生物质谱新技术与新方法及其在蛋白质组学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士学位论文工作的主要贡献为:在蛋白质组学领域中关于低丰度蛋白和多肽除盐、富集的研究方面取得了创新性的进展:利用液滴内部的“Outward
     Flow”过程结合自制的多功能疏水性聚合物成功实现了一步高效靶上除盐与样品富集直接MALDI-MS分析,并成功应用到实际样品的蛋白质组学研究中;同时利用上述体系,使用阳离子型聚合物成功实现了对低丰度磷酸化肽段的靶上富集与除盐;首次利用聚合物-无机纳米复合材料成功实现了低丰度蛋白质/多肽的高效、快速和高回收率富集;参与研制成功了作为高效液相色谱检测器的电喷雾—四极杆—飞行时间质谱仪(ESI-Q-TOF-MS),填补了国内空白。
     蛋白质组学作为后基因组时代生命科学领域的热点,近年来得到了蓬勃的发展,已涉足生命科学中一系列前沿领域,并成为分析化学研究领域的最前沿课题。它的内容包括分离和分析细胞与组织的全部蛋白并直接找到一组或几组功能蛋白,研究它们与功能基因(组)的内在联系。蛋白质组研究具有观察由多基因事件引起的多蛋白质组分整体变化的独特优势,更接近生命现象的本质,在药靶研究中具有潜在价值,可通过对蛋白质性质、丰度的考察来揭示它的功能,进而找到与人类重大疾病相关的差异蛋白,使之成为诊断、治疗及药物筛选的靶分子。目前蛋白质组已被广泛用于研究各种疾病的发生、发展规律,并取得了很多重大的成就。
     蛋白质组学的科学研究之所以能够取得蓬勃的发展,主要依赖于生物质谱技术的飞速发展以及高通量分离和分析技术的突破性进步。首先是质谱技术尤其是“软电离源”技术——电喷雾和基质辅助激光解析离子源的发展,使之成为检测微量甚至是痕量蛋白质分子的重要手段。高通量、高效的分离技术和大规模、高效率、高准确性地鉴定一个组织或细胞乃至亚细胞中的全部蛋白质以及利用稳定同位素标记方式与多维分离-串级质谱实现大规模的蛋白质定量分析也已经使得生物质谱成为实现这一目标的核心分析技术。生物信息学的建立形成了国际性的科学大协作。目前,世界各主要国家都不惜巨资进行蛋白质组的研究。蛋白质组学研究的进一步深入,将对了解疾病的发生和药物的筛选起到决定性的作用。
     本博士学位论文工作主要是在化学系生物质谱实验室和生物医学研究院蛋白质组学研究中心完成的。由于传统的生物质谱技术平台已不足以应对蛋白质组学中低丰度蛋白检测的要求,所以研究和发展针对低丰度蛋白检测方面的新技术
    与新方法尤显得意义重大,本论文以此为切入点,研究了蛋白质组学分析中如何实现低丰度蛋白有效富集和除盐的问题,包括:利用疏水性聚合物微印迹技术实现的靶上一步除盐和样品富集技术;开展了靶上磷酸化肽段直接浓缩与除盐技术的研究;发展了利用聚合物-无机纳米复合材料实现的低丰度蛋白快速高效富集技术。又因为串级质谱的成功鉴定对于蛋白质组学研究也非常重要,所以本论文以一种含有多达28个氨基酸的复杂多肽为对象研究了如何对大质量多肽进行有效的串级质谱全序列分析;本论文作者还参与研制成功了作为高效液相色谱检测器的高分辩飞行时间质谱仪。
     本论文共分六章,主要内容摘要如下:
     第一章主要综述了蛋白质组学研究中的关键技术——生物质谱相关技术的发展及其在蛋白质组学中的应用。新的“软电离”方式——基质辅助激光解吸电离技术(MALDI)和电喷雾电离技术(ESI)的问世、质谱质量分析器的改善、各种分离技术如高效液相色谱/毛细管电泳等和质谱的联用、稳定同位素标记技术的发展及应用,使得生物质谱已成为蛋白质组学研究中无可替代的核心技术平台。生物质谱在对基因工程产物、功能蛋白及疾病相关蛋白的定性、定量分析中具有无可比拟的优越性,在蛋白的相互作用、蛋白质的折叠等动力学过程的研究中具有极大的潜力。而蛋白质组学作为一门新兴学科,它的发展现状和最新技术进展还包括双向凝胶电泳技术、色谱分离技术、蛋白质芯片技术、酵母双杂交技术和串联亲和纯化技术等。低丰度蛋白的分析与鉴定是蛋白质组学研究的重点和难点内容之一,在生物体中承担重要生命活动的蛋白往往都是低丰度蛋白,然而其极低的含量给后续的分析和检测带来困难,限制了人们对它们的研究和认识,因此低丰度蛋白的有效浓缩与除盐是实现其准确分析和鉴定的重要条件,所以本章还综述了目前针对低丰度蛋白检测的技术,并提出了本课题工作的研究方向。
     第二章研究工作主要涉及关于低丰度蛋白靶上一步除盐与富集直接MALDI-MS分析的新方法。这部分工作是通过将疏水性聚合物微印迹技术与基质辅助激光解析离子化质谱联用,巧妙利用液滴内部的“Outward Flow”效应,结合自制的多功能疏水性聚合物成功实现了痕量多肽的靶上一步除盐与富集。微印迹的疏水性聚合物对蛋白质和多肽有很好的吸附富集效果,但是对无机盐和其他污染物吸附很少,利用固体表面液珠蒸发过程中的外流作用,被疏水性聚合物吸附的样品无需额外的洗脱除盐步骤就可实现一步除盐并可直接进行MALDI-TOF-MS分析。本方法不仅成功实现了样品一步除盐与富集的特性,而且具有灵敏度高、重现性高、通量高、耐盐能力强、经济和省时等特点。可广泛用于蛋白质组学领域,大大拓展了疏水性聚合物的应用范围。此工作已显现出比传
    统商业Ziptip或ZipPlate除盐、富集系统更优秀的特性,并成功应用在我们课题组承担的国际人类蛋白质组人肝计划和中国人肝计划。
     第三章主要阐述了低丰度磷酸化肽段靶上浓缩与除盐—直接MALDI-MS分析的研究。蛋白质的翻译后修饰是目前蛋白质组研究中的一个重要课题,目前蛋白质组技术研究的主要目标之一是建立一套能快速、有效、高通量地分析鉴定发生翻译后修饰的蛋白质的方法技术。而蛋白质磷酸化是最常见、最重要的一种蛋白翻译后修饰方式。蛋白质磷酸化和去磷酸化几乎调节着生命活动的整个过程,包括细胞的增殖、发育和分化、神经活动、肌肉收缩、新陈代谢、肿瘤发生等。目前蛋白质组学方法中磷酸化蛋白、肽段的富集技术主要包括双向磷酸多肽谱图法、高分辨率的凝胶电泳法(2DE)、反相高效液相色谱法、固定化金属亲和色谱(IMAC)、抗体富集、化学标记富集等。磷酸化肽段的质谱检测难点主要在于其丰度低、动态的体内磷酸化过程、难于离子化、受其它高丰度的非磷酸化肽段信号的强烈抑制等原因。本论文采用一种阳离子性聚合物材料,结合第二章介绍的一步除盐与样品富集体系,在靶上有效富集了低浓度磷酸化肽段,大大简化了样品富集步骤。本方法可检测到10fmol/μL β-酪蛋白中的单磷酸化肽,并可得到很好的串级质谱信息。
     第四章研究工作主要涉及一种以纳米碳酸钙球表面原位聚合聚甲基丙烯酸甲酯组合材料(简称CaCO_3-PMMA)作为纳米吸附剂,进行痕量肽及蛋白样品的富集——伴随无固态颗粒化基质辅助激光解析离子源质谱直接分析的方法。此聚合物-无机纳米复合材料可对蛋白质和多肽进行快速高效富集,与基质辅助激光解吸离子源质谱有很好的相容性,吸附了样品的CaCO_3-PMMA在进入质谱分析前被巧妙的去核——从而避免固体颗粒对信号重现性的影响及其溅射对质谱仪器的损害。本方法操作简单,快速高效,既避免了常规吹干富集方法的样品损失问题,又具有很好的耐盐性。本方法可广泛适用于蛋白质组学相关领域,并大大拓展了聚合物-无机纳米复合材料CaCO_3-PMMA的应用范围。
     第五章主要介绍了对含有28个氨基酸的复杂多肽的串级质谱全序列分析研究。对于含有太多氨基酸片断(大于20个)的多肽,很难利用传统的“从头测序”(de novo sequencing)方法进行测序,一方面,由于含有较多氨基酸,得到的串级质谱图往往碎片信息不完整,对谱峰归属造成很大困难,另一方面即使获得了较为完整的串级质谱图,实验室的服务器电脑无法对如此复杂的碎片峰进行合理归纳,往往会造成电脑超负荷运算陷入死循环。本章不仅利用串级质谱图成功鉴定了一种人工合成寡肽(28个氨基酸)的一级结构,并且详细考察了不同类型质谱仪器、不同碎裂方式、不同碎裂能量、不同激光能量、不同分析软件对于测
    序结果的影响,讨论了含有超过20个氨基酸片断的多肽获得合格串级质谱的条件,也为蛋白质组学研究工作如何制定有效的串级质谱策略提供了有力参考。
     第六章主要阐述了作为高效液相色谱检测器的四极杆——飞行时间质谱仪(Q-TOF-MS)的研制工作。我们使用三组功能不同的四极杆调制和传输离子,采用正负双脉冲推斥和离子垂直引入的方式将离子束引入到经过优化设计的二级有网式反射器,配合新颖的MCP安装方法和离子检测技术,并使用先进的三级真空系统,最终实现了高灵敏度以及FWHM=11000的高分辨。
The main contributions of this dissertation for the degree of doctor of philosophy are listed as followed, Carrying out many exciting discoveries and inventions of the enrichment and desalting of low-abundance proteins and peptides in proteomics research; Novel one-step on-plate desalting and enrichment protocol for low-abundance proteins by using multifunctional hydrophobic polymer micro-contact-printing; On-plate enrichment and desalting method of low-abundance phosphopeptides for direct MALDI-TOF MS analysis by using cationic polymer and above "one-step desalting" system; Fast and effective enrichment of low-abundance proteins based on combined nano-materials; Development of high-resolution ESI-Q-TOF-MS used as the sensitive and efficient detector of HPLC .
    Proteomics — one of the most important fields in the life sciences during the post-genome era— has burst onto the scientific scene with stunning rapidity over the past few years. Proteomics has also become the frontal discipline of analytical chemistry. Proteomics refers to the analysis of all the proteins expressed in a cell or a tissue. The works on proteomics include the characteristics and abundance studies for proteins to find out their functions and locate the key protein which is related to the disease. By studying global patterns of protein abundance and activity and how these change during development or in response to disease, proteomics research has boosted our understanding of systematical cellular behaviour and mechanism of disease. In addition, proteomics benefits the identification of new drug targets and the development of new diagnostic markers in clinical research. Recently proteomics have been obtained many significant achievements in the studies of generation and evolvement of the diseases.
    The rapid development of proteomics relies on the advances in the high throughput analytical technologies including biological mass spectrometry (Bio-MS), multi-dimensional separation, and bioinformatics. MALDI and Electrospay —the soft ionizations—have been the key techniques of Bio-MS and applied to the proteomics research. Identification of all proteins in a cell or a tissue and their
    locations in the organism and finding out the key proteins by comparative proteomics has made Bio-MS become the critical tool in proteomics study. Many countries have made a large investment in proteomics and the accomplishment of proteomics would play a significant role in finding out drugs and curing diseases.
    The work of this doctoral dissertation was mainly accomplished in the Bio-MS laboratory of Department of Chemistry and the Research Center for Proteome of Institutes of Biomedical Sciences of Fudan University. Because the conventional Bio-MS technique platform was difficult for the detection of low-abundance proteins of proteome, the related studies of new technologies and methods become more and more important. Therefore, this dissertation studied on how to enrich and desalt low-abundance proteins effectively and develop some novel strategies: one-step on-plate desalting and enrichment method for low-abundance proteins, on-plate enrichment and desalting of low-abundance phosphopeptides for direct MALDI-TOF MS analysis, fast and effective enrichment of low-abundance proteins depending on combined nano-materials. Since the successful tandem mass spectrometry is very important for the identification of proteins, this dissertation described the whole sequencing process for one synthetic complicated polypeptide composed of 28 amino acids successfully and established a good supplementary method of peptides sequencing for proteomics research. In addition, this dissertation developed high-resolution TOF-MS used as the detector of HPLC.
    This doctoral dissertation consists of six parts and the contents are summarized as follows:
    In the first chapter, as the key technique in the proteomics study, Bio-MS and its related techniques and applications in the proteomics have been reviewed. Bio-MS becomes more and more important in proteomics with the development of the two soft ionization techniques namely ESI and MALDI, with the improvement of the mass analyzer, with the hybrid of HPLC and CE, with the development of the micro-electrospay and nano-electrospay, as well as the application of tagging by stable isotope. The Bio-MS technique is a definitely powerful tool for the study of the dynamic process of protein-protein reaction, the structure of genetic product, proteins related to diseases and functional protein. As a fresh discipline, the development of proteomics also depends on the newest technical development such as 2DE, chromatography, protein chip, Yeast two-hybrid system, tandem affinity purification,
    and so on. The analysis of low abundance proteins has been proved to be a difficult problem since there is no enough technique for the signal amplification of these proteins. Therefore, the isolation and enrichment protocols for low abundance proteins are desirable in proteome research. So a review of the analytical technologies for low-abundance proteins was presented and the investigative direction and purpose of this dissertation were also put forward.
    The research works described in the second chapter centers on a novel method of one-step on-plate desalting and low-abundance peptides concentration. A novel micro-contact-printing protocol of multifunctional hydrophobic polymer has been developed for 2DE-MALDI-MS, which can achieve one-step on-plate desalting and analyte concentration. The polymers of PMMA, PMMA-C60, PST and PST-C60 are applied successfully as the MALDI coating materials in the first time. The one-step preparation protocol has a unique and ingenious feature which using "outward-flow" for the separation of analytes from salts. The new micro-contact-printing method of hydrophobic polymers permits analyte to be concentrated on the center of MALDI spot, and meanwhile allows salts to be separated and removed toward the outside of MALDI spot. The on-plate desalting process can be accomplished only for one step without any excessive washing procedure such that the new protocol would provide a potential route to solve the identification problem of low-abundance protein. Normally, the process for proteins digested and transformed from a gel spot to the MALDI target needs a number of steps including protein digestion, peptide extraction, desalting and washing, so low-abundance protein might be easily lost during all these steps. It is expected that the new protocol of hydrophobic polymer micro-contact-printing can effectively reduce the losing of peptides because of the on-spot desalting. The high through-put experiment by using this on-spot desalting strategy is currently on the way in our laboratory.
    For the works mentioned in the third chapter, on-plate enrichment and desalting method of low-abundance phosphopeptides for direct MALDI-TOF MS analysis is well tried. Phosphorylation, the most important and ubiquitous post-translational modification of proteins, is able to regulate almost all aspects of cell life in both prokaryotes and eukaryotes. Widespread interest in protein phosphorylation has led to the development of methods to map phosphorylation sites of proteins. The existing preferred approach for phosphorylation site mapping mainly relies on the use of tandem mass spectrometry to sequence individual peptides after proteolysis. However,
    this method still remains challenging because the signals for phosphorylated peptides are strongly suppressed by other abundant unphosphorylated peptides contained in protein digests during positive mass spectrometric analysis. Therefore, the separation and enrichment of phosphorylated peptides from unphosphorylated ones is highly desirable. At present, one solution to this problem for proteomics research is to carry out HPLC separation of the phosphopeptides from the other peptides prior to mass spectrometric analysis. Immobilized metal ion affinity chromatography (IMAC) has been often used for the selective enrichment of phosphopeptides from proteolytic digest mixtures. However, chromatography introduces additional sample handling and preparation time prior to MALDI or electrospray mass spectrometry. In this chapter, we reported a solution to the problem of the suppression of phosphorylated peptides during positive ion MALDI-TOF-MS by using the cationic-polymer coating plate combined with the "One-step desalting" system. This cationic-polymer coating can efficiently enriches the phosphopeptides and improves the sensitivity of the MS devices, Meanwhile it also eliminates the interference of the salts on the plate which would simplify the procedure of sample concentration and desalting.
    In the fourth chapter, the development of a particle-free MALDI and " octopus-like" enrichment protocol is mentioned. In this protocol, we select nanoparticles of calcium carbonate derivatized with poly(methyl methacrylate) (PMMA) because of its ability to adsorb the peptide/protein. The particle denoted as CaCO_3 - PMMA has a destroyable core of CaCO_3, which can be removed later for a particle-free MALDI analysis. When the CaCO_3 - PMMA material is added dropwise to the sample solution, the linear chains of PMMA linked on the CaCO_3 core will be flexible and spread out into the solution like the tentacles of an octopus. Not only the CaCO_3 - PMMA nanoparticles are applied for the first time for the enrichment of low-abundance peptides and proteins, but also the process of enrichment is very quick and efficient. The resulting nanoparticle-adsorbed peptides or proteins can be analyzed by MALDI-TOF MS in the particle-free mode with high reproducibility and good recovery, thereby avoiding sample loss and contamination inside the mass spectrometer. It has been found that CaCO_3 - PMMA nanoparticles exhibit a strong enriching and desalting ability, which could pave way to novel approach to the enrichment of trace-level proteins or peptides, as well as new applications for CaCO_3 - PMMA nanoparticles.
    One synthetic complicated polypeptide composed of 28 amino acids was
    successfully sequenced by MALDI-MSMS (CID) and ESI-MSMS (CID) in the fifth study. I obtained the perfect tandem mass spectrum consisting full product ions of b and y by investigating the parameters of mass spectrometry instruments, such as the intensity of Laser, the energy of CID, the difference of sequencing software. et al. Results indicate that this method can effectively solve the difficulty occurring in de novo sequencing, such as dead-response of computer. The established method is a good supplement for peptides sequencing and the discussion of various parameters is important for the establishment of tandem mass spectrometry proocol in proteomics research work.
    In the last chapter, two ESI-Triple Quadrupole-Orthogonal Acceleration-Reflecting-TOF mass spectrometer analytical systems are successfully developed, which are equipped with electrospray ionization source which could be directly connected with HPLC as an outstanding detector. The ESI-QQQ-TOF mass spectrometers have some promising features, such as an ESI source with heatable nebulizer settled on a smart triaxially moving stage, an excellent ion-optics system composed with triple-quadruple, double-pulse acceleration, and a double stage reflector with homemade grids. The Gramicidin-S sample concentration below to 3 fmol/μL can be identified by these instruments under the optimized conditions. The mass range of these instruments is from 50 to 6000 u with a general ESI interface to the HPLC. The optimal mass resolution exceeds 11000 (Full Width at Half Maximum, FWHM) and the signal/noise ratio of reserpine (10 pg/μL) is greater than 100. We hope the homemade Q-TOF-MS would be widely used in protein chemistry and proteomics research due to its high sensitivity, high resolution and high accuracy.
引文
[1] Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., et al. The sequence of the human genome[J]. Science, 2001. 291(5507): 1304-1351.
    [2] Tyers, M. Mann, M. From genomics to proteomics[J]. Nature, 2003. 422(6928): 193-197.
    [3] Pandey, A. Mann, M. Proteomics to study genes and genomes[J]. Nature, 2000. 405(6788): 837-846.
    [4] Aebersold, R. Mann, M. Mass spectrometry-based proteomics[J]. Nature, 2003. 422(6928): 198-207.
    [5] Ong, S. E. Mann, M. Mass spectrometry-based proteomics turns quantitative[J]. Nature Chemical Biology, 2005. 1(5): 252-262.
    [6] Munson, M. S. B. Field, F. H. Chemical ionisation mass spectrometry. I: General introduction.[J]. Journal of American Chemistry Society, 1966. 88: 2621.
    [7] Weickhardt, C., Moritz, F., Grotemeyer, J. Time-of-flight mass spectrometry: State-of-the-art in chemical analysis and molecular science[J]. Mass Spectrometry Reviews, 1996. 15(3): 139-162.
    [8] 杨芃原,钱小红,盛龙生.生物质谱技术与方法 [J].北京:科学出版社,2003:40-44.
    [9] Hoxha, A., Collette, C., De Pauw, E., Leyh, B. Mechanism of collisional heating in electrospray mass spectrometry: Ion trajectory calculations[J]. Journal of Physical Chemistry A, 2001. 105(31): 7326-7333.
    [10] de la Mora, J. F. Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism[J]. Analytica Chimica Acta, 2000. 406(1): 93-104.
    [11] Espenson, J. H., Tan, H. S., Mollah, S., Houk, R. S., Eager, M. D. Base hydrolysis of methyltrioxorhenium. The mechanism revised and extended: A novel application of electrospray mass spectrometry[J]. Inorganic Chemistry, 1998. 37(18): 4621-4624.
    [12] Ke, F., Leblanc, J. C. Y., Guevremont, R., Siu, K. W. M. The Effects of Stearyl and Cetyl Alcohol on the Electrospray Mass-Spectrometry of Proteins and Their Implications on the Electrospray Mechanism[J]. European Mass Spectrometry, 1995. 1(3): 253-260.
    [13] Kebarle, P. Tang, L. From Ions in Solution to Ions in the Gas-Phase-the Mechanism of Electrospray Mass-Spectrometry[J]. Analytical Chemistry, 1993. 65(22): A972-A986.
    
    [14] Cole, R. B. Harrata, A. K. Solvent Effect on Analyte Charge-State, Signal Intensity, and Stability in Negative-Ion Electrospray Mass-Spectrometry Implications for the Mechanism of Negative-Ion Formation [J]. Journal of the American Society for Mass Spectrometry, 1993. 4(7): 546-556.
    
    [15] Ashton, D. S., Beddell, C. R., Cooper, D. J., Green, B. N., Oliver, R. W. A. Mechanism of Production of Ions in Electrospray Mass-Spectrometry [J]. Organic Mass Spectrometry, 1993. 28(6): 721-728.
    
    [16] Siu, K. W. M., Guevremont, R., Leblanc, J. C. Y., Obrien, R. T., Berman, S. S. Is Droplet Evaporation Crucial in the Mechanism of Electrospray Mass-Spectrometry [J]. Organic Mass Spectrometry, 1993. 28(5): 579-584.
    
    [17] Blades, A. T., Ikonomou, M. G., Kebarle, P. Mechanism of Electrospray Mass-Spectrometry - Electrospray as an Electrolysis Cell [J]. Analytical Chemistry, 1991. 63(19): 2109-2114.
    
    [18] S., Chapman. [J]. Physical Reviews, 1937. 52: 184.
    
    [19] S., Chapman. [J]. Physical Reviews, 1938. 54: 520.
    
    [20] S., Chapman. [J]. Physical Reviews, 1938.54: 528.
    
    [21] Wilm, M. S. Mann, M. Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last [J]. International Journal of Mass Spectrometry and Ion Processes, 1994. 136(2-3): 167-180.
    
    [22] Smith, R. D. Lightwahl, K. J. The Observation of Noncovalent Interactions in Solution by Electrospray-Ionization Mass-Spectrometry - Promise, Pitfalls and Prognosis [J]. Biological Mass Spectrometry, 1993. 22(9): 493-501.
    
    [23] Fenn, J. B. Ion Formation from Charged Droplets - Roles of Geometry, Energy, and Time [J]. Journal of the American Society for Mass Spectrometry, 1993. 4(7): 524-535.
    
    [24] Tang, L. Kebarle, P. Effect of the Conductivity of the Electrosprayed Solution on the Electrospray Current - Factors Determining Analyte Sensitivity in Electrospray Mass-Spectrometry [J]. Analytical Chemistry, 1991. 63(23): 2709-2715.
    
    [25] Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M. Electrospray Ionization-Principles and Practice [J]. Mass Spectrometry Reviews, 1990. 9(1): 37-70.
    
    [26] Yamashita, M. Fenn, J.B. Electrospray ion source: Another variation on the free-jet theme. [J]. Journal of Physical Chemistry, 1984. 88: 4451-4459.
    [27] Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M. Electrospray ionization for mass Spectrometry of large biomolecules [J]. Science, 1989.246:64.
    
    [28] Covey, T. R., Huang, E. C., Henion, J. D. Structural Characterization of Protein Tryptic Peptides Via Liquid-Chromatography Mass-Spectrometry and Collision-Induced Dissociation of Their Doubly Charged Molecular-Ions [J]. Analytical Chemistry, 1991. 63(13): 1193-1200.
    
    [29] Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass Spectrometry [J]. Nature, 1996. 379(6564): 466-469.
    
    [30] Valaskovic, G.A. McLafferty, F.W. Attomole-sensitivity electrospray source for largemolecule mass Spectrometry. [J]. Analical Chemistry, 1995. 67: 3802-3805.
    
    [31] Wei, J. F., Shui, W. Q., Zhou, F., Lu, Y., Chen, K. K., et al. Naturally and externally pulsed electrospray [J]. Mass Spectrometry Reviews, 2002. 21(3): 148-162.
    
    [32] Lu, Y., Zhou, F., Shui, W. Q., Bian, L. P., Yang, P. Y. Pulsed electrospray for mass Spectrometry [J]. Analytical Chemistry, 2001. 73(19): 4748-4753.
    
    [33] Nefliu, M., Venter, A., Cooks, R. G. Desorption electrospray ionization and electrosonic spray ionization for solid- and solution-phase analysis of industrial polymers [J]. Chemical Communications, 2006(8): 888-890.
    
    [34] Myung, S., Wiseman, J. M., Valentine, S. J., Takats, Z., Cooks, R. G., et al. Coupling desorption electrospray ionization with ion mobility/mass Spectrometry for analysis of protein structure: Evidence for desorption of folded and denatured states [J]. Journal of Physical Chemistry B, 2006. 110(10): 5045-5051.
    
    [35] Kauppila, T. J., Wiseman, J. M., Ketola, R. A., Kotiaho, T., Cooks, R. G., et al. Desorption electrospray ionization mass Spectrometry for the analysis of pharmaceuticals and metabolites [J]. Rapid Communications in Mass Spectrometry, 2006. 20(3): 387-392.
    
    [36] Cotte-Rodriguez, I., Chen, H., Cooks, R. G. Rapid trace detection of triacetone triperoxide (TATP) by complexation reactions during desorption electrospray ionization [J]. Chemical Communications, 2006(9): 953-955.
    
    [37] Cooks, R. G., Ouyang, Z., Takats, Z., Wiseman, J. M. Ambient mass Spectrometry [J]. Science, 2006. 311(5767): 1566-1570.
    
    [38] Chen, H., Cotte-Rodriguez, I., Cooks, R. G. cis-diol functional group recognition by reactive desorption electrospray ionization (DESI) [J]. Chemical Communications, 2006(6): 597-599.
    
    [39] Wiseman, J. M., Puolitaival, S. M., Takats, Z., Cooks, R. G., Caprioli, R. M. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization [J]. Angewandte Chemie-International Edition, 2005. 44(43): 7094-7097.
    
    [40] Talaty, N., Takats, Z., Cooks, R. G Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization [J]. Analyst, 2005. 130(12): 1624-1633.
    
    [41] Takats, Z., Wiseman, J. M., Cooks, R. G. Ambient mass Spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology [J]. Journal of Mass Spectrometry, 2005.40(10): 1261-1275.
    
    [42] Takats, Z., Cotte-Rodriguez, I., Talaty, N., Chen, H. W., Cooks, R. G. Direct, trace level detection of explosives on ambient surfaces by desorption electrospray ionization mass Spectrometry [J]. Chemical Communications, 2005(15): 1950-1952.
    
    [43] Cotte-Rodriguez, I., Takats, Z., Talaty, N., Chen, H. W., Cooks, R. G. Desorption electrospray ionization of explosives on surfaces: Sensitivity and selectivity enhancement by reactive desorption electrospray ionization [J]. Analytical Chemistry, 2005. 77(21): 6755-6764.
    
    [44] Chen, H. W., Talaty, N. N., Takats, Z., Cooks, R. G. Desorption electrospray ionization mass Spectrometry for high-throughput analysis of pharmaceutical samples in the ambient environment [J]. Analytical Chemistry, 2005. 77(21): 6915-6927.
    
    [45] Takats, Z., Wiseman, J. M., Gologan, B., Cooks, R. G. Mass Spectrometry sampling under ambient conditions with desorption electrospray ionization [J]. Science, 2004. 306(5695): 471-473.
    
    [46] McEwen, C. N., McKay, R. G., Larsen, B. S. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments [J]. Analytical Chemistry, 2005. 77(23): 7826-7831.
    
    [47] Cody, R. B., Laramee, J. A., Durst, H. D. Versatile new ion source for the analysis of materials in open air under ambient conditions [J]. Analytical Chemistry, 2005. 77(8): 2297-2302.
    
    [48] Tanaka, K., Ido, Y., Akita, S., Yoshida, Y. and Yoshida, T., [J]. Proc. Second Japan-China Joint Symposium on Mass Spectrometry Editors Matsuda, H. and Xiao-tian, L. (Osaka, Japan), 15-18 September 1987: 185-188.
    [49] Yoshida, T., Tanaka, K., Ido, Y., Akita, S. and Yoshida, Y.. [J]. Mass Spectroscopy (Japan), 1988. 36: 59.
    
    [50] Tanaka, K., Waki, H., Ido, Y, Akita, S., Yoshida, Y, Yoshida, T.. Protein and polymer analysis up to m/z 100.000 by laser ionisation time-of-flight mass Spectrometry. [J]. Rapid Communications in Mass Spectrometry, 1988. 2: 151-153.
    
    [51] Wei, J., Buriak, J.M. and Siuzdak, G.. Desorption-ionisation mass Spectrometry on porous silicon [J]. Nature, 1999. 399: 243-246.
    
    [52] Karas, M. and Hillenkamp, F. Laser desorption ionisation of proteins with molecular masses exceeding 10.000 daltons [J]. Analical Chemistry, 1988. 60: 2299-2301.
    
    [53] Hillenkamp, F., Karas, M., Beavis, R. C., Chait, B. T. Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry of Biopolymers [J]. Analytical Chemistry, 1991. 63(24):A1193-A1202.
    
    [54] Depauw, E., Agnello, A., Derwa, F. Liquid Matrices for Liquid Secondary Ion Mass-Spectrometry Fast-Atom-Bombardment - an Update [J]. Mass Spectrometry Reviews, 1991. 10(4): 283-301.
    
    [55] Siegel, M. M., Hollander, I. J., Hamann, P. R., James, J. P., Hinman, L., et al. Matrix-Assisted Uv-Laser Desorption Ionization Mass-Spectrometric Analysis of Monoclonal-Antibodies for the Determination of Carbohydrate, Conjugated Chelator, and Conjugated Drug Content [J]. Analytical Chemistry, 1991. 63(21): 2470-2481.
    
    [56] Overberg, A., Karas, M., Hillenkamp, F. Matrix-Assisted Laser Desorption of Large Biomolecules with a Tea-Co2-Laser [J]. Rapid Communications in Mass Spectrometry, 1991. 5(3): 128-131.
    
    [57] Zhao, S., Somayajula, K. V., Sharkey, A. G., Hercules, D. M., Hillenkamp, F., et al. Novel Method for Matrix-Assisted Laser Mass-Spectrometry of Proteins [J]. Analytical Chemistry, 1991. 63(5): 450-453.
    
    [58] Beavis, R. C. Chait, B. T. High-Accuracy Molecular Mass Determination of Proteins Using Matrix-Assisted Laser Desorption Mass-Spectrometry [J]. Analytical Chemistry, 1990. 62(17): 1836-1840.
    
    [59] Zhang, J. H., LaMotte, L. T., Dodds, E. D., Lebrilla, C. B. Atmospheric pressure MALDI Fourier transform mass Spectrometry of labile oligosaccharides [J]. Analytical Chemistry, 2005. 77(14): 4429-4438.
    
    [60] Schneider, B. B., Lock, C., Covey, T. R. AP and vacuum MALDI on a QqLIT instrument [J]. Journal of the American Society for Mass Spectrometry, 2005. 16(2): 176-182.
    
    [61] Kellersberger, K. A., Yu, E. T., Merenbloom, S. I., Fabris, D. Atmospheric pressure MALDI-FTMS of normal and chemically modified RNA [J]. Journal of the American Society for Mass Spectrometry, 2005. 16(2): 199-207.
    
    [62] Von Seggern, C. E., Gardner, B. D., Cotter, R. J. Infrared atmospheric pressure MALDI ion trap mass Spectrometry of frozen samples using a peltier-cooled sample stage [J]. Analytical Chemistry, 2004. 76(19): 5887-5893.
    
    [63] Taranenko, N., Doroshenko, V. M., Shukla, A. K., Shukla, M. M. Applications of AP-MALDI ion trap mass Spectrometry for the analysis of phosphopeptides [J]. American Laboratory, 2004. 36(10): 34-+.
    
    [64] Tan, P. V., Laiko, V. V., Doroshenko, V. M. Atmospheric pressure MALDI with pulsed dynamic focusing for high-efficiency transmission of ions into a mass spectrometer [J]. Analytical Chemistry, 2004. 76(9): 2462-2469.
    
    [65] Kellersberger, K. A., Tan, P. V., Laiko, V. V., Doroshenko, V. M., Fabris, D. Atmospheric pressure MALDI-Fourier transform mass Spectrometry [J]. Analytical Chemistry, 2004. 76(14): 3930-3934.
    
    [66] Von Seggern, C. E., Zarek, P. E., Cotter, R. J. Fragmentation of sialylated carbohydrates using infrared atmospheric pressure MALDI ion trap mass Spectrometry from cation-doped liquid matrixes [J]. Analytical Chemistry, 2003. 75(23): 6523-6530.
    
    [67] Moyer, S. G. Cotter, R. J. Atmospheric pressure MALDI [J]. Analytical Chemistry, 2002. 74(17): 468A-476A.
    
    [68] Doroshenko, V. M., Laiko, V. V., Taranenko, N. I., Berkout, V. D., Lee, H. S. Recent developments in atmospheric pressure MALDI mass Spectrometry [J]. International Journal of Mass Spectrometry, 2002. 221(1): 39-58.
    
    [69] Laiko, V. V., Moyer, S. C., Cotter, R. J. Atmospheric pressure MALDI/ion trap mass Spectrometry [J]. Analytical Chemistry, 2000. 72(21): 5239-5243.
    
    [70] Erickson, B. Atmospheric pressure MALDI [J]. Analytical Chemistry, 2000. 72(5): 186A-186A.
    
    [71] Moyer, S. C., Marzilli, L. A., Woods, A. S., Laiko, V. V., Doroshenko, V. M., et al. Atmospheric pressure matrix-assisted laser desorption/ionization.(AP MALDI) on a quadrupole ion trap mass spectrometer [J]. International Journal of Mass Spectrometry, 2003. 226(1): 133-150.
    
    [72] Hutchens, T. W. Yip, T. T. New Desorption Strategies for the Mass-Spectrometric Analysis of Macromolecules [J]. Rapid Communications in Mass Spectrometry, 1993. 7(7): 576-580.
    
    [73] Kalmadi, S. R., Wu, R., Nearman, Z., Elson, P., Sekeres, M., et al. A pilot application of SELDI-TOF mass Spectrometry in bone marrow failure syndromes [J]. Blood, 2005. 106(11): 955A-955A.
    
    [74] Czader, M., Kuzdzal, S., Flinn, I., Byrd, J., Chan, D., et al. The application of protein chip surface-enhanced laser desorption/ionization (SELDI) mass Spectrometry for the identification of proteins in chronic lymphocytic leukemia [J]. Blood, 2000. 96(11): 579A-+.
    
    [75] Leung, S. M., Zeyda, T., Thatcher, B. A new and rapid method for phenotype screening using SELDI Proteinchip (TM) arrays demonstrated on serum from knockout and wildtype mice [J]. Molecular Biology of the Cell, 1998. 9: 351A-351A.
    
    [76] Kuwata, H., Yip, T. T., Yip, C. L., Tomita, M., Hutchens, T. W. Bactericidal domain of lactoferrin: Detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass Spectrometry [J]. Biochemical and Biophysical Research Communications, 1998. 245(3): 764-773.
    
    [77] Gershwin, M. E., Yip, T. T., Vandewater, J., Hutchens, T. W. In-Situ Detection of Marker Proteins Specific for Primary Biliary-Cirrhosis through Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (Seldi-Tof) [J]. Hepatology, 1995. 22(4): 57-57.
    
    [78] Traum, A. Z., Wells, M. P., Aivado, M., Libermann, T. A., Ramoni, M. F., et al. SELDI-TOF MS of quadruplicate urine and serum samples to evaluate changes related to storage conditions [J]. Proteomics, 2006. 6(5): 1676-1680.
    
    [79] Beyer, S., Walter, Y., Hellmann, J., Kramer, P. J., Kopp-Schneider, A., et al. Comparison of software tools to improve the detection of carcinogen induced changes in the rat liver proteome by analyzing SELDI-TOF-MS spectra [J]. Journal of Proteome Research, 2006. 5(2): 254-261.
    
    [80] Goncalves, A., Bertucci, F., Charaffe-Jauffret, E., Toiron, Y., Birnbaum, D., et al. Molecular classification of human breast cancer: A SELDI-TOF mass spectrometry-based approach to identify new protein biomarkers [J]. Clinical Cancer Research, 2005. 11(24): 9064S-9064S.
    
    [81] Rolland, D., Bouamrami, A., Ballester, B., Grangeaud, S., Arlotto, M., et al. SELDI-TOF identifies specific protein patterns in small lymphocytic lymphoma, marginal zone lymphoma and mantle cell lymphoma [J]. Blood, 2005. 106(11): 290A-290A.
    
    [82] Cai, S. S. Syage, J. A. Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass Spectrometry for analysis of lipids [J]. Analytical Chemistry, 2006. 78(4): 1191-1199.
    
    [83] De Nino, A., Di Donna, L., Mazzotti, F., Muzzalupo, E., Perri, E., et al. Absolute method for the assay of oleuropein in olive oils by atmospheric pressure chemical ionization tandem mass Spectrometry [J]. Analytical Chemistry, 2005. 77(18): 5961-5964.
    
    [84] Takada, Y., Sakairi, M., Koizumi, H. Atmospheric-Pressure Chemical-Ionization Interface for Capillary Electrophoresis Mass-Spectrometry [J]. Analytical Chemistry, 1995. 67(8): 1474-1476.
    
    [85] Tyrefors, L. N., Moulder, R. X., Markides, K. E. Interface for Open-Tubular Column Supercritical-Fluid Chromatography Atmospheric-Pressure Chemical-Ionization Mass-Spectrometry [J]. Analytical Chemistry, 1993. 65(20): 2835-2840.
    
    [86] Yates, J. R. Protein structure analysis by mass Spectrometry [J]. Methods in Enzymology, 1996. 271: 351-377.
    
    [87] Loboda, A., Krutchinsky, A., Loboda, O., McNabb, J., Spicer, V., et al. Novel Linac II electrode geometry for creating an axial field in a multipole ion guide [J]. European Journal of Mass Spectrometry, 2000. 6(6): 531-536.
    
    [88] McLuckey, S. A., Goeringer, D. E., Glish, G. L. Collisional Activation with Random Noise in Ion Trap Mass-Spectrometry [J]. Analytical Chemistry, 1992. 64(13): 1455-1460.
    
    [89] Guilhaus, M. Principles and Instrumentation in Time-of-Flight Mass-Spectrometry - Physical and Instrumental Concepts [J]. Journal of Mass Spectrometry, 1995. 30(11): 1519-1532.
    
    [90] Olsen, J. V., de Godoy, L. M. F., Li, G. Q., Macek, B., Mortensen, P., et al. Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap [J]. Molecular & Cellular Proteomics, 2005. 4(12): 2010-2021.
    
    [91] Peterman, S. M., Duczak, N., Kalgutkar, A. S., Lame, M. E., Soglia, J. R. Application of a linear ion trap/orbitrap mass spectrometer in metabolite characterization studies: Examination of the human liver microsomal metabolism of the non-tricyclic anti-depressant nefazodone using data-dependent accurate mass measurements [J]. Journal of the American Society for Mass Spectrometry, 2006. 17(3): 363-375.
    
    [92] Douglas, D. J., Frank, A. J., Mao, D. M. Linear ion traps in mass Spectrometry [J]. Mass Spectrometry Reviews, 2005. 24(1): 1-29.
    
    [93] Hager, J. W. Le Blanc, J. C. Y. Product ion scanning using a Q-q-Q(linear ion trap) (Q TRAP (TM)) mass spectrometer [J]. Rapid Communications in Mass Spectrometry, 2003. 17(10): 1056-1064.
    
    [94] Hager, J. W. A new linear ion trap mass spectrometer [J]. Rapid Communications in Mass Spectrometry, 2002. 16(6): 512-526.
    
    [95] Collings, B. A., Campbell, J. M., Mao, D. M., Douglas, D. J. A combined linear ion trap time-of-flight system with improved performance and MSn capabilities [J]. Rapid Communications in Mass Spectrometry, 2001. 15(19): 1777-1795.
    
    [96] Developing peptide MRM-based assays for cardiovascular biomarker proteins in plasma using a hybrid triple quadrupole linear ion trap mass spectrometer [J]. Molecular & Cellular Proteomics, 2005. 4(8): S473-S473.
    
    [97] Shen, Y. F., Smith, R. D., Unger, K. K., Kumar, D., Lubda, D. Ultrahigh-throughput proteomics using fast RPLC separations with ESI-MS/MS [J]. Analytical Chemistry, 2005. 77(20): 6692-6701.
    
    [98] Yates, J. R., Cociorva, D., Liao, L. J., Zabrouskov, V. Performance of a linear ion trap-orbitrap hybrid for peptide analysis [J]. Analytical Chemistry, 2006. 78(2): 493-500.
    
    [99] Williamson, B. L., Marchese, J., Morrice, N. A. Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer [J]. Molecular & Cellular Proteomics, 2006. 5(2): 337-346.
    
    [100] Xie, H. W., Rhodus, N. L., Griffin, R. J., Carlis, J. V., Griffin, T. J. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass Spectrometry [J]. Molecular & Cellular Proteomics, 2005. 4(11): 1826-1830.
    
    [101] Thevis, M., Makarov, A. A., Horning, S., Schanzer, W. Mass Spectrometry of stanozolol and its analogues using electrospray ionization and collision-induced dissociation with quadrupole-linear ion trap and linear ion trap-orbitrap hybrid mass analyzers [J]. Rapid Communications in Mass Spectrometry, 2005. 19(22): 3369-3378.
    
    [102] Thermo electron introduces new Finnigan LXQ (TM) linear ion trap mass spectrometer [J]. Proteomics, 2005. 5(16): 4311-4311.
    
    [103] Methodology for mapping and monitoring of phosphorylation sites using a hybrid quadrupole linear ion trap mass spectrometer [J]. Molecular & Cellular Proteomics, 2005. 4(8): S465-S465.
    
    [104] Targeted proteomic techniques for discovery and post-translational modifications using a hybrid-triple quadrupole linear ion trap mass spectrometer [J]. Molecular & Cellular Proteomics, 2005. 4(8): S461-S461.
    
    [105] Ouyang, Z., Wu, G. X., Song, Y. S., Li, H. Y., Plass, W. R., et al. Rectilinear ion trap: Concepts, calculations, and analytical performance of a new mass analyzer [J]. Analytical Chemistry, 2004. 76(16): 4595-4605.
    
    [106] Severs, J. C., Hofstadler, S. A., Zhao, Z., Senh, R. T., Smith, R. D. The interface of capillary electrophoresis with high performance Fourier transform ion cyclotron resonance mass Spectrometry for biomolecule characterization [J]. Electrophoresis, 1996. 17(12): 1808-1817.
    
    [107] Perm, S. G., Cancilla, M. T., Lebrilla, C. B. Collision-induced dissociation of branched oligosaccharide ions with analysis and calculation of relative dissociation thresholds [J]. Analytical Chemistry, 1996. 68(14): 2331-2339.
    
    [108] Wu, Q. Y, Cheng, X. H., Hofstadler, S. A., Smith, R. D. Specific metal-oligonucleotide binding studied by high resolution tandem mass Spectrometry [J]. Journal of Mass Spectrometry, 1996. 31(6): 669-675.
    
    [109] Campbell, S., Rodgers, M. T., Marzluff, E. M., Beauchamp, J. L. Deuterium exchange reactions as a probe of biomolecule structure. Fundamental studies of cas phase H/D exchange reactions of protonated glycine oligomers with D2O, CD3OD, CD3CO2D, and ND3 [J]. Journal of the American Chemical Society, 1995. 117(51): 12840-12854.
    
    [110] Yao, J., Dey, M., Pastor, S. J., Wilkins, C. L. Analysis of High-Mass Biomolecules Using Electrostatic Fields and Matrix-Assisted Laser Desorption/Ionization in a Fourier-Transform Mass-Spectrometer [J]. Analytical Chemistry, 1995. 67(20): 3638-3642.
    
    [111] Pastor, S. J., Castoro, J. A., Wilkins, C. L. High-Mass Analysis Using Quadrupolar Excitation Ion Cooling in a Fourier-Transform Mass-Spectrometry [J]. Analytical Chemistry, 1995. 67(2): 379-384.
    
    [112] Beu, S. C., Senko, M. W., Quinn, J. P., McLafferty, F. W. Improved Fourier-Transform Ion-Cyclotron-Resonance Mass-Spectrometry of Large Biomolecules [J]. Journal of the American Society for Mass Spectrometry, 1993. 4(2): 190-192.
    
    [113] Dodonov, A. F., Kozlovski, V. I., Soulimenkov, I. V., Raznikov, V. V., Loboda, A. V., et al. High-resolution electrospray ionization orthogonal-injection time-of-flight mass spectrometer [J]. European Journal of Mass Spectrometry, 2000. 6(6): 481-490.
    
    [114] Raznikov, V. V., Pikhtelev, A. R., Dodonov, A. F., Raznikova, M. O. A new approach to data reduction and evaluation in high-resolution time-of-flight mass Spectrometry using a time-to-digital convertor data-recording system [J]. Rapid Communications in Mass Spectrometry, 2001. 15(8): 570-578.
    
    [115] Hakansson, K., Zubarev, R. A., Hakansson, P., Laiko, V., Dodonov, A. F. Design and performance of an electrospray ionization time-of-flight mass spectrometer [J]. Review of Scientific Instruments, 2000. 71(1): 36-41.
    
    [116] Chen, Y. H., Gonin, M., Fuhrer, K., Dodonov, A., Su, C. S., et al. Orthogonal electron impact source for a time-of-flight mass spectrometer with high mass resolving power [J]. International Journal of Mass Spectrometry, 1999. 187: 221-226.
    
    [117] Dodonov, A., Kozlovsky, V., Loboda, A., Raznikov, V., Sulimenkov, I., et al. A new technique for decomposition of selected ions in molecule ion reactor coupled with ortho-time-of-flight mass Spectrometry [J]. Rapid Communications in Mass Spectrometry, 1997. 11(15): 1649-1656.
    
    [118] Loboda, A. V. Dodonov, A. R Extraction Pulse-Generator for Time-of-Flight Mass-Spectrometry [J]. Review of Scientific Instruments, 1995. 66(9): 4740-4741.
    
    [119] Laiko, V. V. Dodonov, A. F. Resolution and Spectral-Line Shapes in the Reflecting Time-of-Flight Mass-Spectrometer with Orthogonally Injected Ions [J]. Rapid Communications in Mass Spectrometry, 1994. 8(9): 720-726.
    
    [120] Dodonov, A. R, Chernushevich, I. V., Laiko, V. V., Electrospray-Ionization on a Reflecting Time-of-Flight Mass-Spectrometer, in Time-of-Flight Mass Spectrometry. 1994. p. 108-123.
    
    [121] Mirgorodskaya, O. A., Shevchenko, A. A., Chernushevich, I. V., Dodonov, A. F., Miroshnikov, A. I. Electrospray-Ionization Time-of-Flight Mass-Spectrometry in Protein Chemistry [J]. Analytical Chemistry, 1994. 66(1): 99-107.
    
    [122] Rejtar, T., Chen, H. S., Andreev, V., Moskovets, E., Karger, B. L. Increased identification of peptides by enhanced data processing of high-resolution MALDI TOR/TOF mass spectra prior to database searching [J]. Analytical Chemistry, 2004. 76(20): 6017-6028.
    [123] Harvey, D. J., Martin, R. L., Jackson, K. A., Sutton, C. W. Fragmentation of N-linked glycans with a matrix-assisted laser desorption/ionization ion trap time-of-flight mass spectrometer [J]. Rapid Communications in Mass Spectrometry, 2004. 18(24): 2997-3007.
    
    [124] Go, E. P., Prenni, J. E., Wei, J., Jones, A., Hall, S. C., et al. Desorption/ionization on silicon time-of-flight/time-of-flight mass Spectrometry [J]. Analytical Chemistry, 2003. 75(10): 2504-2506.
    
    [125] Medzihradszky, K. F., Campbell, J. M., Baldwin, M. A., Falick, A. M., Juhasz, P., et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer [J]. Analytical Chemistry, 2000. 72(3): 552-558.
    
    [126] Hu, Q., Makarov, A. A., Cooks, R. G., Noll, R. J. Resonant ac dipolar excitation for ion motion control in the orbitrap mass analyzer [J]. Journal of Physical Chemistry A, 2006. 110(8): 2682-2689.
    
    [127] Hu, Q. Z., Noll, R. J., Li, H. Y., Makarov, A., Hardman, M., et al. The Orbitrap". a new mass spectrometer [J]. Journal of Mass Spectrometry, 2005. 40(4): 430-443.
    
    [128] Volmer, D. A. Sleno, L. Mass analyzers: An overview of several designs and their applications, Part II [J]. Spectroscopy, 2005. 20(12): 90-95.
    
    [129] Verner, P. Linear ion trap and its application in proteomic analysis [J]. Chemicke Listy, 2005. 99(12): 937-942.
    
    [130] Hardman, M. Makarov, A. A. Interfacing the orbitrap mass analyzer to an electrospray ion source [J]. Analytical Chemistry, 2003. 75(7): 1699-1705.
    
    [131] Boris Macekl, Leonie Waanders, Jesper V. Olsenl, and Matthias Mann. Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer [J]. MOLECULAR & CELLULAR PROTEOMICS Papers in Press, February 13, 2006.
    
    [132] Genome sequence of the nematode C-elegans: A platform for investigating biology [J]. Science, 1998. 282(5396): 2012-2018.
    
    [133] Pennisi, E. Laboratory workhorse decoded [J]. Science, 1997. 277(5331): 1432-&.
    
    [134] Swinbanks, D. Australia Backs Innovation, Shuns Telescope [J]. Nature, 1995. 378(6558): 653-653.
    
    [135] Wasinger, V. C., Cordwell, S. J., Cerpapoljak, A., Yan, J. X., Gooley, A. A., et al. Progress with Gene-Product Mapping of the Mollicutes - Mycoplasma-Genitalium [J]. Electrophoresis, 1995. 16(7): 1090-1094.
    
    [136] Kellner, R. Proteomics. Concepts and perspectives [J]. Fresenius Journal of Analytical Chemistry, 2000. 366(6-7): 517-524.
    
    [137] Anderson, N. L., Matheson, A. D., Steiner, S. Proteomics: applications in basic and applied biology [J]. Current Opinion in Biotechnology, 2000. 11(4): 408-412.
    
    [138] Petricoin, E. F., Zoon, K. C, Kohn, E. C, Barrett, J. C, Liotta, L. A. Clinical proteomics: Translating benchside promise into bedside reality [J]. Nature Reviews Drug Discovery, 2002. 1(9): 683-695.
    
    [139] Wang, J. H. Hewick, R. M. Proteomics in drug discovery [J]. Drug Discovery Today, 1999.4(3): 129-133.
    
    [140] Mortz, E., Oconnor, P. B., Roepstorff, P., Kelleher, N. L., Wood, T. D., et al. Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(16): 8264-8267.
    
    [141] Chernushevich, I. V. Thomson, B. A. Collisional cooling of large ions in electrospray mass Spectrometry [J]. Analytical Chemistry, 2004. 76(6): 1754-1760.
    
    [142] Taylor, G. K., Kim, Y. B., Forbes, A. J., Meng, F. Y., McCarthy, R., et al. Web and database software for identification of intact proteins using "top down" mass Spectrometry [J]. Analytical Chemistry, 2003. 75(16): 4081-4086.
    
    [143] Stoeckli, M., Chaurand, P., Hallahan, D. E., Caprioli, R. M. Imaging mass Spectrometry: A new technology for the analysis of protein expression in mammalian tissues [J]. Nature Medicine, 2001. 7(4): 493-496.
    
    [144] Smith, R. D., Anderson, G. A., Lipton, M. S., Pasa-Tolic, L., Shen, Y. F., et al. An accurate mass tag strategy for quantitative and high-throughput proteome measurements [J]. Proteomics, 2002. 2(5): 513-523.
    
    [145] Goodlett, D. R., Bruce, J. E., Anderson, G. A., Rist, B., Pasa-Tolic, L., et al. Protein identification with a single accurate mass of a cysteine-containing peptide and constrained database searching [J]. Analytical Chemistry, 2000. 72(6): 1112-1118.
    
    [146] Gorg, A., Boguth, G., Obermaier, C., Weiss, W. Two-dimensional electrophoresis of proteins in an immobilized pH 4-12 gradient [J]. Electrophoresis, 1998. 19(8-9): 1516-1519.
    
    [147] Rabilloud, T. Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains [J]. Proteomics, 2002. 2(1): 3-10.
    
    [148] Huber, L. A., Pfaller, K., Vietor, I. Organelle proteomics - Implications for subcellular fractionation in proteomics [J]. Circulation Research, 2003. 92(9): 962-968.
    
    [149] Figeys, D., Ducret, A., Yates, J. R., Aebersold, R. Protein identification by solid phase microextraction-capillary zone electrophoresis-microelectrospray-tandem mass Spectrometry [J]. Nature Biotechnology, 1996. 14(11): 1579-1583.
    
    [150] Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., et al. Direct analysis of protein complexes using mass Spectrometry [J]. Nature Biotechnology, 1999. 17(7): 676-682.
    
    [151] Stevens, S. M., Zharikova, A. D., Prokai, L. Proteomic analysis of the synaptic plasma membrane fraction isolated from rat forebrain [J]. Molecular Brain Research, 2003. 117(2): 116-128.
    
    [152] Weissenstein, U., Schneider, M. J., Pawlak, M., Cicenas, J., Eppenberger-Castori, S., et al. Protein chip based miniaturized assay for the simultaneous quantitative monitoring of cancer biomarkers in tissue extracts [J]. Proteomics, 2006. 6(5): 1427-1436.
    
    [153] Grelle, G., Kostka, S., Otto, A., Kersten, B., Genser, K. F., et al. Identification of VCP/p97, carboxyl terminus of Hsp70-interacting protein (CHIP), and amphiphysin II interaction partners using membrane-based human proteome arrays [J]. Molecular & Cellular Proteomics, 2006. 5(2): 234-244.
    
    [154] Moscova, N., Marsh, D. J., Baxter, R. C. Protein chip discovery of secreted proteins regulated by the phosphatidylinositol 3-kinase pathway in ovarian cancer cell lines [J]. Cancer Research, 2006. 66(3): 1376-1383.
    
    [155] Frischmuth, S., Kleinow, T., Aberle, H. J., Wege, C, Hulser, D., et al. Yeast two-hybrid systems confirm the membrane-association and oligomerization of BC1 but do not detect an interaction of the movement proteins BC1 and BV1 of Abutilon mosaic geminivirus [J]. Archives of Virology, 2004. 149(12): 2349-2364.
    
    [156] Brouchon-Macari, L., Joseph, M. C., Dagher, M. C. Highly sensitive microplate beta-galactosidase assay for yeast two-hybrid systems [J]. Biotechniques, 2003. 35(3): 446-448.
    
    [157] Young, K. H. A yeast two-hybrid, systems based approach for the identification of novel pharmaceutical entities [J]. Expert Opinion on Therapeutic Patents, 1999. 9(7): 897-915.
    [158] Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., et al. A generic protein purification method for protein complex characterization and proteome exploration [J]. Nature Biotechnology, 1999. 17(10): 1030-1032.
    
    [159] Wolters, D. A., Washburn, M. P., Yates, J. R. An automated multidimensional protein identification technology for shotgun proteomics [J]. Analytical Chemistry, 2001.73(23): 5683-5690.
    
    [160] Hunt, D. F., Henderson, R. A., Shabanowitz, J., Sakaguchi, K., Michel, H., et al. Characterization of Peptides Bound to the Class-I Mhc Molecule Hla-A2.1 by Mass-Spectrometry [J]. Science, 1992. 255(5049): 1261-1263.
    
    [161] Han, D. K., Eng, J., Zhou, H. L., Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass Spectrometry [J]. Nature Biotechnology, 2001. 19(10): 946-951.
    
    [162] Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein [J]. Molecular & Cellular Proteomics, 2005. 4(9): 1265-1272.
    
    [163] Kurland, C. G. Codon Bias and Gene-Expression [J]. Febs Letters, 1991. 285(2): 165-169.
    
    [164] Garrels, J. I., McLaughlin, C. S., Warner, J. R., Futcher, B., Latter, G. I., et al. Proteome studies of Saccharomyces cerevisiae: Identification and characterization of abundant proteins [J]. Electrophoresis, 1997. 18(8): 1347-1360.
    
    [165] Garbis, S., Lubec, G., Fountoulakis, M. Limitations of current proteomics technologies [J]. Journal of Chromatography A, 2005. 1077(1): 1-18.
    
    [166] Fountoulakis, M., Tsangaris, G., Oh, J. E., Maris, A., Lubec, G. Protein profile of the HeLa cell line [J]. Journal of Chromatography A, 2004. 1038(1-2): 247-265.
    
    [167] Fountoulakis, M., Takacs, M. F., Takacs, B. Enrichment of low-copy-number gene products by hydrophobic interaction chromatography [J]. Journal of Chromatography A, 1999. 833(2): 157-168.
    
    [168] Fountoulakis, M. Lahm, H. W. Hydrolysis and amino acid composition analysis of proteins [J]. Journal of Chromatography A, 1998. 826(2): 109-134.
    
    [169] Fountoulakis, M., Langen, H., Gray, C., Takacs, B. Enrichment and purification of proteins of Haemophilus influenzae by chromatofocusing [J]. Journal of Chromatography A, 1998. 806(2): 279-291.
    
    [170] Xiang, R., Horvath, C., Wilkins, J. A. Elution-modified displacement chromatography coupled with electrospray ionization-MS: On-line detection of trace peptides at femtomole level in peptide digests [J]. Analytical Chemistry, 2003. 75(8): 1819-1827.
    
    [171] Gygi, S. P., Rist, B., Griffin, T. J., Eng, J., Aebersold, R. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags [J]. Journal of Proteome Research, 2002. 1(1): 47-54.
    
    [172] Shen, Y. F., Jacobs, J. M., Camp, D. G., Fang, R. H., Moore, R. J., et al. Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome [J]. Analytical Chemistry, 2004. 76(4): 1134-1144.
    
    [173] Kelly, M. A., McLellan, T. J., Rosner, P. J. Strategic use of affinity-based mass Spectrometry techniques in the drug discovery process [J]. Analytical Chemistry, 2002. 74(1): 1-9.
    
    [174] Tsikas, D. Affinity chromatography as a method for sample preparation in gas chromatography/mass Spectrometry [J]. Journal of Biochemical and Biophysical Methods, 2001. 49(1-3): 705-731.
    
    [175] Guillemin, I., Becker, M., Ociepka, K., Friauf, E., Nothwang, H. G. A subcellular prefractionation protocol for minute amounts of mammalian cell cultures and tissue [J]. Proteomics, 2005. 5(1): 35-45.
    
    [176] Dreger, M. Subcellular proteomics [J]. Mass Spectrometry Reviews, 2003. 22(1):27-56.
    
    [177] Okado-Matsumoto, A. Fridovich, I. Subcellular distribution of superoxide dismutases (SOD) in rat liver - Cu,Zn-SOD in mitochondria [J]. Journal of Biological Chemistry, 2001. 276(42): 38388-38393.
    
    [178] Chan, L. L., Lo, S. C. L., Hodgkiss, I. J. Proteomic study of a model causative agent of harmful red tide, Prorocentrum triestinum I: Optimization of sample preparation methodologies for analyzing with two-dimensional electrophoresis [J]. Proteomics, 2002. 2(9): 1169-1186.
    
    [179] Zhu, X. D., Gibbons, J., Garcia-Rivera, J., Casadevall, A., Williamson, P. R. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor [J]. Infection and Immunity, 2001. 69(9): 5589-5596.
    
    [180] Nilsson, C. L., Larsson, T., Gustafsson, E., Karlsson, K. A., Davidsson, P. Identification of protein vaccine candidates from Helicobacter pylori using a preparative two-dimensional electrophoretic procedure and mass Spectrometry [J]. Analytical Chemistry, 2000. 72(9): 2148-2153.
    
    [181] Wall, D. B., Kachman, M. T., Gong, S. Y., Hinderer, R., Parus, S., et al. Isoelectric focusing nonporous RP HPLC: A two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass Spectrometry [J]. Analytical Chemistry, 2000. 72(6): 1099-1111.
    
    [182] Hung, K. C, Rashidzadeh, H., Wang, Y., Guo, B. C. Use of Paraffin wax film in MALDI-TOF analysis of DNA [J]. Analytical Chemistry, 1998. 70(14): 3088-3093.
    
    [183] Hung, K. C., Ding, H., Guo, B. C. Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins [J]. Analytical Chemistry, 1999. 71(2): 518-521.
    
    [184] Hettick, J. M., McCurdy, D. L., Barbacci, D. C., Russell, D. H. Optimization of sample preparation for peptide sequencing by MALDI-TOF photofragment mass Spectrometry [J]. Analytical Chemistry, 2001. 73(22): 5378-5386.
    
    [185] Kim, Y., Hurst, G. B., Doktycz, M. J., Buchanan, M. V. Improving spot homogeneity by using polymer substrates in matrix-assisted laser desorption/ionization mass Spectrometry of oligonucleotides [J]. Analytical Chemistry, 2001. 73(11): 2617-2624.
    
    [186] Xu, Y. D., Bruening, M. L., Watson, J. T. Use of polymer-modified MALDI-MS probes to improve analyses of protein digests and DNA [J]. Analytical Chemistry, 2004. 76(11): 3106-3111.
    
    [187] Chou, P. H., Chen, S. H., Liao, H. K., Lin, P. C., Her, G. R., et al. Nanoprobe-based affinity mass Spectrometry for selected protein profiling in human plasma [J]. Analytical Chemistry, 2005. 77(18): 5990-5997.
    
    [188] Qi, Z. M., Honma, I., Zhou, H. S. Tin-diffused glass slab waveguides locally covered with tapered thin TiO2 films for application as a polarimetric interference sensor with an improved performance [J]. Analytical Chemistry, 2005. 77(4): 1163-1166.
    
    [189] Zhang, Y. H., Wang, X. Y, Shan, W., Wu, B. Y, Fan, H. Z., et al. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis [J]. Angewandte Chemie-International Edition, 2005. 44(4): 615-617.
    
    [190] Kong, X. L., Huang, L. C. L., Hsu, C. M., Chen, W. H., Han, C. C., et al. High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis [J]. Analytical Chemistry, 2005. 77(1): 259-265.
    [191] Xu, C. J., Xu, K. M., Gu, H. W., Zhong, X. F., Guo, Z. H., et al. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins [J]. Journal of the American Chemical Society, 2004. 126(11): 3392-3393.
    
    [192] Lee, W. C. Lee, K. H. Applications of affinity chromatography in proteomics [J]. Analytical Biochemistry, 2004. 324(1): 1-10.
    
    [193] Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P., Faergeman, N. J., et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway [J]. Molecular & Cellular Proteomics, 2005. 4(3): 310-327.
    
    [194] Fountoulakis, M. Juranville, J. F. Enrichment of low-abundance brain proteins by preparative electrophoresis [J]. Analytical Biochemistry, 2003. 313(2): 267-282.
    
    [195] Liang, X. L., Lubman, D. M., Rossi, D. T., Nordblom, G. D., Barksdale, C. M. On probe immunoaffinity extraction by matrix-assisted laser desorption/ionization mass Spectrometry [J]. Analytical Chemistry, 1998. 70(3): 498-503.
    
    [196] Brockman, A. H., Dodd, B. S., Orlando, N. A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers [J]. Analytical Chemistry, 1997. 69(22): 4716-4720.
    
    [197] Schuerenbeg, M., Luebbert, C., Eickhoff, H., Kalkum, M., Lehrach, H., et al. Prestructured MALDI-MS sample supports [J]. Analytical Chemistry, 2000. 72(15): 3436-3442.
    
    [198] Xu, Y. D., Watson, J. T., Bruening, M. L. Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS [J]. Analytical Chemistry, 2003. 75(2): 185-190.
    
    [199] Gustafsson, M., Hirschberg, D., Palmberg, C., Jornvall, H., Bergman, T. Integrated sample preparation and MALDI mass Spectrometry on a microfluidic compact disk [J]. Analytical Chemistry, 2004. 76(2): 345-350.
    
    [200] Winston, R. L. Fitzgerald, M. C. Concentration and desalting of protein samples for mass Spectrometry analysis [J]. Analytical Biochemistry, 1998. 262(1): 83-85.
    
    [201] Teng, C. H., Ho, K. C, Lin, Y. S., Chen, Y. C. Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis [J]. Analytical Chemistry, 2004. 76(15): 4337-4342.
    
    [202] Ho, K.C., Tsai, P.J., Lin, Y.S., Chen, Y.C. Using biofunctionalized nanoparticles to probe pathogenic bacteria [J]. Analytical Chemistry, 2004. 76(24): 7162-7168.
    [1] Yates, J. R., Speicher, S., Griffin, P. R., Hunkapiller, T. Peptide Mass Maps-a Highly Informative Approach to Protein Identification[J]. Analytical Biochemistry, 1993. 214(2): 397-408.
    [2] Shevchenko, A., Wilm, M., Vorm, O., Mann, M. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels[J]. Analytical Chemistry, 1996. 68(5): 850-858.
    [3] Hochstrasser, D. F. Proteome in perspective[J]. Clinical Chemistry and Laboratory Medicine, 1998. 36(11): 825-836.
    [4] Schuerenbeg, M., Luebbert, C., Eickhoff, H., Kalkum, M., Lehrach, H., Nordhoff, E. Prestructured MALDI-MS sample supports[J]. Analytical Chemistry, 2000. 72(15): 3436-3442.
    [5] Kallweit, U., Bornsen, K. O., Kresbach, G. M., Widmer, H. M. Matrix compatible buffers for analysis of proteins with matrix-assisted laser desorption/ionization mass Spectrometry [J]. Rapid Communications in Mass Spectrometry, 1996. 10(7): 845-849.
    
    [6] Horneffer, V., Dreisewerd, K., Ludemann, H. C., Hillenkamp, F., Lage, M., Strupat, K. Is the incorporation of analytes into matrix crystals a prerequisite for matrix-assisted laser desorption/ionization mass Spectrometry? A study of five positional isomers of dihydroxybenzoic acid [J]. International Journal of Mass Spectrometry, 1999. 187: 859-870.
    
    [7] Kalra, A., Tugcu, N., Cramer, S. M., Garde, S. Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions [J]. Journal of Physical Chemistry B, 2001. 105(27): 6380-6386.
    
    [8] Mank, M., Stahl, B., Boehm, G. 2,5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules [J]. Analytical Chemistry, 2004. 76(10): 2938-2950.
    
    [9] Santos, L. S., Haddad, R., Hoehr, N. F., Pilli, R. A., Eberlin, M. N. Fast screening of low molecular weight compounds by thin-layer chromatography and "on-spot" MALDI-TOF mass Spectrometry [J]. Analytical Chemistry, 2004. 76(7): 2144-2147.
    
    [10] Zabet-Moghaddam, M., Heinzle, E., Tholey, A. Qualitative and quantitative analysis of low molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass Spectrometry using ionic liquid matrices [J]. Rapid Communications in Mass Spectrometry, 2004. 18(2): 141-148.
    
    [11] Crecelius, A., Clench, M. R., Richards, D. S., Parr, V. Thin-layer chromatography - matrix-assisted laser desorption ionisation - time-of-flight mass Spectrometry using particle suspension matrices [J]. Journal of Chromatography A, 2002. 958(1-2): 249-260.
    
    [12] Zhang, Q. C., Zou, H. F., Guo, Z., Zhang, Q., Chen, X. M., Ni, J. Y. Matrix-assisted laser desorption/ionization mass Spectrometry using porous silicon and silica gel as matrix [J]. Rapid Communications in Mass Spectrometry, 2001. 15(3): 217-223.
    
    [13] Kinumi, T., Saisu, T., Takayama, M., Niwa, H. Matrix-assisted laser desorption/ionization time-of-flight mass Spectrometry using an inorganic particle matrix for small molecule analysis [J]. Journal of Mass Spectrometry, 2000. 35(3): 417-422.
    [14] Ole Vorm, + Peter Roepstorff, t and Matthias Mann'i. Improved Resolution and Very High Sensitivity in MALDI TOF of Matrix Surfaces Made by Fast Evaporation [J]. Analytical Chemistry, 1994. 66: 3281-3287.
    
    [15] Koomen, J. M., Russell, W. K., Hettick, J. M., Russell, D. H. Improvement of resolution, mass accuracy, and reproducibility in reflected mode DE-MALDI-TOF analysis of DNA using cast evaporation-overlayer sample preparations [J]. Analytical Chemistry, 2000. 72(16): 3860-3866.
    
    [16] Wang, M. Z. Fitzgerald, M. C. A solid sample preparation method that reduces signal suppression effects in the MALDI analysis of peptides [J]. Analytical Chemistry, 2001. 73(3): 625-631.
    
    [17] Zhang, N., Doucette, A., Li, L. Two-layer sample preparation method for MALDI mass spectrometric analysis of protein and peptide samples containing sodium dodecyl sulfate [J]. Analytical Chemistry, 2001. 73(13): 2968-2975.
    
    [18] Dai, Y. Q., Whittal, R. M., Li, L. Two-layer sample preparation: A method for MALDI-MS analysis of complex peptide and protein mixtures [J]. Analytical Chemistry, 1999. 71(5): 1087-1091.
    
    [19] McComb, M. E., Oleschuk, R. D., Chow, A., Perreault, H., Dworschak, R. G., Znamirowski, M., Ens, W., Standing, K. G., Preston, K. R. Application of nonporous polyurethane (PU) membranes and porous PU thin films as sample supports for MALDI-MS of wheat proteins [J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 2001. 79(4): 437-447.
    
    [20] Miliotis, T., Kjellstrom, S., Nilsson, J., Laurell, T., Edholm, L. E., Marko-Varga, G. Ready-made matrix-assisted laser desorption/ionization target plates coated with thin matrix layer for automated sample deposition in high-density array format [J]. Rapid Communications in Mass Spectrometry, 2002. 16(2): 117-126.
    
    [21] Thurmer, R., Meisenbach, M., Echner, H., Weiler, A., Al-Qawasmeh, R. A., Voelter, W., Korff, U., Schmitt-Sody, W. Monitoring of liquid-phase peptide synthesis on soluble polymer supports via matrix-assisted laser desorption/ionization time-of-flight mass Spectrometry [J]. Rapid Communications in Mass Spectrometry, 1998. 12(7): 398-402.
    
    [22] Worrall, T. A., Cotter, R. J., Woods, A. S. Purification of contaminated peptides and proteins on synthetic membrane surfaces for matrix-assisted laser desorption/ionization mass Spectrometry [J]. Analytical Chemistry, 1998. 70(4): 750-756.
    [23] Vestling, M. M. Fenselau, C. Poly(Vinylidene Difluoride) Membranes as the Interface between Laser-Desorption Mass-Spectrometry, Gel-Electrophoresis, and in-Situ Proteolysis [J]. Analytical Chemistry, 1994. 66(4): 471-477.
    
    [24] Zaluzec, E. J., Gage, D. A., Allison, J., Watson, J. T. Direct Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometric Analysis of Proteins Immobilized on Nylon-Based Membranes [J]. Journal of the American Society for Mass Spectrometry, 1994. 5(4): 230-237.
    
    [25] Brockman, A. H., Dodd, B. S., Orlando, N. A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers [J]. Analytical Chemistry, 1997. 69(22): 4716-4720.
    
    [26] Hung, K. C., Rashidzadeh, H., Wang, Y., Guo, B. C. Use of Paraffin wax film in MALDI-TOF analysis of DNA [J]. Analytical Chemistry, 1998. 70(14): 3088-3093.
    
    [27] Hung, K. C., Ding, H., Guo, B. C. Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins [J]. Analytical Chemistry, 1999. 71(2): 518-521.
    
    [28] Yuan, X. L. Desiderio, D. M. Protein identification with Teflon as matrix-assisted laser desorption/ionization sample support [J]. Journal of Mass Spectrometry, 2002. 37(5): 512-524.
    
    [29] Kim, Y., Hurst, G. B., Doktycz, M. J., Buchanan, M. V. Improving spot homogeneity by using polymer substrates in matrix-assisted laser desorption/ionization mass Spectrometry of oligonucleotides [J]. Analytical Chemistry, 2001. 73(11): 2617-2624.
    
    [30] Kim, Y. Hurst, G. B. Study of matrix and polymer substrate in MALDI-TOF mass Spectrometry of DNA [J]. Microchemical Journal, 2001. 70(3): 219-228.
    
    [31] Gobom, J., Schuerenberg, M., Mueller, M., Theiss, D., Lehrach, H., Nordhoff, E. alpha-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics [J]. Analytical Chemistry, 2001. 73(3): 434-438.
    
    [32] Redeby, T., Roeraade, J., Emmer, A. Simple fabrication of a structured matrix-assisted laser desorption/ionization target coating for increased sensitivity in mass spectrometric analysis of membrane proteins [J]. Rapid Communications in Mass Spectrometry, 2004. 18(10): 1161-1166.
    
    [33] Xu, Y. D., Bruening, M. L., Watson, J. T. Use of polymer-modified MALDI-MS probes to improve analyses of protein digests and DNA [J]. Analytical Chemistry, 2004. 76(11): 3106-3111.
    [34] Xu, Y. D., Watson, J. T., Bruening, M. L. Patterned monolayer/polymer films for analysis of dilute or salt-contaminated protein samples by MALDI-MS[J]. Analytical Chemistry, 2003.75(2): 185-190.
    [35] Warren, M. E., Brockman, A. H., Orlando, R. On-probe solid-phase extraction MALDI-MS using ion-pairing interactions for the cleanup of peptides and proteins[J]. Analytical Chemistry, 1998.70(18): 3757-3761.
    [36] Zhang, L. Orlando, R. Solid-phase extraction/MALDI-MS: Extended ion-pairing surfaces for the on-target cleanup of protein samples[J]. Analytical Chemistry, 1999. 71(20): 4753-4757.
    [37] Brockman, A. H., Shah, N. N., Orlando, R. Optimization of a hydrophobic solid-phase extraction interface for matrix-assisted laser desorption/ionization[J]. Journal of Mass Spectrometry, 1998. 33(11): 1141-1147.
    [38] Wang, J. S. Matyjaszewski, K. Controlled Living Radical PolymerizationAtom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes[J]. Journal of the American Chemical Society, 1995. 117(20): 5614-5615.
    [39] Ederle, Y. Mathis, C. Carbanions on grafted C-60 as initiators for anionic polymerization[J]. Macromolecules, 1997. 30(15): 4262-4267.
    [40] Stalmach, U., de Boer, B., Videlot, C., van Hutten, P. F., Hadziioannou, G. Semiconducting diblock copolymers synthesized by means of controlled radical polymerization techniques[J]. Journal of the American Chemical Society, 2000. 122(23): 5464-5472.
    [41] Zhou, P., Chen, G. Q., Hong, H., Du, F. S., Li, Z. C., Li, F. M. Synthesis of C-60-end-bonded polymers with designed molecular weights and narrow molecular weight distributions via atom transfer radical polymerization[J]. Macromolecules, 2000. 33(6): 1948-1954.
    [42] 郑静,蔡瑞芳,陈彧.C60化学修饰的PMMA的合成与表征[J].复旦学报(自然科学版),2000.39(4):412-417.
    [43] Wu, H. X., Li, F., Lin, Y. H., Yang, M., Chen, W., Cai, R. F. Synthesis of telechelic C-60 end-capped polymers under microwave irradiation[J]. Journal of Applied Polymer Science, 2006. 99(3): 828-834.
    [44] Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S., Mische, S. M. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity[J]. Electrophoresis, 1999. 20(3): 601-605.
    
    [45] Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G, Nagel, S. R., Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997. 389(6653): 827-829.
    
    [46] Bogan, M. J. Agnes, G. R. Wall-less sample preparation of mu m-sized sample spots for femtomole detection limits of proteins from liquid based UV-MALDI matrices [J]. Journal of the American Society for Mass Spectrometry, 2004. 15(4): 486-495.
    
    [47] Owen, S. J., Meier, F. S., Brombacher, S., Volmer, D. A. Increasing sensitivity and decreasing spot size using an inexpensive, removable hydrophobic coating for matrix-assisted laser desorption/ionisation plates [J]. Rapid Communications in Mass Spectrometry, 2003. 17(21): 2439-2449.
    
    [48] Little, D. P., Cornish, T. J., Odonnell, M. J., Braun, A., Cotter, R. J., Koster, H. MALDI on a chip: Analysis of arrays of low femtomole to subfemtomole quantities of synthetic oligonucleotides and DNA diagnostic products dispensed by a piezoelectric pipet [J]. Analytical Chemistry, 1997. 69(22): 4540-4546.
    
    [49] Weng, M. F. Chen, Y. C. Using sol-gel/crown ether hybrid materials as desalting substrates for matrix-assisted laser desorption/ionization analysis of oligonucleotides [J]. Rapid Communications in Mass Spectrometry, 2004. 18(13): 1421-1428.
    
    [50] Huang, J. P., Wang, L. Y., Chiang, L. Y, Shiea, J. Polyfunctional fullerene derivatives as UV-MALDI matrices to detect peptides and proteins [J]. Fullerene Science and Technology, 1999. 7(4): 541-550.
    
    [51] Shiea, J. T., Huang, J. P., Teng, C. F., Jeng, J. Y., Wang, L. Y, Chiang, L. Y. Use of a water-soluble fullerene derivative as precipitating reagent and matrix-assisted laser desorption/ionization matrix to selectively detect charged species in aqueous solutions [J]. Analytical Chemistry, 2003. 75(14): 3587-3595.
    
    [52] Kyte, J. Doolittle, R. F. A simple method for displaying the hydropathic character of a protein [J]. Journal of Molecular Biology, 1982. 157: 105-132.
    
    [53] Smirnov, I. P., Zhu, X., Taylor, T., Huang, Y., Ross, P., Papayanopoulos, I. A., Martin, S. A., Pappin, D. J. Suppression of alpha-cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass Spectrometry [J]. Analytical Chemistry, 2004. 76(10): 2958-2965.
    [1] Hunter, T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: Its role in cell growth and disease[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1998.353(1368): 583-605.
    [2] Oda, Y., Nagasu, T., Chait, B. T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome[J]. Nature Biotechnology, 2001. 19(4): 379-382.
    [3] Neubauer, G. Mann, M. Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: Potentials and limitations[J]. Analytical Chemistry, 1999. 71(1): 235-242.
    [4] Patterson S D, Aebersold R, Goodlett D R,. Mass spectrometry based methods for protein identification and phosphorylation site analysis, Proteomics from protein sequence to function,[M]. New York: Springer-Verlag, 2001. 87-130.
    [5] Mann, M., Ong, S. E., Gronborg, M., Steen, H., Jensen, O. N., et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome [J]. Trends In Biotechnology, 2002. 20(6): 261-268.
    [6] Resing, K. A. Ahn, N. G., Protein phosphorylation analysis by electrospray ionization mass spectrometry, in Cell Cycle Control. 1997. p. 29-44.
    [7] Aebersold, R. Goodlett, D. R. Mass spectrometry in proteomics[J]. Chemical Reviews, 2001. 101(2): 269-295.
    [8] McLachlin, D. T. Chait, B. T. Analysis of phosphorylated proteins and peptides by mass spectrometry[J]. Current Opinion in Chemical Biology, 2001. 5(5): 591-602.
    [9] Sickmann, A. Meyer, H. E. Phosphoamino acid analysis[J]. Proteomics, 2001. 1(2): 200-206.
    [10] 黄珍玉,于雁灵,方彩云,杨艽原.质谱鉴定磷酸化蛋白研究进展[J].质谱学报,2003.24:494-499.
    [11] 姜颖,徐朗莱,贺福初.质谱技术解析磷酸化蛋白质组[J].生物化学与生物物理进展,2003.30:350-356.
    [12] Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., Jorgensen, T. J. D. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns[J]. Molecular & Cellular Proteomics, 2005. 4(7): 873-886.
    [13] 杨策,王正国,朱佩芳.蛋白质组中蛋白质磷酸化研究进展[J].生理科学进展,2004.35:119-124.
    [14] Hart, S. R., Waterfield, M. D., Burlingame, A. L., Cramer, R. Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS[J]. Journal Of The American Society For Mass Spectrometry, 2002. 13(9): 1042-1051.
    [15] Liu, H. Z., Stupak, J., Zheng, J., Keller, B. O., Brix, B. J., et al. Open tubular immobilized metal ion affinity chromatography combines with MALDI MS and MS/MS for identification of protein phosphorylation sites [J]. Analytical Chemistry, 2004. 76(14): 4223-4232.
    
    [16] Napper, S., Kindrachuk, J., Olson, D. J. H., Ambrose, S. J., Dereniwsky, C., et al. Selective extraction and characterization of a histidine-phosphorylated peptide using immobilized copper(II) ion affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass Spectrometry [J]. Analytical Chemistry, 2003. 75(7): 1741-1747.
    
    [17] Schlosser, A., Bodem, J., Bossemeyer, D., Grummt, I., Lehmann, W. D. Identification of protein phosphorylation sites by combination of elastase digestion, immobilized metal affinity chromatography, and quadrupole-time of flight tandem mass Spectrometry [J]. Proteomics, 2002. 2(7): 911-918.
    
    [18] Stensballe, A. Jensen, O. N. Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass Spectrometry for recovery, detection and sequencing of phosphopeptides [J]. Rapid Communications in Mass Spectrometry, 2004. 18(15): 1721-1730.
    
    [19] Guerrera, I. C., Predic-Atkinson, J., Kleiner, O., Soskic, V., Godovac-Zimmermann, J. Enrichment of phosphoproteins for proteomic analysis using immobilized Fe(III)-affinity adsorption chromatography [J]. Journal of Proteome Research, 2005. 4(5): 1545-1553.
    
    [20] Nuhse, T. S., Stensballe, A., Jensen, O. N., Peck, S. C. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass Spectrometry [J]. Molecular & Cellular Proteomics, 2003. 2(11): 1234-1243.
    
    [21] Betts, J. C., Blackstock, W. P., Ward, M. A., Anderton, B. H. Identification of phosphorylation sites on neurofilament proteins by nanoelectrospray mass Spectrometry [J]. Journal of Biological Chemistry, 1997. 272(20): 12922-12927.
    
    [22] Chen, S. L., Huddleston, M. J., Shou, W. Y., Deshaies, R. J., Annan, R. S., et al. Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast [J]. Molecular & Cellular Proteomics, 2002. 1(3): 186-196.
    
    [23] Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., et al. Phosphoproteome analysis by mass Spectrometry and its application to Saccharomyces cerevisiae [J]. Nature Biotechnology, 2002. 20(3): 301-305.
    [24] Larsen, M. R., Sorensen, G. L., Fey, S. J., Larsen, P. M., Roepstorff, P. Phospho-proteomics: Evaluation of the use of enzymatic de-phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresis [J]. Proteomics, 2001. 1(2): 223-238.
    
    [25] Vihinen, H. Saarinen, J. Phosphorylation site analysis of Semliki Forest virus nonstructural protein 3 [J]. Journal of Biological Chemistry, 2000. 275(36): 27775-27783.
    
    [26] Gronborg, M., Kristiansen, T. Z., Stensballe, A., Andersen, J. S., Ohara, O., et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies - Identification of a novel protein, Frigg, as a protein kinase A substrate [J]. Molecular & Cellular Proteomics, 2002. 1(7): 517-527.
    
    [27] Hinsby, A. M., Olsen, J. V., Bennettt, K. L., Mann, M. Signaling initiated by overexpression of the fibroblast growth factor receptor-1 investigated by mass Spectrometry [J]. Molecular & Cellular Proteomics, 2003. 2(1): 29-36.
    
    [28] Pandey, A., Podtelejnikov, A. V., Blagoev, B., Bustelo, X. R., Mann, M., et al. Analysis of receptor signaling pathways by mass Spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2000.97(1): 179-184.
    
    [29] Xu, C. F., Lu, Y., Ma, J. H., Mohammadi, M., Neubert, T. A. Identification of Phosphopeptides by MALDI Q-TOF MS in positive and negative ion modes after methyl esterification [J]. Molecular & Cellular Proteomics, 2005. 4(6): 809-818.
    
    [30] Klemm, C., Schroder, S., Gluckmann, M., Beyermann, M., Krause, E. Derivatization of phosphorylated peptides with S- and N-nucleophiles for enhanced ionization efficiency in matrix-assisted laser desorption/ionization mass Spectrometry [J]. Rapid Communications in Mass Spectrometry, 2004. 18(22): 2697-2705.
    
    [31] Li, W., Backlund, P. S., Boykins, R. A., Wang, G Y., Chen, H. C. Susceptibility of the hydroxyl groups in serine and threonine to beta-elimination/Michael addition under commonly used moderately high-temperature conditions [J]. Analytical Biochemistry, 2003. 323(1): 94-102.
    
    [32] Thaler, F., Valsasina, B., Baldi, R., Jin, X., Stewart, A., et al. A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass Spectrometry [J]. Analytical and Bioanalytical Chemistry, 2003. 376(3): 366-373.
    
    [33] Adam, G. C., Sorensen, E. J., Cravatt, B. F. Chemical strategies for functional proteomics [J]. Molecular & Cellular Proteomics, 2002. 1(10): 781-790.
    
    [34] Adam, G. C., Sorensen, E. J., Cravatt, B. F. Trifunctional chemical probes for the consolidated detection and identification of enzyme activities from complex proteomes [J]. Molecular & Cellular Proteomics, 2002. 1(10): 828-835.
    
    [35] Adam, G. C., Sorensen, E. J., Cravatt, B. F. Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype [J]. Nature Biotechnology, 2002. 20(8): 805-809.
    
    [36] Ballif, B. A., Villen, J., Beausoleil, S. A., Schwartz, D., Gygi, S. P. Phosphoproteomic analysis of the developing mouse brain [J]. Molecular & Cellular Proteomics, 2004. 3(11): 1093-1101.
    
    [37] Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., et al. Large-scale characterization of HeLa cell nuclear phosphoproteins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(33): 12130-12135.
    
    [38] Torres, M. P., Thapar, R., Marzluff, W. F., Borchers, C. H. Phosphatase-directed phosphorylation-site determination: A synthesis of methods for the detection and identification of phosphopeptides [J]. Journal of Proteome Research, 2005. 4(5): 1628-1635.
    
    [39] Barnouin, K. N., Hart, S. R., Thompson, A. J., Okuyama, M., Waterfield, M., et al. Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol [J]. Proteomics, 2005. 5(17): 4376-4388.
    
    [40] Kokubu, M., Ishihama, Y., Sato, T., Nagasu, T., Oda, Y. Specificity of immobilized metal affinity-based IMAC/C18 tip enrichment of phosphopeptides for protein phosphorylation analysis [J]. Analytical Chemistry, 2005. 77(16): 5144-5154.
    
    [41] Stensballe, A., Andersen, S., Jensen, O. N. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass Spectrometry analysis [J]. Proteomics, 2001. 1(2): 207-222.
    
    [42] Chen, C. T. Chen, Y. C. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass Spectrometry [J]. Analytical Chemistry, 2005. 77(18): 5912-5919.
    [43] Zhang, Y. H., Yu, X. J., Wang, X. Y., Shan, W., Yang, P. Y., et al. Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides [J]. Chemical Communications, 2004(24): 2882-2883.
    
    [44] Cheng, H., Cai, H.Z., Xiong, F., Zhang, H.T. Preparation of Stable Cationic Polyacrylic Nanosize Particle Latexes [J]. Chinese Journal of Colloid & Polymer, 2003. 21(3): 5-9.
    
    [45] Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G, Nagel, S. R., et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997. 389(6653): 827-829.
    
    [46] Brockman, A. H., Dodd, B. S., Orlando, N. A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers [J]. Analytical Chemistry, 1997. 69(22): 4716-4720.
    
    [47] Weng, M. F. Chen, Y. C. Using sol-gel/crown ether hybrid materials as desalting substrates for matrix-assisted laser desorption/ionization analysis of oligonucleotides [J]. Rapid Communications in Mass Spectrometry, 2004. 18(13): 1421-1428.
    
    [48] Zhang, N., Doucette, A., Li, L. Two-layer sample preparation method for MALDI mass spectrometric analysis of protein and peptide samples containing sodium dodecyl sulfate [J]. Analytical Chemistry, 2001. 73(13): 2968-2975.
    [1] Hochstrasser, D. F. Proteome in perspective [J]. Clinical Chemistry and Laboratory Medicine, 1998. 36(11): 825-836.
    
    [2] Schuerenbeg, M., Luebbert, C., Eickhoff, H., Kalkum, M., Lehrach, H., Nordhoff, E. Prestructured MALDI-MS sample supports [J]. Analytical Chemistry, 2000. 72(15): 3436-3442.
    
    [3] Shevchenko, A., Wilm, M., Vorm, O., Mann, M. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels [J]. Analytical Chemistry, 1996. 68(5): 850-858.
    
    [4] Yates, J. R., Speicher, S., Griffin, P. R., Hunkapiller, T. Peptide Mass Maps - a Highly Informative Approach to Protein Identification [J]. Analytical Biochemistry, 1993. 214(2): 397-408.
    
    [5] Wasinger, V. C., Cordwell, S. J., Cerpapoljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., Duncan, M. W., Harris, R., Williams, K. L., Humpherysmith, I. Progress with Gene-Product Mapping of the Mollicutes - Mycoplasma-Genitalium [J]. Electrophoresis, 1995. 16(7): 1090-1094.
    
    [6] Fields, S. Proteomics - Proteomics in genomeland [J]. Science, 2001. 291(5507): 1221-1223.
    
    [7] Abbott, A. And now for the proteome [J]. Nature, 2001. 409(6822): 747-747.
    
    [8] Mann, M., Hojrup, P., Roepstorff, P. Use of Mass-Spectrometric Molecular-Weight Information to Identify Proteins in Sequence Databases [J]. Biological Mass Spectrometry, 1993. 22(6): 338-345.
    
    [9] Righetti, P. G., Wenisch, E., Jungbauer, A., Katinger, H., Faupel, M. Preparative Purification of Human Monoclonal-Antibody Isoforms in a Multicompartment Electrolyzer with Immobiline Membranes [J]. Journal of Chromatography, 1990. 500: 681-696.
    
    [10] Corthals, G L., Molloy, M. P., Herbert, B. R., Williams, K. L., Gooley, A. A. Prefractionation of protein samples prior to two-dimensional electrophoresis [J]. Electrophoresis, 1997. 18(3-4): 317-323.
    
    [11] Karlsson, K., Cairns, N., Lubec, G., Fountoulakis, M. Enrichment of human brain proteins by heparin chromatography [J]. Electrophoresis, 1999. 20(14): 2970-2976.
    
    [12] Zhang, G. A., Fan, H. Z., Xu, C. F., Bao, H. M., Yang, P. Y. On-line preconcentration of in-gel digest by ion-exchange chromatography for protein identification using high-performance liquid chromatography-electrospray ionization tandem mass Spectrometry [J]. Analytical Biochemistry, 2003. 313(2): 327-330.
    
    [13] Doucette, A., Craft, D., Li, L. Protein concentration and enzyme digestion on microbeads for MALDI-TOF peptide mass mapping of proteins from dilute solutions [J]. Analytical Chemistry, 2000. 72(14): 3355-3362.
    
    [14] Kussmann, M., Nordhoff, E., RahbekNielsen, H., Haebel, S., RosselLarsen, M., Jakobsen, L., Gobom, J., Mirgorodskaya, E., KrollKristensen, A., Palm, L., Roepstorff, P. Matrix-assisted laser desorption/ionization mass Spectrometry sample preparation techniques designed for various peptide and protein analytes [J]. Journal of Mass Spectrometry, 1997. 32(6): 593-601.
    
    [15] Figeys, D. Aebersold, R. Capillary electrophoresis of peptides and proteins at neutral pH in capillaries covalently coated with polyethyleneimine [J]. Journal of Chromatography B, 1997. 695(1): 163-168.
    
    [16] Figeys, D., Ning, Y. B., Aebersold, R. A microfabricated device for rapid protein identification by microelectrospray ion trap mass Spectrometry [J]. Analytical Chemistry, 1997. 69(16): 3153-3160.
    
    [17] Figeys, D. Aebersold, R. Nanoflow solvent gradient delivery from a microfabricated device for protein identifications by electrospray ionization mass Spectrometry [J]. Analytical Chemistry, 1998. 70(18): 3721-3727.
    
    [18] Figeys, D. Aebersold, R. High sensitivity analysis of proteins and peptides by capillary electrophoresis tandem mass Spectrometry: Recent developments in technology and applications [J]. Electrophoresis, 1998. 19(6): 885-892.
    
    [19] Figeys, D., Zhang, Y., Aebersold, R. Optimization of solid phase microextraction capillary zone electrophoresis mass Spectrometry for high sensitivity protein identification [J]. Electrophoresis, 1998. 19(13): 2338-2347.
    
    [20] Figeys, D. Aebersold, R. Microfabricated modules for sample handling, sample concentration and flow mixing: Application to protein analysis by tandem mass Spectrometry [J]. Journal of Biomechanical Engineering-Transactions of the Asme, 1999. 121(1): 7-12.
    
    [21] Figeys, D., Corthals, G. L., Gallis, B., Goodlett, D. R., Ducret, A., Corson, M. A., Aebersold, R. Data-dependent modulation of solid phase extraction capillary electrophoresis for the analysis of complex peptide and phosphopeptide mixtures by tandem mass Spectrometry: Application to endothelial nitric oxide synthase [J]. Analytical Chemistry, 1999. 71(13): 2279-2287.
    
    [22] Xu, F., Wang, Y. J., Wang, X. D., Zhang, Y. H., Tang, Y., Yang, P. Y. A novel hierarchical nanozeolite composite as sorbent for protein separation in immobilized metal-ion affinity chromatography [J]. Advanced Materials, 2003. 15(20): 1751-+.
    
    [23] Zhang, Y. H., Wang, X. Y., Shan, W., Wu, B. Y., Fan, H. Z., Yu, X. J., Tang, Y., Yang, P. Y. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis [J]. Angewandte Chemie-International Edition, 2005. 44(4): 615-617.
    
    [24] Ren, S. F., Zhang, L., Cheng, Z. H., Guo, Y. L. Immobilized carbon nanotubes as matrix for MALDI-TOF-MS analysis: Applications to neutral small carbohydrates [J]. Journal Of The American Society For Mass Spectrometry, 2005. 16(3): 333-339.
    
    [25] Liu, Q., Ding, J., Chambers, D. E., Debnath, S., Wunder, S. L., Baran, G. R. Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites [J]. Journal of Biomedical Materials Research, 2001. 57(3): 384-393.
    
    [26] Luna-Xavier, J. L., Guyot, A., Bourgeat-Lami, E. Synthesis and characterization of silica/poly (methyl methacrylate) nanocomposite latex particles through emulsion polymerization using a cationic azo initiator [J]. Journal of Colloid and Interface Science, 2002. 250(1): 82-92.
    
    [27] Meneghetti, P. Qutubuddin, S. Synthesis of poly(methyl methacrylate) - Clay nanocomposites [J]. Chemical Engineering Communications, 2001. 188: 81-89.
    
    [28] Yang, Y. H. Dan, Y. Preparation of PMMA/SiO2 composite particles via emulsion polymerization [J]. Colloid and Polymer Science, 2003. 281(8): 794-799.
    
    [29] Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S., Mische, S. M. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity [J]. Electrophoresis, 1999. 20(3): 601-605.
    [30] Kawauchi, T., Kumaki, J., Yashima, E. Synthesis, isolation via self-assembly, and single-molecule observation of a [60]fullerene-end-capped isotactic poly(methyl methacrylate) [J]. Journal Of The American Chemical Society, 2005. 127(28): 9950-9951.
    [31] Kim, Y., Hurst, G. B., Doktycz, M. J., Buchanan, M. V. Improving spot homogeneity by using polymer substrates in matrix-assisted laser desorption/ionization mass spectrometry of oligonucleotides[J]. Analytical Chemistry, 2001.73(11): 2617-2624.
    [32] Brockman, A. H., Dodd, B. S., Orlando, N. A desalting approach for MALDI-MS using on-probe hydrophobic self assembled monolayers[J]. Analytical Chemistry, 1997. 69(22): 4716-4720.
    [33] Weng, M. F. Chen, Y. C. Using sol-gel/crown ether hybrid materials as desalting substrates for matrix-assisted laser desorption/ionization analysis of oligonucleotides[J]. Rapid Communications in Mass Spectrometry, 2004. 18(13): 1421-1428.
    [34] Zhang, N., Doucette, A., Li, L. Two-layer sample preparation method for MALDI mass spectrometric analysis of protein and peptide samples containing sodium dodecyl sulfate[J]. Analytical Chemistry, 2001.73(13): 2968-2975.
    [35] Westermeier, R. Naven, T., Proteomics in Practice: A Laboratory Manual of Proteome Analysis. Vol. p.263. 2002: Wiley-VCH Verge GmbH. 263.
    [36] Miliotis, T., Kjellstrom, S., Nilsson, J., Laurell, T., Edholm, L. E., Marko-Varga, G. Ready-made matrix-assisted laser desorption/ionization target plates coated with thin matrix layer for automated sample deposition in high-density array format[J]. Rapid Communications in Mass Spectrometry, 2002. 16(2): 117-126.
    [37] Yuan, X. L. Desiderio, D. M. Protein identification with Teflon as matrix-assisted laser desorption/ionization sample support[J]. Journal of Mass Spectrometry, 2002. 37(5): 512-524.
    [38] Chen, W. B., Lee, P. J., Vazquez, S., Chakraborty, A., Berger, S. J., Finch, J. W., Gebler, J. C. Novel approach to MALDI-TOF-MS sample preparation[J]. Abstracts of Papers of the American Chemical Society, 2003. 226: U113-U113.
    [39] Xu, Y. D., Bruening, M. L., Watson, J. T. Use of polymer-modified MALDI-MS probes to improve analyses of protein digests and DNA [J]. Analytical Chemistry, 2004. 76(11): 3106-3111.
    
    [40] Herraiz, T. Casal, V. Evaluation Of Solid-Phase Extraction Procedures In Peptide Analysis [J]. Journal Of Chromatography A, 1995. 708(2): 209-221.
    
    [41] Strausbauch, M. A., Landers, J. P., Wettstein, P. J. Mechanism of peptide separations by solid phase extraction capillary electrophoresis at low pH [J]. Analytical Chemistry, 1996. 68(2): 306-314.
    
    [42] Peterson, D. S., Rohr, T., Svec, F., Frechet, J. M. J. Dual-function microanalytical device by in situ photolithographic grafting of porous polymer monolith: Integrating solid-phase extraction and enzymatic digestion for peptide mass mapping [J]. Analytical Chemistry, 2003. 75(20): 5328-5335.
    
    [43] Hatcher, N. G., Richmond, T. A., Rubakhin, S. S., Sweedler, J. V. Monitoring activity-dependent peptide release from the CNS using single-bead solid-phase extraction and MALDI TOF MS detection [J]. Analytical Chemistry, 2005. 77(6): 1580-1587.
    [1] Liebler D. C., Hansen B. T., Davey S. W. et al.. Peptide Sequence Motif Analysis of Tandem MS Data with the SALSA Algorithm[J]. Analytical Chemistry, 2002, 74(1): 203-210.
    [2] Steen H., Kuster B., Mann M. Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning[J]. Journal of Mass Spectrometry, 2001, 36(7): 782-790.
    [3] Xu ChongFeng(许崇峰), Song HaoWei(宋浩威), Yang PengYuan(杨芃原), et al.. 学报, 2002, 23(6): 1035-1037.
    [4] Mann M., Wilm M. Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence Tags[J]. Analytical Chemistry, 1994, 66(24): 4390-4399.
    [5] Shevchenko A., Jensen O. N., Podtelejnikon A. V. et al.. Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(25): 14440-14445.
    [6] Plouter LandTaylor L,[J]. International Journal of Mass Spectrometry and Ion Processes, 1989, 91: 183.
    [7] Spengler B, Kitsch d, Kaufmann R, et al. Peptide sequencing by matrix-assisted laser-desorption mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 1992, 6(2): 105-108.
    [8] Stimson E, Truong O, Richter W. J, et al. Enhancement of charge remote fragmentation in protonated peptides by high-energy CID MALDI-TOF-MS using "cold" matrices[J]. International Journal of Mass Spectrometry, 1997, 169: 231-240.
    [9] Johnson RS, Martin SA, Biemann K,[J]. International Journal of Mass Spectrometry and Ion Processes, 1988, 86: 137-154.
    [10] Deery MJ, Summerfield SG, Buzy A, et al. A mechanism for the loss of 60u from peptides containing an arginine residue at the C-terminus[J]. Journal of the American Society for Mass Spectrometry, 1997, 8(3): 253-261.
    [1l] Dongre A. R., Jones J. L., Somogyi A., et al. 1996, "Influence of peptide composition, gas-phase basicity and chemical modification on fragmentation efficiency:evidence for the mobile proton model[J]. Journal of American Chemistry Society. 118(35):8365-8374.
    
    [12] Downard KM, Biemann K, Amino acid sequence prerequisites for the formation of Cn ions[J]. Journal of the American Society for Mass Spectrometry. 1993 4:874-881.
    
    [13] Gross ML, Charge remote fragmentations: method, mechanism and applications[J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 118/119:137-165.
    
    [14] Alex. G Harrison, The gas-phase basicities and proton affinities of amino acids and peptides[J]. Mass Spectrometry Reviews. 1997, 16(4):201-217.
    
    [15] Renner D, Spiteller G, Sequencing of short peptides using FAB mass spectrometry-increased information via derivatization[J]. Angewandte Chemie International Edition in English, 1985, 1(24): 408-409.
    
    [16] Hines W., Peltier J., hsieh f., et al.,. Peptide fragment mass spectra: comparison of PSD and CID[A], In: Proc 43rd ASMS Conference of Mass Spectrometry. Allied Topics[C], Talanta, GA, 1995, May 21-26
    
    [17] Hung Z-H, Wu J, Roth KDW, Watson J.T. et al.., A picomole scale method for charge derivatization of peptides for sequence analysis by mass Spectrometry. [J]. Analytical Chemistry, 1997, 69(2): 137-144.
    
    [18] Huang Z.-H., Wu J., Gage D.A., et al. Selective charge derivatization for use in peptide sequencing by MALDI-PSD-TOF-MS[A]. In: Proc.45th ASMS Conference of Mass Spectrometry, Allied Topics[C], Palm springs, CA, 1997, June 1-5
    
    [19] Liao P-c, allison J, Enhanced detection of peptides in matrix-assisted laser desorption/ionization mass Spectrometry through the use of charge localized derivatives [J]. Journal of Mass Spectrometry, 1995, 30:511-512.
    
    [20] Spengler B., Luetzenkirchem F., Metzger S., et al. Peptide sequencing of charged derivatives by postsource decay MALDI mass Spectrometry[J]. Internation Journal of Mass Spectrometry and Ion Processes, 1997, 169/170:127-140.
    
    [21] Mann, M; Wilm, M; Error-Tolerant Identification of Peptides in Sequence Databases by Peptide Sequence Tags [J]. Analytical Chemistry, 1994, 66(24):4390-4399.
    
    [22] Yates J R III; McCormark, A L; Eng, J K; Mining genomes with MS [J]. Analytical Chemistry, 1996, 68(17):534A-540A.
    
    [23] Yates, J R III; Eng J K; McCormack, A L, An Approach to Correlate Tandem Mass-spectral Data of Peptides with Amino-acid-sequences in a Protein Database. [J]. Journal of the American Society for Mass Spectrometry, 1994, 5(11) :976-989.
    
    [24] Yates, J R III; Eng, J K; McCormack, A L; et al. Method to Correlate Tandem Mass Spectra of Modified Peptides to Amino Acid Sequences in the Protein Database [J]. Analytical Chemistry, 1995, 67(8):1426-1436.
    
    [25] Yates, J R III; Eng, J K; McCormack, A L; Mining Genomes: Correlating Tandem Mass Spectra of Modified and Unmodified Peptides to Sequences in Nucleotide Databases [J]. Analytical Chemistry, 1995, 67(18):3202-3210.
    
    [26] Yates, J R III; Morgan, S F; Gatlin, C L; et al. Method To Compare Collision-Induced Dissociation Spectra of Peptides: Potential for Library Searching and Subtractive Analysis [J]. Analytical Chemistry, 1998, 70(17):3557-3565.
    
    [27] Taylor J A; Johnson R S; Sequence database searches via de novo peptide sequencing by tandem mass Spectrometry [J]. Rapid Communications in Mass Spectrometry, 1997, 11(9): 1067-1075.
    
    [28] Fernandez-de-Cossio J., Gonzalez J., Betancourt L., et al. Automated interpretation of high-energy collision-induced dissociation spectra of singly protonated peptides by 'seqms', a software aid for de novo sequencing by tandem mass Spectrometry [J]. Rapid Communications in Mass Spectrometry, 1998, 12(23):1867-1878,.
    
    [29] Taylor J.A., Johnson R.S., Sequence database searches via de novo peptide sequencing by tandem mass Spectrometry [J]. Rapid Communications in Mass Spectrometry, 1997, 11: 1067-1075.
    
    [30] Yates J.R., Eng J.K., Mcormack A.L. et al.. An Approach to Correlate Tandem Mass-spectral Data of Peptides with Amino-acid-sequences in a Protein Database[J]. Journal of the American Society for Mass Spectrometry, 1994, 5(11): 976-989.
    [31] Papayannopoulos I. A. The Interpretation of Collision-induced Dissociation Tandem Mass-spectra of Peptides[J]. Mass Spectrometry Reviews, 1995, 14(1): 49-73.
    [32] Gorshkov M. V., Ljiljana P. T., Smith R. D. et al.. Pressure limited sustained off-resonance irradiation for collision-activated dissociation in Fourier transform mass spectrometry[J]. Journal of the American Society for Mass Spectrometry, 1999, 10(1): 15-18.
    [33] Zhai JianJun, Shui Wenqing, Xu Xuejiao, et al.. A modified nanospray tip coupled to a mass spectrometer for analyzing enzymatic peptides[J]. Rapid Communications in Mass Spectrometry, 2004, 18(10): 1177-1179.
    [34] Wang XianChun(王贤纯),Liang SongPing(梁宋平),电喷雾串联质谱图的叠合与多肽序列分析[J].生物化学与生物物理学报,2001,33(6):665-670.
    [1] Weickhardt C, Moritz F, and Grotemeyer J. Time-of-Flight Mass Spectrometry: State-of-the-Art in Chemical Analysis and Molecular Science[J]. Mass Spectrometry Reviews, 1996, 15(3): 139-162.
    [2] Pandey A, and Mann M. Proteomics to Study Genes and Genomes[J]. Nature, 2000, 405(6788): 837-846.
    [3] 钱小红.蛋白质组与生物质谱技术[J].质谱学报,1998,19(3):48~54.
    [4] Guilhaus M, Selby D, and Mlynski V. Orthogonal Acceleration Time-of-Flight Mass Spectrometry[J]. Mass Spectrometry Reviews, 2000, 19(2): 65-107.
    [5] Mirgorodskaya O, Shevchenko A, Chernushevich I, et al. Electrospray-Ionization Time-of-Flight Mass-Spectrometry in Protein Chemistry[J]. Analytical Chemistry, 1994, 66(1): 99-107.
    [6] Smith R, Loo J, Loo R, et al. Principles and Practice of Electrospray Ionization-Mass-Spectrometry for Large Polypeptides and Proteins[J]. Mass Spectrometry Reviews, 1991, 10(5): 359-451.
    [7] 杨芃原,钱小红,盛龙生.生物质谱技术与方法[M].北京:科学出版社,2003.1~5.
    [8] 何坚,杨芃原,庄峙厦,等.高分辨电喷雾离子源三极杆-飞行时间质谱仪的研制[J],仪器仪表学报,2003,24(6): 598~600.
    [9] Dodonov A, Kozlovsky V, Loboda A, et al. A New Technique for Decomposition of Selected Ions in Molecule Ion Reactor Coupled with Ortho-Time-of-Flight Mass Spectrometry[J]. Rapid Communications in Mass Spectrometry, 1997, 11(15): 1649-1656.
    
    [10]Campbell J, Collings B, Douglas D. A New Linear Ion Trap Time-of-Flight System with Tandem Mass Spectrometry Capabilities[J]. Rapid Communications in Mass Spectrometry, 1998, 12(20): 1463-1474.
    [11]Loboda A, Kozlovski V, Chardakova E, et al. New Method for Ion Mobility Determination by Stability Threshold Measurement in Gas Filled Radio Frequency Quadrupoles[J]. Rapid Communications in Mass Spectrometry, 1998, 12(1): 45-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700