Ecol 2008,17(10):2449-2462.
    40. Gray MW:The endosymbiont hypothesis revisited. Int Rev Cytol 1992,141:233-357.
    41. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F et al:Sequence and organization of the human mitochondrial genome. Nature 1981,290(5806):457-465.
    42. von Nickisch-Rosenegk M, Brown WM, Boore JL:Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta:gene arrangements indicate that Platyhelminths are Eutrochozoans. Mol Biol Evol 2001,18(5):721-730.
    43. Yamauchi M, Miya M, Nishida M:Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea:Decapoda). Gene 2002,295(1):89-96.
    44. Garesse R, Vallejo CG:Animal mitochondrial biogenesis and function:a regulatory cross-talk between two genomes. Gene 2001,263(1-2):1-16.
    45. Shadel GS, Clayton DA:Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 1997,66:409-435.
    46. Ojala D, Montoya J, Attardi G:tRNA punctuation model of RNA processing in human mitochondria. Nature 1981,290(5806):470-474.
    47. Cheng S, Chang SY, Gravitt P, Respess R:Long PCR. Nature 1994,369(6482):684-685.
    48. Cohen J:'Long PCR' leaps into larger DNA sequences. Science 1994,263(5153):1564-1565.
    49. Foord OS, Rose EA:Long-distance PCR. PCR Methods Appl 1994,3(6):S149-161.
    50. Hengen PN:Long and accurate PCR. Trends Biochem Sci 1994,19(8):341-342.
    51. 张方,米志勇:动物线粒体DNA的分子生物学研究进展.生物工程进展1998,18(3):25-31.
    52. Lavrov DV, Boore JL, Brown WM:The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Mol Biol Evol 2000,17(5):813-824.
    53. Kim I, Cha SY, Yoon MH, Hwang JS, Lee SM, Sohn HD. Jin BR:The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera:Gryllotalpidae). Gene 2005,353(2):155-168.
    54. Flook PK, Rowell CH, Gellissen G:The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome. J Mol Evol 1995,41(6):928-941.
    55. Clary DO, Wolstenholme DR:The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 1985,22(3):252-271.
    56. Sun H, Zhou K, Song D:Mitochondrial genome of the Chinese mitten crab Eriocheir japonica sinenesis (Brachyura:Thoracotremata:Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements. Gene 2005,349:207-217.
    57. 鲁成,刘运强,廖顺尧,李斌,向仲怀,韩华,王学刚:家蚕线粒体基因组全序列测定与分析.农业生物技术学报 2002,10(2):163-170.
    58. Shahjahan RM, Hughes KJ, Leopold RA, DeVault JD:Lower incubation temperature increases yield of insect genomic DNA isolated by the CTAB method. Biotechniques 1995, 19(3):332-334.
    59. Machida RJ, Miya MU, Nishida M, Nishida S:Complete mitochondrial DNA sequence of Tigriopus japonicus (Crustacea:Copepoda). Mar Biotechnol (NY) 2002,4(4):406-417.
    60. Machida RJ, Miya MU, Yamauchi MM, Nishida M. Nishida S:Organization of the mitochondrial genome of Antarctic krill Euphausia superba (Crustacea:Malacostraca). Mar Biotechnol (NY) 2004,6(3):238-250.
    61. Yamauchi MM, Miya MU, Nishida M:Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea:Decapoda:Brachyura). Gene 2003, 311:129-135.
    62. Hu M, Chilton NB, Gasser RB:Long PCR-based amplification of the entire mitochondrial genome from single parasitic nematodes Mol Cell Probes 2002,16(4):261-267.
    63. Miya M, Nishida M:Organization of the Mitochondrial Genome of a Deep-Sea Fish, Gonostoma gracile (Teleostei:Stomiiformes):First Example of Transfer RNA Gene Rearrangements in Bony Fishes. Mar Biotechnol (NY) 1999,1(5):416-0426.
    64. Boore JL:Animal mitochondrial genomes. Nucleic Acids Res 1999,27(8):1767-1780.
    65 周晓农:实用钉螺学.群学出版社,北京2005.
    66. Davis GM, Zhang Y, Guo YH, Spolsky CM:Systematic Status of Oncomelania Hupensis(Gastropoda:Pomatiopsidae) Throughout China. Studia Marina Sinica 1997, 39(2):89-95.
    67. Chi LW, Wagner ED, Wold N:Susceptibility of Oncomelania hybrid snails to various geographic strains of Schistosoma japonicum. Am J Trop Med Hyg 1971,20(1):89-94.
    68. Mao Shoubai LL:Notes on the Classification of the Oncomelania Snail Hosts of Schitosoma Japonicum. Acta Zoologica Sinica 1954,6(1):1-14.
    69 刘月英:关于我国钉螺的分类问题.动物学报1974,20(3):223-230.
    70. 刘月英,张文珍,王耀先:.医学贝类学.北京:海岸出版社1993:42-46.
    71. 郭源华:血吸虫中间宿主—钉螺的分类问题.中华医学杂志1956,42(4):373-384.
    72. Davis GM, Zhang Y, Guo YH, Spolsky CM:Population genetics and systematic status of Oncomelania hupensis (Gastropoda:Pomatiaop sidae) throughout China. Malacologia 1995,37(1):133-156.
    73 刘月英,楼子康,王耀先:钉螺的亚种分化.动物分类学报1981,6(3):253-266.
    74. Burch JB:Chromosomes of Pomatiopsis and Oncomelania. Amer Malacol Union Ann Rept 1960,26(1):15-16.
    75. Burch JB:Cytotaxonomy of the genus Oncomelania, intermediate hosts of schistosom iasis japonica. Amer Malacol Union Ann Rept 1964,31(1):28-29.
    76. Burch JB:Chromosomes of intermediate hosts of human bilharziasis. Malacologia 1967, 5(2):127-135.
    77. 王国棠:湖北钉螺两个种核型的初步研究.遗传1989,11(5):21-23.
    78 王国棠:云南省钉螺染色体核型的研究.中国人兽共患病杂志1991,7(3):29-30.
    79. Woodruff DS, Merenlender AM, Upatham ES, Viyanant V:Genetic variation and differentiation of three Schistosoma species from the Philippines, Laos, and Peninsular Malaysia. Am J Trop Med Hyg 1987,36(2):345-354.
    80. 周晓农,孙乐平,洪青标:中国大陆钉螺种群遗传学研究I-种群遗传差异.中国应吸虫病防治杂志1995,7(2):67-71.
    81. 何立,王少海,康在彬:湖北与云南两省钉螺酯酶同工酶的比较研究.中国人兽共患病杂 志 1994.10(5):28-30.
    82 王少海,何立,康在彬:云南6县钉螺酯酶同工酶的比较研究.中国血吸虫病防治杂志1994,6(5):274-275.
    83.王少海,何立,康在彬:滇川钉螺的同工酶谱比较 中国人兽共患病杂志 1999,15(1):52-54.
    84.王少海,何立,康在彬:中国大陆不同自然隔离群钉螺的同工酶谱分析.中国寄生虫病防治杂志 1999,12(1):52-55.
    85 张仪,冯婷,Davis GM:中国大陆钉螺等位基因位点研究.中国寄生虫学与寄生虫病杂志1994,12(3):172-177.
    86 周晓农,孙乐平,徐秋,洪青标:中国大陆不同地域隔离群湖北钉螺基因组DNA的限制酶切长度差异.中国血吸虫病防治杂志 1995,6(4):196-198.
    87. Hope M, McManus DP:Genetic variation in geographically isolated populations and subspecies of Oncomelania hupensis determined by a PCR-based RFLP method. Acta Trop 1994,57(1):75-82.
    88 许静,郑江:随机扩增多态性DNA技术对我国大陆光壳钉螺遗传多样性的初步探讨.热带病与寄生虫学2003,1(2):68-71.
    89 刘蓉,牛安欧,李莉:用RAPD技术对湖北钉螺遗传变异的研究.中国寄生虫病防治杂志2004,17(3):136-139.
    90. 周艺彪,赵根明,韦建国,姜庆五:25个湖北钉螺种群扩增片断长度多态性分子标记的遗传变异研究.中华流行病学杂志 2006,27(10):865-870.
    91. 牛安欧,熊衍文:微卫星锚定PCR研究湖北钉螺的遗传变异.中国寄生虫病防治杂志2002,15(4):230-233.
    92. 郭俊涛,周艺彪,韦建国,赵根明:湖北钉螺微卫星锚定PCR产物序列分析.中华流行病学杂志 2008,29(11):1119-1122.
    93. Spolsky CM, Davis GM, Zhang Y:Sequencing methodology and phylogenetic analysis:cytochrome b gene sequence revealssignificant diversity in Chinese populations of OncomeIania(Gastropoda:Pomatiopsidae). Malacologia 1996,38(1-2):213-221.
    94. Wilke T, Davis GM, Chen CE, Zhou XN, Peng ZX, Zhang Y, Spolsky C:Oncomelania hupensis (Gastropoda:Rissooidea) in Eastern China:Molecular Phylogeny, Population Structure, and Ecology. Acta Tropica 2000,77:215-227.
    95 石朝辉,邱持平,夏明仪,冯正,Davis GM:湖北省庙河地区钉螺细胞色素C氧化酶1基因差异的研究.中国寄生虫学与寄生虫病杂志2001,19(1):41-44.
    96. 周艺彪,姜庆五,赵根明,袁鸿昌:中国大陆钉螺的亚种分化.中国血吸虫厉厉治杂志2007,19(6):485-487.
    97. Liu YY, Lou ZK, Wang YX, Zhang WZ:Subspecific differentiation of Oncomelania snails. Acta Zootaxonomica Sinica 1981,6(3):253-266.
    98. Shi CH, Wilke T, Davis GM, Xia MY, Qiu CP:Population genetics, micro-phylogeography, ecology, and infectivity of Chinese Oncomelania hupensis hupensis (Gastropoda: Rissooidea:Pomatiopsidae) in the Miao River system:is there a relationship to shell sculpture?. Malacologia 2002,44(1):333-347.
    99. Yibiao Z, Qingwu J, Genming Z:Application of amplified fragment length polymorphism in the study of genetic diversity of Oncomelania hupensis. Chinese Journal of Schistosomiasis Control 2005,17(1):34-38.
    100. Zhou YB, Yang MX, Zhao GM, Wei JG, Jiang QW:Oncomelania hupensis (Gastropoda:Rissooidea), Intermediate Host of Schistosoma japonicum in China:Genetics, Molecular Phylogeny Based on Amplified Fragment Length Polymorphisms. Malacologia 2007,49(2):367-382
    101. Leclerc E, Mailhot Y, Mingelbier M, Bernatchez L:The landscape genetics of yellow perch (Perca flavescens) in a large fluvial ecosystem. Mol Ecol 2008,17(7):1702-1717.
    102.卫生部疾病预防控制局:《血吸虫病防治项目查螺、灭螺、查病、化疗技术方案(试行)》.2005.
    103.中国疾病预防控制中心寄生虫病预防控制所:《新发现/重现钉螺地区的钉螺调查与标本采集保存规范》.2007.
    104 陈鸣:计算机网络自顶向下方法.机械工业出版社,北京 2009.
    105.何远辉,朱建国:鱼类资源信息管理系统的建立及应用.生物多样性1997,5(3):231-236.
    106 沈海默,胡薇,陈韶红,郑琦,周晓农:基于J2EE平台的寄生虫虫种资源库的构建.中国兽医寄生虫病2007,15(1):8-12.
    107.周晓农,林矫矫,曹建平,黄兵,陈韶红,张仪,胡薇:中国寄生虫种质资源平台建设的理论与实践.中国寄生虫学与寄生虫病杂志 2006,24(增刊):s1-s10.
    108 康在彬,王翠铁,周述龙:湖北钉螺的形态及地理分布.动物学报 1958,10(3):225-241.
    109. Zhou XN, Kristensen TK:Genetic and morphological variations in populations of Oncomelania spp in China. Southeast Asian J Trop Med Public Health 1999.30(1):166-176.
    110. Davis GM, Zhang Y. Xu XJ, Yang XX:Allozyme analyses test the taxonomic relevance of ribbing in Chinese Oncomelania (Gastropoda:Rissoacea:Pomatiopsidae). Malacologia 1999,41(1):297-317.
    111. Iwanaga Y:Experimental infection of five subspecies of Oncomelania snails with Angiostrongylus cantonensis. Southeast Asian J Trop Med Public Health 1995,26(4):767-773.
    112. Hammond RL, Saccheri IJ, Ciofi C:Isolation of microsatellite markers in animals. In: Molecular tools for screening biodiversity(eds Karp A,Isaac PG,Ingram DS).1998:279-285.
    113. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ:Multiple sequence alignment with Clustal X. Trends Biochem Sci 1998,23(10):403-405.
    114. Hall TA:BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res SympSer 1999,41:95-98.
    115. Tamura K, Dudley J, Nei M, Kumar S:MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 2007,24(8):1596-1599.
    116. Toth G, Gaspari Z, Jurka J:Microsatellites in different eukaryotic genomes:survey and analysis. Genome Res 2000,10(7):967-981.
    117. Weber JL:Information of human (dC-dA)n(dG-dT)n polymorphisms. Genomaics 1990, 7:524-530.
    118. Zane L, Bargelloni L, Patarnello T:Strategies for microsatellite isolation:a review. Mol Ecol 2002,11(1):1-16.
    119 Silva LK, Liu S, Blanton RE:Microsatellite analysis of pooled Schistosoma mansoni DNA: an approach for studies of parasite populations. Parasitology 2006,132(Pt 3):331-338.
    120. Cue LM, Mace ES. Crouch JH, Quang VD, Long TD, Varshney RK:Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol 2008,8:55.
    121. Li Q, Kijima A:Segregation of microsatellite alleles in gynogenetic diploid Pacific abalone (Haliotis discus hannai). Mar Biotechnol (NY) 2005,7(6):669-676.
    122. Raymond M, Rousset F:GENEPOP (version 1.2):population genetics software for exact tests and ecumenicism. J Heredity 1995,86:248-249.
    123.严林俊,刘波,房兴堂,陈宏,张润锋,鲍斌,张海军:秦川牛和中国荷斯坦牛POU1F1基因多态性研究.遗传2006,28(11):1371-1375.
    124. Vaiman D, Mercier D, Moazami-Goudarzi K, Eggen A, Ciampolini R, Lepingle A, Velmala R, Kaukinen J, Varvio SL, Martin P et at. A set of 99 cattle microsatellites:characterization, synteny mapping, and polymorphism. Mamm Genome 1994,5(5):288-297.
    125. Li SZ, Qian YJ, Wang YX, Wang Q, Zhang Y, Zhou XN:Classification and phylogenetics of subspecies of Oncomelania hupensis (Gastropoda:Rissooidea) in mainland China. Parasite & Vectors 2009(in press).
    126. Hedrick PW:Genetics of Populations. Boston:Jones and Bartlett 1985:1-629.
    127. Nei M:Molecular Evolutionary Genetics. New York:Columbia University Press 1987.
    128. Williamson EG, Slatkin M:Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics 1999,152(2):755-761.
    129. Johnson JA, Bellinger MR, Toepfer JE, Dunn P:Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Mol Ecol 2004,13(9):2617-2630.
    130. Berthier P, Beaumont MA, Cornuet JM, Luikart G:Likelihood-based estimation of the effective population size using temporal changes in allele frequencies:a genealogical approach. Genetics 2002,160(2):741-751.
    131. Leberg PL:Estimating allelic richness:effects of sample size and bottlenecks. Mol Ecol 2002, 11(11):2445-2449.
    132. Park S D E:Trypanotolerance in west african cattle and the population genetic effects of selection.[Dissertation]. University of Dublin 2001.
    133. Excoffier L, Laval G, Schneider S:Arlequin (version 3.0):An integrated software package for population genetics data analysis. Evol Bioinform Online 2005,1:47-50.
    134. Botstein D, White RL, Skolnick M, Davis RW:Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980,32(3):314-331.
    135. Goudet J. Department of Ecology & Evolution UoL, Lausanne, Switzerland:FSTAT version2.9.3.2 2002.
    136. Simianer H, Meyer JN:Past and future activities to harmonize farm animal biodiversity studies on a global scale. Archivos de Zootecnia 2003,52:1-5.
    137 陈红菊,岳永生,樊新忠,张传生,杜立新:山东地方鸡种遗传距离与聚类分析方法比较研究.畜牧兽医学报2004,35(1):33-36.
    138.黄胜海,李慧芳,陈宽维,汤青萍,屠云洁,杨宁:5个白鹅群体的遗传结构和进化分析畜牧与兽2006,38:20-22.
    139. Wilke T, Davis GM, Qiu DC, Spear RC:Extreme Mitochondrial Sequence Diversity in the Intermediate Schistosomiasis Host Oncomelania hupensis robertsoni:Another Case of Ancestral Polymorphism? Malacologia 2006,48(12):143-157.
    140. Wilke T, Davis GM, Cui EC, Xiao-Nong Z, Xiao Peng Z, Yi Z, Spolsky CM:Oncomelania hupensis (Gastropoda:Rissooidea) in eastern China:molecular phylogeny, population structure, and ecology. Acta Trop 2000,77(2):215-227.
    141. Saccone C, De Giorgi C, Gissi C, Pesole G, Reyes A:Evolutionary genomics in Metazoa:the mitochondrial DNA as a model system. Gene 1999,238(1):195-209.
    142. Fumagalli L, Taberlet P, Favre L, Hausser J:Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. Mol Biol Evol 1996, 13(1):31-46.
    143. Gray MW:Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol 1989.5:25-50.
    144. Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M:Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences BMC Evol Biol 2008,8:215.
    145. Lumbsch HT, Hipp AL, Divakar PK. Blanco O, Crespo A:Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evol Biol 2008,8:257.
    146. Attwood SW, Uptham E S, Zhang YP, Yang ZQ, Southgate VR:A DNA-sequence based phylogeny for triculine snails (Gastropoda:Pomatiopsidae:Triculinae), intermediate hosts for Schistosoma (Trematoda:Digenea):phylogeography and the origin of Neotricula. J Zool Lond 2004 262:47-56.
    147 胡缨,黎学铭,林睿,牛安欧,胡文庆:三地钉螺线粒体DNA两个分子的遗传变异研究中国寄生虫学与寄生虫病杂志2007,25(6):474-477.
    148. Bandyopadhyay PK, Stevenson BJ, Ownby JP, Cady MT, Watkins M, Olivera BM:The mitochondrial genome of Conus textile, coxⅠ-coxⅡ intergenic sequences and Conoidean evolution. Mol Phylogenet Evol 2008,46(1):215-223.
    149.卢圣栋:现代分子生物学实验技术[M].高等教育出版社出版1993.
    150.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯:分子克隆(第2版).北京:科学出版社1993:9553-9558.
    151.戴纪刚,吴宇,格魏泓 等:一种简单快速制备动物线粒体DNA的方法.第三军医大学学报2000,22(2):122-123.
    152. Pissios P, Scouras ZG:Rapid isolation of mitochondrial DNA. Mitochondrial DNA from Drosophila serrata. Experientia 1992,48(7):671-673.
    153. Tamura K, Aotsuka T:Rapid isolation method of animal mitochondrial DNA by the alkaline lysis procedure. Biochem Genet 1988,26(11-12):815-819.
    154. Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT:Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved Polymerase chain reaction primers for animal mitochondrial DNA. Annu Rev Ecol Evol Syst 2006,37:545-579.
    155. Roehrdanz RL:An improved primer for PCR anplification of mitochondrial DNA in a variety of insect species. Insect Mol Biol 1993,2(2):89-91.
    156. Kwok S, Kellogg DE, McKinney N, Spasic D, Goda L, Levenson C, Sninsky JJ:Effects of primer-template mismatches on the polymerase chain reaction:human immunodeficiency virus type 1 model studies. Nucleic Acids Res 1990,18(4):999-1005.
    157.张新宇,高燕宇:PCR引物设计软件使用技巧.生物信息学2004,2(4):15-18.
    158. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG:The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997,25(24):4876-4882.
    159. Bandyopadhyay PK, Stevenson BJ, Cady MT, Olivera BM, Wolstenholme DR:Complete mitochondrial DNA sequence of a Conoidean gastropod, Lophiotoma (Xenuroturris) cerithiformis:gene order and gastropod phylogeny. Toxicon 2006,48(1):29-43.
    160. Chandler EA, McDowell JR, Graves JE:Genetically monomorphic invasive populations of the rapa whelk, Rapana venosa. Mol Ecol 2008,17(18):4079-4091.
    161. Lowe TM, Eddy SR:tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997,25(5):955-964.
    162. Mathews DH:RNA secondary structure analysis using RNAstructure. Curr Protoc Bioinformatics 2006, Chapter 12:Unit 12 16.
    163. Kurabayashi A, Ueshima R:Complete sequence of the mitochondrial DNA of the primitive opisthobranch gastropod Pupa strigosa:systematic implication of the genome organization. Mol Biol Evol 2000,17(2):266-277.
    164. Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM:Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 1995, 376(6536):163-165.
    165. Delarbre C, Gallut C, Barriel V. Janvier P, Gachelin G:Complete mitochondrial DNA of the hagfish, Eptatretus burgeri:the comparative analysis of mitochondrial DNA sequences strongly supports the cyclostome monophyly. Mol Phylogenet Evol 2002,22(2):184-192.
    166. Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y:Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol 2002,19(8):1385-1389.
    167. Mitchell SE, Cockburn AF, Seawright JA:The mitochondrial genome of Anopheles quadrimaculatus species A:complete nucleotide sequence and gene organization. Genome 1993,36(6):1058-1073.
    168. Jameson RR, Diamond AM:A regulatory role for Sec tRNA[Ser]Sec in selenoprotein synthesis. Rna 2004,10(7):1142-1152.
    169. Walsh S, Koehler C:Gazing at Translocation in the Mitochondrion. Cell 2008,134(3): 382-383.
    170. Medina M:Genomes, Phylogeny, and Evolutionary Systems Biology. Journal Name: Proceedings of the National Academy of Sciences of the United States of America; Journal Volume:102; Journal Issue:Sup 1; Other Information:Submitted to Proceedings of the National Academy of Sciences of the United States of America:Volume 102, Supl; Journal Publication Date:05/03/2005; PBD:25 Mar 2005 2005:Medium:ED; Size:26 pages.
    171. Parham JF, Feldman CR, Boore JL:The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon):description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA. BMC Evol Biol 2006,6:11.
    172. Pombert JF, Otis C, Lemieux C, Turmel M:The complete mitochondrial DNA sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) highlights distinctive evolutionary trends in the chlorophyta and suggests a sister-group relationship between the Ulvophyceae and Chlorophyceae. Mol Biol Evol 2004,21(5):922-935.
    173. Balzergue S, Dubreucq B, Chauvin S, Le-Clainche I, Le Boulaire F, de Rose R, Samson F, Biaudet V, Lecharny A, Cruaud C et al. Improved PCR-walking for large-scale isolation of plant T-DNA borders. Biotechniques 2001,30(3):496-498,502,504.
    174. Gromek K, Kaczorowski T:DNA sequencing by indexer walking. Clin Chem 2005, 51(9):1612-1618.
    175. Tonooka Y, Mizukami Y, Fujishima M:One-base excess adaptor ligation method for walking uncloned genomic DNA. Appl Microbiol Biotechnol 2008,78(1):173-180.
    176. Nikaido M, Harada M, Cao Y, Hasegawa M, Okada N:Monophyletic origin of the order chiroptera and its phylogenetic position among mammalia, as inferred from the complete sequence of the mitochondrial DNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus). J Mol Evol 2000,51(4):318-328.
    177. Ponce M, Infante C, Jimenez-Cantizano RM, Perez L, Manchado M:Complete mitochondrial genome of the blackspot seabream, Pagellus bogaraveo (Perciformes:Sparidae), with high levels of length heteroplasmy in the WANCY region. Gene 2008,409(1-2):44-52.
    178. Roehrdanz RL:Amplification of complete insect mitochondrial genome in two easy pieces. Insect Mol Biol 1995,4(3):169-172.
    179. Turbeville JM, Staton JL, Brown WM:Amplification of the complete mitochondrial genome of two protostome worms:a useful technique for comparative studies of metazoan mitochondrial DNA. Mol Mar Biol Biotechnol 1997.6(2):141-143.
    180 Dreyer H, Steiner G:The complete sequence and gene organization of the mitochondrial genome of the gadilid scaphopod Siphonondentalium lobatum (Mollusca). Mol Phylogenet Evol 2004,31(2):605-617.
    181. Podsiadlowski L, Kohlhagen H, Koch M:The complete mitochondrial genome of Scutigerella causeyae (Myriapoda:Symphyla) and the phylogenetic position of Symphyla. Mol Phylogenet Evol 2007,45(1):251-260.
    182. Domes K, Maraun M, Scheu S, Cameron SL:The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus:genome rearrangements and loss of tRNAs. BMC Genomics 2008,9:532.
    183. Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM:Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics 2008,9:215.
    184. Xu XM, Zhou X, Carlson BA, Kim LK, Huh TL, Lee BJ, Hatfield DL:The zebrafish genome contains two distinct selenocysteine tRNA[Ser]sec genes. FEBS Lett 1999,454(1-2).16-20.
    185. Peregrin-Alvarez JM, Parkinson J:The global landscape of sequence diversity. Genome Biol 2007,8(11):R238.
    186. NCBI genomes database, http://www.ncbi.nlm.nih.gov/sites/entrez. (Search on 27 March, 2008).
    187. Liu Q, Tian LG, Xiao SH, Qi Z, Steinmann P, Mak TK, Utzinger J, Zhou XN:Harnessing the wealth of Chinese scientific literature:schistosomiasis research and control in China Emerg Themes Epid 200%,5:19.
    188. Chen Z, Zhou XN, Yang K, Wang XH, Yao ZQ, Wang TP, Yang GJ, Yang YJ, Zhang SQ, J W: Strategy formulation for schistosomiasis japonica control in different environmental settings supported by spatial analysis:a case study from China Geospat Health 2007, 1(2):223-231.
    189. Zhou YB, Zhao GM, Wei JG, Jiang QW:Study on the genetic diversity among populations of schistosome intermediate hosts within Oncomelania hupensis (Gastropoda:Rissooidea) in mainland China. Chin J Epi 2006,27(10):865-870.
    190. Ma YJ, Li SZ, Xu JN:Molecular identification and phylogeny of the Maculatus group of Anopheles mosquitoes (Diptera:Culicidae) based on nuclear and mitochondrial DNA sequences. Acta Trop 2006,99(2-3):272-280.
    191. Manel S, Segelbacher G:Perspectives and challenges in landscape genetics. Mol Ecol 2009.
    192. Davis GM, Takada T:Oncomelania hupensis nosophora:electrophoretic separation of foot proteins of laboratory-reared and field-collected specimens. Exp Parasitol 1969, 25(1):193-201.
    193. Davis GM:Molecular genetics and taxonomic discrimination. Nautilus(suppl) 1994, 2(1):3-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700