甘蓝型油菜种皮色泽形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜(Brassica napus L,2n=38, AACC)属于十字花科(Cruclferae)芸薹属(Brassica)植物,是经过白菜(B. rapa)和甘蓝(B. oleracea)2个二倍体物种通过种间杂交形成的异源四倍体,是世界上重要油料作物之一,人类营养价值丰富的食用油来源之一,也是植物蛋白饲料重要的来源之一。甘蓝型油菜在植物分类学上和拟南芥同属十字花科植物,具有共同的祖先,亲缘关系比较近,并且基因组间存在广泛的共线性,基因序列和保守结构域也具有很高的一致性。已完成的白菜基因组测序工作和即将完成的甘蓝基因组测序工作,对甘蓝型油菜的比较基因组学研究、基因组遗传进化关系研究以及基因组结构特征的研究具有重要的理论指导意义,并为甘蓝型油菜的作物品质改良提供应用基础。
     目前,大量的研究结果表明甘蓝型油菜黄籽品系与黑籽品系相比具有明显的优点,甘蓝型黄籽油菜不仅种皮薄、含油量高、蛋白含量高等优点,而且植酸、单宁、芥子碱和纤维素等有毒或抗营养物质含量较低,菜籽油的品质及饼粕的质量都有所提高。长期以来,国内外众多研究者对粒色相关性状进行了广泛研究,高产优质的黄籽油菜选育已成为当前油菜的重要目标之一。甘蓝型油菜在自然界中不存在天然的黄籽种质资源,甘蓝型油菜黄籽性状遗传复杂,且易受环境影响,目前获得的甘蓝型黄籽材料,其黄籽主效基因来自于白菜、甘蓝、芥菜型油菜、埃塞俄比亚芥诱变后代,但形成的机理仍然不清楚。
     本研究通过分析黄黑籽甘蓝型油菜种皮发育过程中类黄酮及酚类化合物累积的动态变化规律以及不同发育时期种皮中相关结构基因和转录因子的差异表达,为揭示甘蓝型油菜种皮色素累积规律和相关基因的表达模式及调控机理提供了重要线索。另外,通过构建高密度遗传连锁图谱,用复合区间作图法在多个环境中重复检测到一个影响种皮色泽的主效QTL,通过将该区间与拟南芥和韩国提供的白菜第九染色体对应区间DNA序列进行了生物信息学分析,最终结合测定油菜籽粒色素合成高峰期的表达谱信息,找出稳定差异表达的基因并将此作为候选基因,构建各候选基因的正义表达和RNAi植物表达载体,采用根癌农杆菌介导法分别转化了甘蓝型黄籽油菜(正义表达)和甘蓝型黑籽油菜(RNAi)。主要研究结果如下:
     1原花色素类多酚类物质的积累在黄黑籽甘蓝型油菜种皮中具有显著差异
     通过用甲苯胺蓝染液(TBO)对不同发育时期的甘蓝型油菜黑籽中油821(ZY821)和黄籽GH06种子石蜡切片染色的结果表明:甘蓝型油菜种皮中色素的主要累积部位是种皮栅栏层和色素层,且原花色素类多酚物质初期最先在种脐部产生,随着种子的发育,在种皮栅栏层和色素层组织中色素积累逐渐增多,且黄黑籽间存在明显差异,在黑籽ZY821中原花色素类多酚类物质的含量明显高于黄籽GH06,说明原花色素类多酚类物质的积累是油菜粒色的重要原因之一。
     2黄籽甘蓝型油菜中与表儿茶素及其衍生物合成相关的酶和基因功能衰减比黑籽强烈
     通过LC-ESI-MS分析方法对甘蓝型油菜黑籽ZY821和黄籽GH06不同发育时期种皮中黄酮类衍生物含量进行的分析结果表明:35种黄酮类化合物的衍生物在黄黑籽甘蓝型油菜种皮中被检测到,大致可分为表儿茶素、槲皮素、异鼠李素和山萘酚等四类黄酮类化合物的衍生物,各种衍生物在黑籽ZY821中的含量明显高于黄籽GH06:但表儿茶素及其衍生物在黄籽GH06的整个发育时期中均未被检测到,且在整个发育过程中与表儿茶素合成相关的基因(BnUGT2和BnTT12)的表达水平明显低于黑籽,说明与表儿茶素及其衍生物合成相关的酶和基因功能衰减可能是引起色泽差异的关键因子。
     3甘蓝型油菜种皮中不溶性原花色素的积累可能导致了黄黑籽在种皮颜色上的差异
     甘蓝型油菜与拟南芥类似,在发育早期并不存在不溶性的原花色素的积累,而在种皮发育的中后期开始迅速积累,但黑籽油菜中不溶性原花色素的积累与黄籽不存在显著性差异,随着种子的成熟,种皮中大量的不溶性原花色素的聚合物在细胞壁上交联,促进了种皮颜色上的差异。
     4甘蓝型油菜种皮色泽与相关性状的统计分析
     不同环境中甘蓝型油菜种皮色泽与种子皮壳率、种皮中花色素、类黄酮、总酚和黑色素之间存在极显著的负相关,而皮壳率与四种种皮色素之间存在极显著的正相关,说明在甘蓝型油菜品种选育过程中通过黄籽性状选育可以同时多个相关性状进行遗传改良,同时这些性状之间可能存在共同或部分相同的代谢途径,或者是在同一遗传系统中受相同的上游调控因子调控。
     5甘蓝型油菜种皮中类黄酮途径相关基因的表达差异可能是影响种皮色泽形成的根本原因
     本研究通过qRT-PCR的方法研究了参与苯丙烷和类黄酮代谢途径相关的基因在黑籽甘蓝型油菜中油821和黄籽GH06七个不同发育时期种皮中的表达差异。结果表明:有9个结构基因(BnPAL、BnC4H、BnTT4、BnTT6、BnTT3、BnTT18、BnTT12、BnTT10和BnUGT2)和3个转录因子(BnTTG1、BnTTG2和BnTT8)在黄黑籽种皮中存在极显著表达差异,编码两种催化多种酚类及类黄酮终产物提供前体物质的形成关键酶的BnPAL和BnC4H两个基因和促进原花色素起始单体形成的重要基因BnTT12是引起黄黑籽种皮差异的关键基因。另外,BnTT4在授粉后28天达到最高峰值,而下游基因(BnTT5、BnTT6和BnTT7)晚于该基因一个时期达到最高峰值,BnTT3和BnTT18的最高峰值也晚于其上游基因一个时期达到最高峰值,说明BnTT4是甘蓝型油菜类黄酮代谢途径中影响下游基因的表达的一个重要基因,在类黄酮途径中存在上游基因对下游基因的调控。甘蓝型油菜种皮中的转录因子在黄黑籽之间表达模式与拟南芥类似,BnTTG1的表达受到BnTTG2的调控,而BnTT2、 BnTT8和BnTTG1协同作用又同时调控了甘蓝型油菜的类黄酮代谢过程。
     6甘蓝型油菜遗传连锁图谱的构建
     本研究利用重组自交系为作图群体,构建了一张包含1089个标记位点,其中包括451个SRAP标记,456个SSR标记,97个RAPD标记和75个IBP标记,覆盖19个连锁群,总长度约为2775cM,标记间的平均距离为2.54cM的甘蓝型油菜遗传图谱。每个连锁群上的标记数为6-184个,连锁群长度为47.22-243.46cM,连锁群密度为0.83cM/标记(A09)-7.87cM/标记(C02)。
     7甘蓝型油菜遗传图谱与公开发表的遗传图谱的比较分析
     通过比较作图,与已公开发表的甘蓝型油菜的遗传连锁图谱进行了比较分析,结果表明该遗传图谱的连锁群与已发表的甘蓝型油菜的十九条染色体基本吻合,并且存在237个共有的标记位点,同时整合了根据白菜和甘蓝基因组信息设计的特异性引物196对,说明图谱具有了一定的通用性,但仍未达到饱和。
     8甘蓝型油菜遗传图谱与白菜和拟南芥基因组的共线性分析
     本研究将遗传连锁图谱上的SSR和IBP标记逐一与白菜基因组的Scaffold序列进行了比较,最终将甘蓝型油菜遗传连锁图谱上的436对引物标记锚定到白菜基因组的126个Scaffold上。甘蓝型油菜An与白菜Ar染色体组存在很好的共线性,但有些标记顺序存在重排现象,甘蓝型油菜A基因组来源于白菜。将锚定到白菜基因组Scaffold上的436对引物标记序列与拟南芥的全基因组进行了比对,仅有一对标记没有找到同源性,某些标记序列与拟南芥序列基本一致,在一定程度上说明了甘蓝型油菜与白菜和模式植物拟南芥具有共同的原始祖先。
     9甘蓝型油菜种皮色泽的QTL分析
     应用复合区间作图分析方法,对重组自交系SWU-2群体在6个环境中的种皮色泽进行了QTL初级定位和效应检测,共检测到18个种皮色泽相关的QTL,单个QTL解释性状表现的变幅在5.69%-64.17%之间。这些QTL分别位于第A01,A04,A07,A09,C03,C05和C08七个不同的连锁群上;控制种皮色泽的基因表现为主效+微效多基因控制的数量性状的特点,并受到环境条件影响。
     10甘蓝型油菜在色素合成高峰期相关基因的差异表达谱数据分析
     本研究以作图群体SWU-2的两个亲本(黑籽中油821和黄籽GH06)与一对黄黑籽近等基因系为材料,在种皮色素合成高峰期(授粉后42天)作基因表达谱分析,以黄籽为对照,共发现在种皮色泽主效QTL区间具有稳定上调差异表达的基因27个,这些基因大部分为一些与色素合成相关的调控因子和转运蛋白基因。
     11甘蓝型油菜种皮色泽主效QTL区间的候选基因的筛选
     将种皮色泽主效QTL区间与韩国提供的第九染色体对应的DNA序列进行生物信息学分析,确定该区段总长约为440kb左右,通过与我国测序的白菜、甘蓝基因组序列在NCBI (http://www.ncbi.nlm.nih.gov/)和白菜基因组数据库(http://www.brassicadb.org/brad/))中进行序列比对,该区间序列与白菜和甘蓝具有很高的同源性。提取该区间序列以拟南芥基因组数据集为模型进行基因预测,并在NCBI上进行BLASTP比对,进行基因注释,发现该区段内共存在约105个基因,结合甘蓝型油菜黄黑籽在籽粒色素合成高峰期差异表达谱以及种皮中类黄酮途径相关基因的差异表达的结果,最终在主效QTL区间筛选出了40个基因作为候选基因,这些基因大部分为一些与色素合成相关的调控因子和编码转运蛋白的基因。
     12候选基因的克隆和功能研究
     从上述候选基因中选择克隆了11个可能与甘蓝型油菜粒色相关的候选基因,构建了相应的正义表达和RNAi表达载体,将各载体采用根癌农杆菌法分别转化了根癌农杆菌LBA4404,形成了工程菌株。通过花序浸染法将表达载体的工程菌株分别转化甘蓝型黄籽油菜(正义表达)和甘蓝型黑籽油菜(RNAi)。目前已经获得了抗Basta的RNAi的再生植株,经过多重PCR检测结果证实获得了部分阳性植株,这些将为深入研究甘蓝型油菜粒色基因提供基础,为获得转基因甘蓝型油菜黄籽材料创造条件。
Brassica napus L.(2n=38, AACC) is Brassica of Cruclferae. B. napus is an amphidiploid species (AC genome, n=19) derived from interspecific of two diploid species, B. rapa (A genome, n=10) and B. oleracea (C genome, n=9). In the world, B. napus is not only one of the most important of oil crops, but is one of the most important oil crops worldwide. It is also an important source to edible oil and the vegetable protein feed. Besides, Brassica and the model plant Arabidopsis thaliana are belong to the same family, and have some similarities level at the genome sequence. The genes have high degree of sequence identity and remarkably conserved genome structure. Moreover, with the whole genome being sequenced of B. rapa and being sequencing of B. oleracea, we could analyze the genome synteny among them and get the differences and similarities in the structures of Brasica genome and genome structure. It also would provide a theoretical basis for the analysis of genetic evolution and practical implications for improvement of Brassica crops.
     Studies have demonstrated that in the same genetic background, yellow rapeseed seed has both thinner seed coat and higher seed oil and protein, and lower meal lignin content, cellulose and polyphenol than black seed varieties. In addition, other toxic materials or antinutritives, such as glucosinolates, phytic acid, tannin and sinapine, is lower than the black seed and easy to be digested by the animals and hindering its usage as feed. Therefore, development of yellow seeded lines and cultivars is one of the major breeding objectives in rapeseed, and the inheritance of seed coat colour has been investigated for many years in B. napus by several researchers around the world. However, there are no stable lines of yellow-seeded oilseed germplasm, and the major genes for the yellow-seeded were come from the B. rapa, B. oleracea, B. carinata, B. juncea and their mutation progeny in B. napus. Besides, the inheritance of seed coat color in B. napus is quite complicated, and affected by environmental factors greatly. Moreover, the molecular mechanism of yellow seed trait formation of Brassica is remaining poorly understood.
     In the process of seed coat development, we analyzed laws of the variations in accumulation of flavonol content and phenolic compounds, and identified differential expression of the transcription factors and main structural genes. It is useful to explain the laws of pigments accumulation and expression patterns or regulation mechanism of gene in B. napus. In addition, based on the constructed linkage groups, a stable major QTL was detected by composite interval mapping using Windows QTL Cartographer2.5, and affecting the seed coat colour of B. napus in different different environments. Moreover, according to the results of comparative genomic and bioinformatics analysis of the major QTL region with Arabidopsis chromosome sequences and related DNA sequences in chromosome A09of B. rapa, and analysis of gene expression response in the peak period of seed coat pigments synthesis in B. napus, some stable differential expression of genes were found and acted as the candidate gene. Then we constructed the overexpression vector and RNAi expression vector of engineering strains and transform by the transformation protocol technique. Some conclusions are as follows:
     1Accumulation of Proantnocyanins and polyphenols showing the significant difference in seed coat of the yellow-and black-seeded B. napus
     The paraffin sections of the different development stages of seed in yellow-(GH06) and black-seeded (ZY821) of B. napus were stained with toluidine blue O. The results showed that the pigments mainly accumulated in the layer of palisade and pigment of seed coat. These compounds began to accumulate in the hilum of seed during the early development stages. The pigments will gradually increase and show the significant difference in the layer of palisade and pigment of seed coat during the seed mature. Moreover, proantnocyanins and polyphenols content is higher in the black-seeded than in the yellow-seeded of B. napus.
     2The function of enzymes and gene for the synthesis of epicatechin and their derivates may be strongly attenuated in B. napus
     In this research, thirty-five phenolic compounds were detected in the flavonoid extracts from ZY821and GH06seed coat according to the retention time analysis of LC-UV-MS, including that13and one compounds could be detected only in ZY821and GH06, respectively. Four types of flavonols derivates were identified, including epicatechin, quercetin, isorhametin, and kaemferol derivates. But in the whole development stages, epicatechin derivates cannot be detected in seed coat of yellow seed coat parent, and the expression level of related genes (BnUGT2and BnTT12) for epicatechin synthesis was also significantly lower in yellow-seeded than in black-seeded. The result showed that the function of enzymes and gene for the synthesis of epicatechin and their derivates may be more strongly attenuated in yellow-seeded than in black-seeded in B. napus.
     3In-PAs accumulation may be involved in the difference in seed coat colour of B. napus
     Similar to Arabidopsis, in-PAs cannot accumulate in the B. napus in early developmental stages of seed coat. Whereas, in-PA began to speedily accumulate and not showed the significant difference between the yellow-and black-seeded in B. napus during the middle-to-late stages. With the accumulation of in-PAs in cell walls, the seed coat colour gradually forming differences in B. napus.
     4Correlation analysis among some traits of seed coat
     Correlation analysis were carried out among the seed coat colour, seed hull content and seed coat pigments of RILs populations in B. napus L. The correlation studies showed seed coat colour had significant negative correlation with seed hull content and seed coat pigments in the different environments, including the anthocyanidin content, flavonoid content, total phenol content and melanin content. The results showed that it is possible that we can improve some quality traits according to select the yellow-seed traits. Moreover, the syntheses of seed coat colour and seed coat pigments are probably controlled by the same genes or have the same pathway partially.
     5Differential genes expression of flavonoid biosynthesis pathway may be the key factor for formation seed coat colour
     Using the method of qRT-PCR, we analyzed and identified differential expression of the main structural genes and transcription factors of biosynthesis pathway of flavonoid. The results indicated that the expression of nine structural genes(BnPAL, BnC4H, BnTT4, BnTT6, BnTT3, BnTT18, BnTT12, BnTT10and BnUGT2) and three transcription factors (BnTTG1、BnTTG2and BnTT8) showed significant differences between the yellow-and black-seeded. BnPAL, BnC4H and BnTT12encode enzymes specifically involved in the steps of the pathway leading to the biosythesis of precursor of polyphenols and flavonoids compounds and proantnocyanins, and may be the key genes for formation seed coat colour. The BnTT4expression levels reached on the tops at the28DAP, and involved in the expression of downstream genes (BnTT5, BnTT6and BnTT7). Likewise, downstream genes of BnTT3and BnTT18were also regulated by upstream gene. This result indicated that the BnTT4is the first key gene in the flavonoid pathway in B. napus. Moreover, downstream genes were regulated by the upstream genes in the flavonoid biosynthetic pathway. In addition, BnTTGl can also be directly regulated by BnTTG2, and the co-expression of BnTT2, BnTT8and BnTTG1regulates flavonoid biosynthesis pathway in B. napus. Therefore, the function of and the expression patterns of transcription factors in B. napus were also similar with Arabidopsis thaliana.
     6Linkage map construction
     The recombinant inbred lines (RILs) population was used for the mapping population and derived from a cross between black-seeded male parent cultivar ZY821and yellow-seeded female parent line GH06was established by selfing for seven successive generations with single seed propagating from F2. A high-density genetic linkage map was constructed using JoinMap4.0.1089loci (456for SSR,97for RAPD,451for SRAP and75for IBP) were mapped on19linkage groups, covering2775cM of B. napus genome and the average distance between two adjacent markers was2.54cM. The numbers of markers were varied from6to184on each linkage group. The length of linkage group varied from47.22cM to243.46cM and the average genetic distance was between0.83cM/marker (A09)-7.87cM/marker (C02).
     7Comparative analysis of genetic mapping with published genetic mapping of B. napus
     In this research, comparative mapping and analysis of linkage groups between the RILs and been published in B. napus, and the results showed that the nineteen chromosomes of linkage map showed the consistence of others.237markers of them were found and indicated that the linkage mapping could be universally used in the researches of B. napus. Meanwhile,196markers were integrated to the linkage maps and designed according to the genome sequences of B. rapa and B. oleracea.
     8Comparative the linkage map of B. napus with the genome of B. rapa and Arabidopsis thaliana
     The sequences of all SSRs and IBP makers located on the linkage map were compared with the genome of B. rapa and Arabidopsis thaliana, respectively.237sequences had homologous with the B. rapa and located on the126Scaffold of genome. Extensive macrocolinearity and rearrangement have been found between the A subgenomes of B. napus (An) and B. rapa (Ar). The syntenic between An and Ar subgenomes showed that there were highly homologous in B. napus and B. rapa. Whereas, one marker of436sequences were not found the homologous in Arabidopsis thaliana genome, and some sequences of them were consistent with gene sequences of Arabidopsis thaliana. The result provided strong evidence to support the hypothesis that B.napus, B. rapa and the model plant Arabidopsis originated from the common ancestor.
     9QTL analysis seed coat colour
     This study was to identify QTL which controlled seed coat colour components in RILs (SWU-2) using the composite interval mapping (CIM) method.18of QTLs were detected on7different linkage groups. One major QTLs explaining41.38%-64.17%of phenotypic variation were found and located in the linkage groups A09in different environments. In addition, the minor QTL were also detected and located in the groups A07, C03and C08in different environments, accounting for5.69%-11.04%of phenotypic variation, respectively. Three QTLs with relative smaller effects were also found in the linkage groups A01, A04and C05, respectively. These results have indicated that the seed coat colour was controlled by major and many minor-effect genes, with a pattern of quantitative trait inheritance, and the expression of the QTL was affected by environmental factors.
     10Analysis of gene expression in the peak period of seed coat pigments synthesis in B. napus
     In this study, gene expression profiles were analyzed in the peak period of seed coat pigments synthesis (42DAP) using to two parents (ZY821and GH06) and two near-isogenic lines of black-and yellow-seeded in B. napus. There are27genes expressed much higher in black-seeded than in yellow-seeded. These genes are the regulatory factors and transporter protein of gene in the biosynthesis of seed coat pigments, and might be candidates for the seed coat colour gene.
     11Selection of candidate gene for seed coat colour in the major QTL region
     Comparative genomic and bioinformatics analysis of the major QTL region with related DNA sequences in chromosome A09of B. rapa supplied by Korea, and covering about440kb interval in chromosome A09of B. rapa. The sequence was submitted to the NCBI website (http://www.ncbi.nlm.nih.gov/) and BRAD database (http://www.brassicadb.org/brad/) for BLAST search. The sequences of major QTL region were found high homologues in the B. rapa and B. oleracea. We extracted the interval sequences and made gene forecast according to the Arabidopsis thaliana genome. The sequence was also submitted to the NCBI website for BLASTP and completed the gene annotation.105genes were found in this region and selected40genes acting as the candidate gene for seed coat colour, according to the results of gene expression in the peak period of seed coat pigments synthesis and differential genes expression of flavonoid biosynthesis pathway. Most of these genes are the regulation factors for pigments biosynthesis and structure gene for coding transporters.
     12Molecular cloning and functional identification of candidate gene
     In this research, we cloned11candidate genes fragments of B. napus. Through transformation of Agrobacterium tumefaciens LBA4404strain, we have received the overexpression vector and RNAi expression vector of engineering strains, respectively. With the transformation protocol technique, we transform the yellow-seed and black-seeded lines with the overexpression vector and RNAi expression vector of candidate genes, respectively. Nowly, we have got some Basta-resistantce plants and transgenic positive plants by multiple PCR identification. The results will provide the foundation for further research of genetic mechanism of yellow-seeded gene, and will be helpful to create the germplasm resources of yellow-seeded in B. napus.
引文
Abrahams S., Lee E., Walker A.R., Tanner G.J., Lark in P.J., Ashton A.R. (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. The Plant Journal 35:624-636.
    Akhov L.A.L., Ashe P.A.P., Tan Y.T.Y., Datla R.D.R., Selvaraj G.S.G. (2009) Proanthocyanidin biosynthesis in the seed coat of yellow-seeded, canola quality Brassica napus YN01-429 is constrained at the committed step catalyzed by dihydroflavonol 4-reductase. Botany 87:616-625.
    Albert S., Delseny M., Devic M. (1997) BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. The Plant Journal 11:289-299.
    Aleksandra P., Krystyna K., Iwona B., Jan K. (2007) Genetic analysis of yellow seed colour in winter oilseed rape (Brassica napus L.). the 12th international rapeseed congress Wuhan, China:40.
    Ali W., Munir I., Ahmad M.A., Muhammad W., Ahmed N., Durrishahwar N., Ali S., Swati Z. (2007) Molecular characterization of some local and exotic Brassica juncea germplasm. African Journal of Biotechnology 6:1634-1638.
    Ana M.J., Ankica K.S., Dejana S.P., Radovan M., Nikola H. (2011) Phenotypic and molecular evaluation of genetic diversity of rapeseed (Brassica napus L.) genotypes. African Journal of Biotechnology 8:4835-4844.
    Arsovski A.A., Haughn G.W., Western T.L. (2010) Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research. Plant signaling & behavior 5:796.
    Auger B., Baron C., Lucas M.O., Vautrin S., Berges H., Chalhoub B., Fautrel A., Renard M., Nesi N. (2009) Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta 230:1167-1183.
    Bottcher C., von Roepenack-Lahaye E., Schmidt J., Schmotz C., Neumann S., Scheel D., Clemens S. (2008) Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiology 147:2107-2120.
    Babula D., Kaczmarek M., Barakat A., Delseny M., Quiros C., Sadowski J. (2003) Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map. Molecular Genetics and Genomics 268:656-665.
    Badani A., Rod S., Roland B. (2003) QTL mapping for yellow seed colour in oilseed rape(Brassica napus) [A] Plant breeding molecular markers, 11th international rapeseed congress[C].85-87.
    Badani A.G., Snowdon R.G., Wittkop B., Lipsa F.D., Baetzel R., Horn R., Haro A.D., Font R.. Liihs W., Friedt W. (2006) Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49:1499-1509.
    Baudry A., Caboche M., Lepiniec L. (2006) TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell specific accumulation of flavonoids in Arabidopsis thaliana. The Plant Journal 46:768-779.
    Baudry A., Heim M.A., Dubreucq B., Caboche M., Weisshaar B., Lepiniec L. (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal 39:366-380.
    Bechtold N., Jaudeau B., Jolivet S., Maba B., Vezon D., Voisin R., Pelletier G. (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155:1875.
    Bent A.F. (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiology 124:1540-1547.
    Birch R.G. (1997) Plant transformation:problems and strategies for practical application. Annual Review of Plant Biology 48:297-326.
    Blount J. W., Korth K.L., Masoud S.A., Rasmussen S., Lamb C., Dixon R.A. (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiology 122:107-116.
    Burbulis I.E., Winkel-Shirley B. (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proceedings of the National Academy of Sciences 96:12929-12934.
    Cavell A., Lydiate D., Parkin I., Dean C., Trick M. (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62-69.
    Chai Y.R., Lei B., Huang H.L., Li J.N., Yin J.M., Tang Z.L., Wang R., Chen L. (2009) TRANSPARENT TESTA12 genes from Brassica napus and parental species:cloning, evolution, and differential involvement in yellow seed trait. Molecular Genetics and Genomics 281:109-123.
    Chen A.H., Chai Y.R., Li J.N., Chen L. (2007) Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape(Brassica napus). Journal of biochemistry and molecular biology 40:247-260.
    Chen G., Geng J., Rahman M., Liu X., Tu J., Fu T., Li G., McVetty P.B.E., Tahir M. (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161-174.
    Cheng X., Xu J., Xia S., Gu J., Yang Y., Fu J., Qian X., Zhang S., Wu J., Liu K. (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor. Appl. Genet.118:1121-1131.
    Cheung F., Trick M., Drou N., Lim Y.P., Park J.Y., Kwon S.J., Kim J.A., Scott R., Pires J.C., Paterson A.H. (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. The Plant Cell Online 21:1912.
    Cheung W., Champagne G., Hubert N., Landry B. (1997a) Comparison of the genetic maps of Brassica napus and Brassica oleracea. TAG Theoretical and Applied Genetics 94:569-582.
    Cheung W., Friesen L., Rakow G., Seguin-Swartz G., Landry B. (1997b) A RFLP-based linkage map of mustard [Brassica juncea (L.) Czern. and Coss.]. TAG Theoretical and Applied Genetics 94:841-851.
    Chiu L.W., Zhou X., Burke S., Wu X., Prior R.L., Li L. (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiology 154:1470-1480.
    Choi S.R., Teakle G.R., Plaha P., Kim J.H., Allender C.J., Beynon E., Piao Z.Y., Soengas P., Han T.H., King G.J. (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor. Appl. Genet.115:777-792.
    Clark R.M., Linton E., Messing J., Doebley J.F. (2004) Pattern of diversity in the genomic region near the maize domestication gene tbl. Proc Nal Acad Sci USA 101:700-707.
    Clough S.J., Bent A.F. (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735-743.
    Daun J., DeClercq D. (1988) Quality of yellow and dark seeds in Brassica campestris canola varieties Candle and Tobin. Journal of the American Oil Chemists'Society 65:122-126.
    Debeaujon I., Leon-Kloosterziel K.M., Koornneef M. (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122:403-414.
    Debeaujon I., Peeters A.J.M., L"(?)on-Kloosterziel K.M., Koornneef M. (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. The Plant Cell Online 13:853.
    Debeaujon I., Nesi N., Perez P., Devic M., Grandjean O., Caboche M., Lepiniec L. (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa:regulation of differentiation and role in seed development. The Plant Cell Online 15:2514-2531.
    Delourme R., Falentin C., Huteau V., Clouet V., Horvais R., Gandon B., Specel S., Hanneton L. Dheu J., Deschamps M. (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). TAG Theoretical and Applied Genetics 113:1331-1345.
    Desfeux C., Clough S.J., Bent A.F. (2000) Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method. Plant Physiology 123:895-904.
    Devic M., Guilleminot J., Debeaujon I., Bechtold N., Bensaude E., Koornneef M., Pelletier G., Delseny M. (1999) The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. The Plant Journal 19:387-398.
    Dilkes B.P., Spielman M., Weizbauer R., Watson B., Burkart-Waco D., Scott R.J., Comai L. (2008) The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. PLoS Biology 6:2707-2720.
    Dixon R.A., Xie D.Y., Sharma S.B. (2005) Proanthocyanidins-a final frontier in flavonoid research? New Phytologist 165:9-28.
    Doebley J., Stec A., Gustus C. (1995) teosinte branchedl and the origin of maize:evidence for epistasis and the evolution of dominance. Genetics 141:333-346.
    Doyle J.J. (1990) Isolation of plant DNA from fresh tissue. Focus 12:13-15.
    El-Mezawy A., Wu L., Shah S. (2009) A seed coat-specific promoter for canola. Biotechnology letters 31:1961-1965.
    Ferreira M., Williams P., Osborn T. (1994) RFLP mapping of Brassica napus using doubled haploid lines. TAG Theoretical and Applied Genetics 89:615-621.
    Flint-Garcia S.A., Thornsberry J.M., IV B. (2003) Structure of Linkage Disequilibrium in Plants. Annual Review of Plant Biology 54:357-374.
    Flint-Garcia S.A., Thuillet A.C., Yu J., Pressoir G., Romero S.M., Mitchell S.E., Doebley J., Kresovich S., Goodman M.M., Buckler E.S. (2005) Maize association population:a high-resolution platform for quantitative trait locus dissection. The Plant Journal 44:1054-1064.
    Foisset N., Delourme R., Barret P., Renard M. (1995) Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. TAG Theoretical and Applied Genetics 91:756-761.
    Francki M.F.M., Zou J.Z.J., Jiang C.J.C., Cao Z.C.Z., Li R.L.R., Yan Long Y., Chen S.C.S., Meng J.M.J. (2010) Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genome 53:908-916.
    Fu F.-Y., Lie-Zhao L., You-Rong Chai, Chen L., Yang T., Meng-Yang Jin, Ma. A.-F., Yan. X.-Y., Zhang. Z.-S. (2007) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50:840-854.
    Fu J., Zhang M.F., Qi X.H. (2006) Genetic diversity of traditional Chinese mustard crops Brassica juncea as revealed by phenotypic differences and RAPD markers. Genetic Resources and Crop Evolution 53:1513-1519.
    Gallardo K., Firnhaber C., Zuber H., Hericher D., Belghazi M., Henry C., Kiister H., Thompson R. (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Molecular & Cellular Proteomics 6:2165-2179.
    Gallavotti A., Zhao Q., Kyozuka J., Meeley R.B., Ritter M.K., Doebley J.F., P(?)M.E., Schmidt R.J. (2004) The role of barren stalkl in the architecture of maize. Nature 432:630-635.
    Gonzalez A., Zhao M., Leavitt J.M., Lloyd A.M. (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814-827.
    Grabowska A, M. F. (2004) Infiltration with Agrobacterium—the method for stable transformation avoiding tissue culture. Acta Physiol Plant 26:,451—459.
    Grotewold E. (2006) The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57:761-780.
    Hall D., Tegstrom C., Ingvarsson P.K. (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Briefings in Functional Genomics 9:157-165. DOI: 10.1093/bfgp/elp048.
    Hamberger B., Hahlbrock K. (2004) The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proceedings of the National Academy of Sciences of the United States of America 101:2209-2214.
    Hasan M., Friedt W., Pons-K¨1hnemann J., Freitag N., Link K., Snowdon R. (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape(Brassica napus ssp. napus). TAG Theoretical and Applied Genetics 116:1035-1049.
    Hasan M., Seyis F., Badani A., Pons-Kuhnemann J., Friedt W., Luhs W., Snowdon R. (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genetic Resources and Crop Evolution 53:793-802.
    Haughn G., Chaudhury A. (2005) Genetic analysis of seed coat development in Arabidopsis. Trends in plant science 10:472-477.
    Henderson C., Pauls K. (1992) The use of haploidy to develop plants that express several recessive traits using light-seeded canola(Brassica napus) as an example. TAG Theoretical and Applied Genetics 83:476-479.
    Hoffmann T., Kalinowski G., Schwab W. (2006) RNAi-induced silencing of gene expression in strawberry fruit (Fragaria×ananassa) by agro in filtration:a rapid assay for gene function analysis. The Plant Journal 48:818-826.
    Holton T.A., Cornish E.C. (1995) Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7:1071-1083.
    Hu J., Sadowski J., Osborn T., Landry B., Quiros C. (1998) Linkage group alignment from four independent Brassica oleracea RFLP maps. Genome 41:226-235.
    Ishida T., Hattori S., Sano R., Inoue K., Shirano Y., Hayashi H., Shibata D., Sato S., Kato T., Tabata S.(2001) Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19:2531-2543.
    Jiang C., Ramchiary N., Ma Y., Jin M., Feng J., Li R., Wang H., Long Y., Choi S.R., Zhang C., Cowling W.A., Park B.S., Lim Y.P., Meng J. (2011) Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa. TAG Theoretical and Applied Genetics 123:927-941.
    Jiang Y., Deyholos M.K. (2010) Transcriptome analysis of secondary-wall-enriched seed coat tissues of canola(Brassica napus L.). Plant cell reports 29:327-342.
    Johnson C.S., Kolevski B., Smyth D.R. (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell Online 14:1359-1375.
    Kasai A., Kasai K., Yumoto S., Senda M. (2007) Structural features of GmIRCHS, candidate of the I gene inhibiting seed coat pigmentation in soybean:implications for inducing endogenous RNA silencing of chalcone synthase genes. Plant Molecular Biology 64:467-479.
    Kebede B., Thiagarajah M., Zimmerli C., Rahman M.H. (2010) Improvement of open-pollinated spring rapeseed(Brassica napus L.) through introgression of genetic diversity from winter rapeseed. Crop Sci 50:1236-1243.
    Kim H.R., Choi S., Bae J., Hong C., Lee S., Hossain M., Van Nguyen D., Jin M., Park B.S., Bang J.W. (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. Bmc Genomics 10:432.
    Kim S., Jones R., Yoo K., Pike L. (2004a) Gold color in onions(Allium cepa):a natural mutation of the chalcone isomerase gene resulting in a premature stop codon. Molecular Genetics and Genomics 272:411-419.
    Kim S., Binzel M.L., Park S., Yoo K.S., Pike L.M. (2004b) Inactivation of DFR (Dihydroflavonol 4-reductase) gene transcription results in blockage of anthocyanin production in yellow onions(Allium cepa). Molecular Breeding 14:253-263.
    Kitamura S., Shikazono N., Tanaka A. (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal 37:104-114.
    Kole C., Thormann C., Karlsson B., Palta J., Gaffney P., Yandell B., Osborn T. (2002) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Molecular Breeding 9:201-210.
    Kuang A., Popova A., Xiao Y., Musgrave M.E. (2000) Pollination and embryo development in Brassica rapa L. in microgravity. International journal of plant sciences 161:203-211.
    Kuang A., Popova A., McClure G., Musgrave M. (2005) Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity. International journal of plant sciences 166:85.
    Kuittinen H., Aguade M. (2000) Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. Genetics 155:863-872.
    Labra M., Vannini C., Grassi F., Bracale M., Balsemin M., Basso B., Sala F. (2004) Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. TAG Theoretical and Applied Genetics 109:1512-1518.
    Lagercrantz U. (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217.
    Landry B.S., Hubert N., Etoh T., Harada J.J., Lincoln S.E. (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34:543-552.
    Le B.H., Cheng C, Bui A.Q., Wagmaister J.A., Henry K.F., Pelletier J., Kwong L., Belmonte M., Kirkbride R., Horvath S. (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences 107:8063-8070.
    Lepiniec L., Debeaujon I., Routaboul J.M., Baudry A., Pourcel L., Nesi N., Caboche M. (2006) Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol.57:405-430.
    Li J., Ou-Lee T.M., Raba R., Amundson R.G., Last R.L. (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell Online 5:171-179.
    Liang M., Davis E., Gardner D., Cai X., Wu Y. (2006) Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta 224:1185-1196.
    Lin L.Z., Harnly J.M. (2009) Identification of the phenolic components of collard greens, kale, and Chinese broccoli. Journal of Agricultural and Food Chemistry 57:7401-7408.
    Lin L.Z., Harnly J.M. (2010) Phenolic component profiles of mustard greens, yu choy, and 15 other Brassica vegetables. Journal of Agricultural and Food Chemistry 58:6850-6857.
    Lionneton E., Ravera S., Sanchez L., Aubert G., Delourme R., Ochatt S. (2002) Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome 45:1203-1215.
    Liu R.-H., Meng J.-L. (2006) RFLP and AFLP Analysis of Inter-and Intraspecific Varia-tion of Brassica rapa and B. napus Shows that B. rapa Is an Important Genetic Resource for B. napus Improvement. Acta Genetica Sinica 33:814-823.
    Liu Z.-w., Ting-dong F., Jin-xing T., Bao-yuan C. (2005) Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). TAG Theoretical and Applied Genetics 110:303-310.
    Liu Z., Fu T., Wang Y., Tu J., Chen B., Zhou Y., Ma C., Shan L. (2006) Development of SCAR and CAPS markers for a partially dominant yellow seed coat gene in Brassica napus L. Euphytica 149:381-385.
    Lombard V., Delourme R. (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. TAG Theoretical and Applied Genetics 103:491-507.
    Lozovaya V.V.L., Ulanov A.V., Nelson A.V., Dayd"|R.L., Widholm J., Jack M. (2005) Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop science 45:1934.
    Lu K., Chai Y.R., Zhang K., Wang R., Chen L., Lei B., Lu J., Xu X.F., Li J.N. (2008) Cloning and characterization of phosphorus starvation inducible Brassica napus PURPLE ACID PHOSPHATASE12 gene family, and imprinting of a recently evolved MITE-minisatellite twin structure. TAG Theoretical and Applied Genetics 117:963-975.
    Lukens L., Zou F., Lydiate D., Parkin I., Osborn T. (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359.
    Mackay T.F.C. (2001) The genetic architecture of quantitative traits. Annual Review of Genetics 35:303-339.
    Marinova K., Pourcel L., Weder B., Schwarz M., Barron D., Routaboul J.M., Debeaujon I., Klein M. (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. The Plant Cell Online 19:2023-2038.
    Marles M., Gruber M.Y. (2004) Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. Journal of the Science of Food and Agriculture 84:251-262.
    McCouch S., Cho Y., Yano M., Paul E., Blinstrub M., Morishima H., Kinoshita T. (1997) Report on QTL nomenclature. Rice Genet Newsl 14:111-131.
    Mei D., Wang H., Hu Q., Li Y., Xu Y., Li Y. (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breeding 128:458-465.
    Meng J., Shi S., Gan L., Li Z., Qu X. (1998) The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica 103:329-333.
    Morinaga T. (1929) Interspecific hybridization in Brassica:I. The cytology of F1 hybrids of B. napella and various other species with 10 chromosomes. Cytologia 1:16-27.
    Morinaga T. (1934) Interspecific hybridization in Brassica. VI. The cytology of Fl hybrids of B. juncea and B. nigra. Cytologia 6:62-67.
    Mun J.H., Kwon S.J., Yang T.J., Seol Y.J., Jin M., Kim J.A., Lim M.H., Kim J.S., Baek S., Choi B.S. (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111.
    Nagaharu U. (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. J Japan Bot 7:389-452.
    Nesi N., Jond C., Debeaujon I., Caboche M., Lepiniec L. (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell Online 13:2099-2114.
    Nesi N., Debeaujon I., Jond C., Pelletier G., Caboche M., Lepiniec L. (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell Online 12:1863-1878.
    Newell C.A. (2000) Plant transformation technology. Molecular biotechnology 16:53-65.
    Ohl S., Hedrick S.A., Chory J., Lamb C.J. (1990) Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell 2:837-848.
    Olsson G. (1960) Species crosses within the genus Brassica. Ⅰ. Artificial Brassica juncea Coss. Hereditas 46:171-223.
    Pang J.S., He M.Y., Liu B. (2004) Construction of the seed-coat cDNA microarray and screening of differentially expressed genes in Barley. Acta biochimica et biophysica Sinica 36:695-700.
    Pang Y., Peel G J., Sharma S.B., Tang Y., Dixon R.A. (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc. Natl. Acad. Sci. USA.105:14210-14215.
    Parkin I.A.P., Gulden S.M., Sharpe A.G., Lukens L., Trick M., Osborn T.C., Lydiate D.J. (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765-781.
    Pelletier M.K., Shirley B.W. (1996) Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings (Coordinate regulation with chalcone synthase and chalcone isomerase). Plant Physiology 111:339-345.
    Piquemal J., Cinquin E., Couton F., Rondeau C., Seignoret E., Doucet I., Perret D., Villeger M.J., Vincourt P., Blanchard P. (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor. Appl. Genet.111:1514-1523.
    Pourcel L., Routaboul J.M., Kerhoas L., Caboche M., Lepiniec L., Debeaujon I. (2005) TRANSPARENT TESTA 10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. The Plant Cell Online 17:2966-2980.
    Pradhan A., Gupta V., Mukhopadhyay A., Arumugam N., Sodhi Y., Pental D. (2003) A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. TAG Theoretical and Applied Genetics 106:607-614.
    Punyasiri P., Abeysinghe I., Kumar V., Treutter D., Duy D., Gosch C., Martens S., Forkmann G., Fischer T. (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis:properties of enzymes of the prominent epicatechin and catechin pathways. Archives of biochemistry and biophysics 431:22-30.
    Qiu D., Gao M., Li G., Quiros C. (2009) Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana. Plant cell reports 28:649-661.
    Qiu D., Morgan C., Shi J., Long Y., Liu J., Li R., Zhuang X., Wang Y., Tan X., Dietrich E. (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. TAG Theoretical and Applied Genetics 114:67-80.
    Radoev M., Becker H.C., Ecke W. (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by QTL mapping. Genetics 179:1547-1558.
    Rahman M. (2001) Introgression of alleles of the isozymic locus glucosephosphate isomerase-2 (GPI-2) from the CC genome of Brassica carinata to the CC genome of Brassica alboglabra and their independent segregation from seed colour. Plant Breeding 120:363-364.
    Rahman M., Joersbo M., Poulsen M. (2001) Development of yellow-seeded Brassica napus of double low quality. Plant Breeding 120:473-478.
    Rahman M., Li G., Schroeder D., McVetty P. (2010) Inheritance of seed coat color genes in Brassica napus(L.) and tagging the genes using SRAP, SCAR and SNP molecular markers. Molecular Breeding 26:439-453. DOI:10.1007/s11032-009-9384-6.
    Rakoczy-Trojanowska M. (2002) Alternative methods of plant transformation—a short review. Cell. Mol. Biol. Lett.7:849-858.
    Rashid A., Rakow G., Downey R. (1994) Development of yellow seeded Brassica napus through interspecific crosses. Plant Breeding 112:127-134.
    Richardson K., Fowler S., Pullen C., Skelton C., Morris B., Putterill J. (1998) T-DNA tagging of a flowering-time gene and improved gene transfer by in planta transformation of Arabidopsis. Functional Plant Biology 25:125-130.
    Rohde A., Morreel K., Ralph J., Goeminne G., Hostyn V., De Rycke R., Kushnir S., Van Doorsselaere J., Joseleau J.P., Vuylsteke M. (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. The Plant Cell Online 16:2749.
    Romani A., Vignolini P., Isolani L., Ieri F., Heimler D. (2006) HPLC-DAD/MS characterization of flavonoids and hydroxycinnamic derivatives in turnip tops(Brassica rapa L. subsp. sylvestris L.). Journal of Agricultural and Food Chemistry 54:1342-1346.
    Routaboul J.M., Kerhoas L., Debeaujon I., Pourcel L., Caboche M., Einhorn J., Lepiniec L. (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96-107.
    Russell D.W. (1971) The metabolism of aromatic compounds in higher plants. Journal of Biological Chemistry 246:3870-3878.
    Ryder C., Smith L., Teakle G., King G. (2001) Contrasting genome organisation:two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome 44:808-817.
    Sagasser M., Lu G.H., Hahlbrock K., Weisshaar B. (2002) A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes & development 16:138-149.
    Salvi S., Sponza G., Morgante M., Tomes D., Niu X., Fengler K.A., Meeley R., Ananiev E.V., Svitashev S., Bruggemann E. (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Nal Acad Sci USA 104:11376-11381.
    Schoenbohm C., Martens S., Eder C., Forkmann G., Weisshaar B. (2000) Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biological Chemistry 381:749-753.
    Schranz M.E., Lysak M.A., Mitchell-Olds T. (2006) The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends in plant science 11:535-542.
    Sensoz S., Angin D., Yorgun S. (2000) Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.):fuel properties of bio-oil. Biomass and Bioenergy 19:271-279.
    Sharma S.B., Dixon R.A. (2005) Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana. Plant J.44:62-75.
    Shikazono N., Yokota Y., Kitamura S., Suzuki C., Watanabe H., Tano S., Tanaka A. (2003) Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 163:1449-1455.
    Shirley B.W. (1998) Flavonoids in seeds and grains:physiological function, agronomic importance and the genetics of biosynthesis. Seed Science Research 8:415-422.
    Shirzadegan M. (1986) Inheritance of seed color in Brassica napus L., Z. Pflanzenzuecht 96:140-146.
    Shirzadegan M., Rbbelen G. (1985) Influence of Seed Color and Hull Proportion on Quality Properties of Seeds in Brassica napus L. Fette, Seifen, Anstrichmittel 87:235-237.
    Slocum M., Figdore S., Kennard W., Suzuki J., Osborn T. (1990) Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. TAG Theoretical and Applied Genetics 80:57-64.
    Slominski B.A., Campbell L.D., Guenter W. (1994) Carbohydrates and dietary fiber components of yellow- and brown-seeded canola. Journal of Agricultural and Food Chemistry 42:704-707.
    Smooker A., Wells R., Morgan C., Beaudoin F., Cho K., Fraser F., Bancroft I. (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. TAG Theoretical and Applied Genetics 122:1075-1090. DOI:10.1007/s00122-010-1512-5.
    Somers D.J., Rakow G., Prabhu V.K., Friesen K.R.D. (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 44:1077-1082.
    Stafford H.A. (1988) Proanthocyanidins and the lignin connection. Phytochemistry 27:1-6.
    Tang Z., Li J., Zhang X., Chen L., Wang R. (1997) Genetic variation of yellow(?)\seeded rapeseed lines (Brassica napus L.) from different genetic sources. Plant Breeding 116:471-474.
    Tanhuanpaa P., Vilkki J., Vilkki H. (1996) Mapping of a QTL for oleic acid concentration in spring turnip rape(Brassica rapa ssp. oleifera). TAG Theoretical and Applied Genetics 92:952-956.
    Theander O., Aman P., Miksche G.E., Yasuda S. (1977a) Carbohydrate polyphenols and lignin in seed hulls of different colours from turnip rapeseed. J Agric Food Chem 25:270-273.
    Theander O., Aman P., Miksche G.E., Yasuda S. (1977b) Carbohydrate polyphenols and lignin in seed hulls of different colours from tumip rapeseed. J Agric Food Chem 25:270-273.
    Thornsberry J.M., Goodman M.M., Doebley J., Kresovich S., Nielsen D., Buckler E.S. (2001) Dwarf8 polymorphisms associate with variation in flowering time. nature genetics 28:286-289.
    Town CD., Cheung F., Maiti R., Crabtree J., Haas B.J., Wortman J.R., Hine E.E., Althoff R., Arbogast T.S., Tallon L.J. (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. The Plant Cell Online 18:1348.
    Uzunova M., Ecke W., Weissleder K., R bbelen G. (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. TAG Theoretical and Applied Genetics 90:194-204.
    Van Deynze A., Landry B., Pauls K. (1995) The identification of restriction fragment length polymorphisms linked to seed colour genes in Brassica napus. Genome 38:534-542.
    Voorrips R. (2002) MapChart:software for the graphical presentation of linkage maps and QTLs. Journal of Heredity 93:77-78.
    Wan L., Xia Q., Qiu X., Selvaraj G. (2002) Early stages of seed development in Brassica napus: a seed coat-specific cysteine proteinase associated with programmed cell death of the inner integument. The Plant Journal 30:1-10.
    Wang H., Liu H.L. (1996) Quantitative variation of anthocyanidins, polyphenols, trans-cinnamic acid and PAL activity in seed hulls of black-and yellow-seeded B. napus. J. Huazhong. Agric. Univ.15:509-513.
    Wang S., Basten C., Zeng Z. (2006) Windows QTL Cartographer. Version 2.5 [computer program] Raleigh, NC:Department of Statistics. North Carolina State University,2006, http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
    Wei Y.L., Li J.N., Lu J., Tang Z.L., Pu D.C., Chai Y.R. (2007) Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Molecular biology reports 34:105-120.
    Whetten R.W., MacKay J.J., Sederoff R.R. (1998) Recent advances in understanding lignin biosynthesis. Annual Review of Plant Biology 49:585-609.
    Windsor J.B., Symonds V.V., Mendenhall J., Lloyd A.M. (2000) Arabidopsis seed coat development:morphological differentiation of the outer integument. The Plant Journal 22:483-493.
    Winkel-Shirley B. (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485.
    Winkel-Shirley B. (2002) Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology 5:218-223.
    Xiao D.R., Liu H.L. (1982) Correlation analysis of seed colour and seed oil in Brassica napus L. Acta Agron. Sin 8:24"C27.
    Xiao S.S., Xu J.S., Li Y., Zhang L., Shi S.J., sHI S.W., Wu J.S., Liu K.D. (2007) Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome 50:611-618.
    Xie D.Y., Sharma S.B., Paiva N.L., Ferreira D., Dixon R.A. (2003a) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396-399.
    Xie D.Y., Sharma S.B., Paiva N.L., Ferreira D., Dixon R.A. (2003b) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396.
    Xu B.B., Li J.N., Zhang X.K., Wang R., Xie L.L., Chai Y.R. (2007) Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from Brassica napus. Journal of plant physiology 164:350-363.
    Xu F., Wang Y., Meng J. (2001) Mapping boron efficiency gene (s) in Brassica napus using RFLP and AFLP markers. Plant Breeding 120:319-324.
    Yu J., Buckler E.S. (2006) Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology 17:155-160.
    Zhang Y., Li X., Ma C., Shen J., Chen B., Tu J., Fu T. (2009) The inheritance of seed color in a resynthesized Brassica napus line No.2127-17 including a new epistatic locus. Genes & Genomics 31:413-419.
    Zhang Y., Li X., Chen W., Yi B., Wen J., Shen J., Ma C., Chen B., Tu J., Fu T. (2011) Identification of two major QTL for yellow seed color in two crosses of resynthesized Brassica napus line No.2127-17. Molecular Breeding 28:335-342.
    Zhao J., Meng J. (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). TAG Theoretical and Applied Genetics 106:759-764.
    Zhao J., Dixon R.A. (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. The Plant Cell Online 21:2323-2340.
    陈碧云,伍晓明,许鲲,王汉中,李响枝.(2006)31份江苏省白菜型油菜遗传多样性的RAPD分析.中国油料作物学报28:67-71.
    陈俊意,刘娜,梁翰文.(2006)甘监型黄籽油菜种皮色素与抗氧化酶的关系.广西农业科学37:656-659.
    董翠月,万华方,梁颖.(2007)甘蓝型油菜种皮黄酮类色素种类的研究.西南师范大学学报:自然科学版32:97-101.
    董艳珍,李宇,胥婷,李关荣,李加纳.(2004)甘蓝型油菜黄籽基因RAPD标记的初步研究.西南农业大学学报26:529-531.
    段有德.(2004)甘蓝型黄籽油菜种皮色泽的主基因+多基因遗传研究,西南农业大学.
    傅廷栋.(2000)中国油菜生产和品种改良的现状与前景.安徽农学通报6:2-9.
    胡晓君.(1998)不同类型油菜品种种皮色泽与色素含量的关系的研究.华中农业大学学报13:44-45.
    贾继增.(1996)分子标记种质资源鉴定和分子标记育种.中国农业科学29:1-10.
    李崇辉,陈文艺.(1998)甘蓝型油菜黄籽分布与种皮颜色变化研究.西南农业大学学报20:256-259.
    李殿荣,田建华.(2000)甘蓝型油菜显性黄籽基因的发现和黄籽杂交种的选育.中国作物学会油料专业委员会第四次全国会员代表大会学术论文摘要:30—31.
    李加纳,张学昆.(1998)不同遗传背景的甘蓝型黄籽油菜籽色遗传初步研究.中国油料作物学报20:16-19.
    梁艳丽,梁颖,李加纳,谌利.(2002a)甘蓝型油菜黄籽与黑籽种皮多酚及PPO的比较.西南农业大学学报24:128-130.
    梁艳丽,梁颖,李加纳,谌利.(2002b)甘蓝型黄、黑籽油菜种皮特性比较研究.中国油料作物学报24:14-18.
    梁颖,李加纳.(2004)甘蓝型油菜种皮色泽形成与相关酶及蛋白质含量的关系.中国农业科学37:522-527.
    刘春林,官春云,李枸,阮颖,廖晓兰,熊兴华,周小云,王国槐,陈社员.(2000)油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报27:918-924.
    刘凡,王国英,曹鸣庆.(2003)农杆菌介导的植物原位转基因方法研究进展.分子植物育种1:108-115.
    刘后利.(1992)甘蓝型黄籽油菜的遗传研究.作物学报18:241-249.
    刘后利.(2000)油菜遗传育种学,北京:中国农业大学出版社.
    刘后利,傅廷栋,陈怀庆,易淑梅,熊双娥.(1979)甘蓝型黄籽油菜的发现及其遗传行为的初步研究.遗传学报6:54-54.
    刘列钊,栗茂腾,王灏,林呐,谌利,孟金陵,李加纳.(2004)利用mRNA差异显示技术寻找甘蓝型油菜黄籽基因.中国农业科学37:1772:1776.
    陆光远,杨光圣,傅廷栋.(2004)甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报31:1309-1315.
    马爱芬,李加纳,谌利,钱伟,付福友,刘列钊.(2008)甘蓝型油菜种皮色泽相关基因的cDNA-SRAP差异显示.作物学报34:526-529.
    马朝芝,傅廷栋,StineTuevesson, BoGertsson. (2003)用ISSR标记技术分析中国和瑞典甘蓝型油菜的遗传多样性.中国农业科学36:1403-1408.
    欧阳光察,薛应龙.(1988)植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯24:9-16.
    齐晓花,张明方.(2004)芸薹属作物分子连锁图及QTL研究进展.分子植物育种2:704-712.
    史仕军,吴江生.(2003)甘蓝型油菜黄籽粒色性状研究.华中农业大学学报22:608-612.
    王汉中,刘后利.(1996)甘蓝型油菜黄籽和黑籽皮壳中花色素,多酚,苯丙烯酸含量和PAL酶活性的变异.华中农业大学学报15:509-513.
    王晶,孟金陵.(2010)芸薹属作物基因组研究进展及其在育种中的意义.分子植物育种8:837-845.
    吴江生,刘后利.(1997)甘蓝型油菜显性黄籽种质的研究.华中农业大学学报16:26-28.
    叶小利,李学刚,李加纳.(2002)甘蓝型油菜种皮黑色素形成机理的研究.作物学报28:638-643.
    叶小利,李加纳,唐章林,梁颖,谌利.(2001)甘蓝型油菜种皮色泽及相关性状的研究.作物学报27:550-556.
    张永泰,李爱民,蒋金金,王娟,王幼平.(2011)新型黄籽甘蓝型油菜的获得及其遗传规律分析.中国油料作物学报33:302-306.
    周雷,胡广隆,李自超,游艾青.(2011)作物数量性状基因(QTL)克隆研究进展.中国农学通报27:210-215.
    周延清.(2000)遗传标记的发展.生物学通报35:17-18.
    朱莉,李汝刚,伍晓明,伍宁丰,范云六,钱秀珍.(1998)我国部分白菜型油菜RAPD的研究.生物多样性6:99-104.
    邹智,卢长明.(2009)整株转化法及其在油菜上的应用与展望.植物学报44:236-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700