可重构机床设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可重构制造系统的独特性在于其系统、机床和控制结构都能快速、经济地转换,以响应市场/客户需求的变化。可重构机床及其系统的设计方法学是构建可重构制造系统的基石。可重构机床设计不仅是对特定任务配置现有机床模块,而是设计一种能阐释可重构科学理念的新型机床。本文结合浙江省自然科学基金资助项目——“可重构制造设备和单元的基础和技术研究”(编号:598042),对可重构机床的设计理论与方法进行了系统的研究,为可重构机床理论体系的建立、实际应用和发展创造条件,为制造企业成功实施可重构制造系统提供坚实的理论和方法上的指导。
     在分析传统机床的需求发展、设计演变和存在问题的基础上,结合制造业的未来发展趋势,阐述了可重构机床设计面临的挑战和需求。结合国内外有关可重构机床设计研究的现状和不足,提出了本文研究的出发点、目标和意义,并给出了本文的主要研究内容。
     针对建立系统的可重构机床理论体系,阐述了可重构机床概念的定义和内涵,从可重构角度出发,建立了机床成本模型并揭示了可重构机床的本质特性。分析结果表明:可重构机床不是传统机床的替代品,而是在新的环境下对传统机床的一种有效的补充。从实现机床的可重构和定制化角度出发,阐释了可重构机床的基本原理和特性,提出了一种基于工艺规划和配置生成并行的可重构机床设计方法学,深入地分析了设计方法学的体系结构和实现过程步骤,为本文的后继研究奠定了科学基础。
     面向工序族设计是可重构机床设计的本质特征,为此研究了对整个零件族的工序需求划分和识别同一可重构机床需完成的工序族的问题。给出了基于位置公差、并行加工的单一零件工序的组合原则和条件,并着重对基于并行加工的工序组合中相似空间模式工序组合的识别问题进行了探讨,给山了该模式识别问题的数学模型、分类和算法。提出了单一零件工序组合之间的相似性判定准则,和利用改进的k-平均(k-模式)算法解决整个零件族的多零件工序组合问题的方法。提出了基于模糊聚类分析的工序组合(包括单一零件和多零件)的合并方法,以确定同一可重构机床需完成的一系列加工工序——工序族(由于这一系列加工工序来自于零件族的不同零件,故称为工序族),并采用基于规则的方法对工序族的所有工序进行了排序,以保证所设计的可重构机床可行。
     针对实现可重构机床的定制化柔性,提出了一种基丁旋量和图的可重构机床机械系统的模块化设计方法。在该方法中,利用旋量方法建立了可重构机床基本功能和机床模块的运动学模型,通过比较二者的运动旋量并利用机床模块库,将可重构机床所需的每个功能(运动和结构)映射为模块库中的一系列机床模块或模块的组合(也称构件块);利用图论设计了可重构机床的功能结构和定义了机床模块的可连结性,并给出了生成满足工序需求变化的可重构机床配置及重构配置(图)的方法。为了实现可重构机床的在线重构和最大化地利用机床资源,给出了一种利用旋量方法来建立机床的重构需求模型,进而设计可重
The uniqueness of the Reconfigurable Manufacturing System (RMS) is that the structure of the system as well as its machines and controls can be rapidly and cost-effectively converted in response to the demand changes of market/custom. Reconfigurable Machine Tool (RMT) and its systemic design methodology are the cornerstones of RMS. The design of RMT is not just configuring the existing modules for a specific task, but rather a design of a new type of machine, which can illustrate the ideas of reconfiguration science. With financially supported by the Provincial Natural Science Foundation of Zhejiang province (NO: 598042), the theory and method for RMT design are systematically studied in this dissertation. The thesis aims to create the conditions for building the systematic theory of RMT, implementing and developing, as well as provide theoretical and methodological guidance for implementing RMS successfully. Based on the analysis of the requirement developments, design evolvements, and existent questions of the conventional machines, the challenges and requirements of RMT design are discussed. The research status and lacks of RMT design are analyzed in the detail. Based on it, the origin, objective and significance of the research in this dissertation are presented, as well as the main research contents. In allusion to establish the systematic architecture of RMT theory, the definition and intension of the RMT concept are expounded. In the view of the reconfiguration, the cost model of machine is established, and the essence of RMT is revealed. In the view of realizing the reconfiguration and customized flexibility & control of RMT, the basic principles and characteristics of RMT are discussed, and a RMT design methodology based concurrency of process planning and machine configuration building is proposed, as well as the architecture and steps of the design methodology. All of above established the scientific base for the subsequent research of this dissertation. As designing for an operation family is the essence of RMT design, so the method for identifying the operation family from the operation demands of part family is proposed, and the operation family must be machined on the same RMT. The tolerance-based and concurrency-based clustering principles and conditions for single part are given, and the pattern recognition issue for the similar special operation clustering in the concurrency-based clustering is discussed, and the mathematic model, category, and algorithm of the pattern recognition are proposed. The similarity measure between the single part operation clustering is presented, and the problem of multi-part operation clustering using modified k-means (k-modes) algorithm is studied. A method for grouping
    the operation clustering (include single part and multi-parts) based on the fuzzy clustering analysis is given, so the set of operations required on the same RMT is decided, that is called operation family (because the set of operations are grouped from different parts in a part family). Using the rule-based method, the sequence of the operation clustering and the operation sequence in each operation clustering are obtained, thereby the feasibility of RMT designed is ensured.Aim at to realize the customized flexibility of RMT, a modular design method for mechanical system of RMT which based on the screw and graph is presented. Within this method, the kinematics modeling of RMT basic functions and machine tool modules are established using screw method. By comparing the twist between them, each function (kinetic and structure) is then mapped to a feasible set of modules (or named building block) in the module library. Using the graph theory, a set of feasible structural configurations of the RMT is designed, as well as the connectivity of each machine module is defined. A method for generating a series alternative RMT configuration and reconfiguration (graph) met the operation requirements is given. In order to realize the reconfiguration online of RMT and maximumly use the machine resources, a design method for reconfigurable machine module is developed using screw method. Employing such machine module, the functionality of an RMT can be changed without replacing modules.In order to realize the objective that synchronously reconfigure the control and machine of RMT, a modular design method for RMT controller is proposed. Within this method, both the entire controller and its individual control module are acted as a set consisting of a Finite State Machine (FSM) and input & output event set pairs, and each pair of input & output event set was defined as a port of the control module, and the input event set on a given port formed the port acceptable Language. Thus, when the mechanical modules are assembled, the control modules will be connected using port Language, and the entire controller is created or reconfigured. The definitions of control module with FSM and module combination are given. A design and construction principles of modular controller are proposed, and the principles correctness are proved. Once the control modules are properly designed and connected, the resulting controller is guaranteed to be controllable. When the demand is changed, the control module can be reused by redefining the port language without change the controllability.In order to minimize the redundancy capacity and functionality of machine, a configuration design method for configuration path of RMT in the early stage of configuration design is proposed, which is designed for changing requires scenario. By evaluating the configuration economics and reconfigurability over the lifetime of RMT, the method
引文
[1] Mehrabi, M. G., Ulsoy. A. G., Y. koren. Reconfigurable Manufacturing Systems: Key to Future Manufacturing. Journal of Intelligent Manufacturing, 2000, (11): 403-409
    [2] Yong-Mo Moon, Sridhar Kota. Generalized Kinematic Modeling Method for Reconfigurable Machine Tools. Proceeding of DETC'98, 1998 ASME Design Engineering Technical Conferences, 1998, Atlanta, Georgia, USA, September: 13-16
    [3] Chito shiu, Michael J. Washburn, etc. Specifying Reconfigurable Control Flow for Open Architecture Controllers. Proceedings of 1998 Japan-USA Symposium on Flexible Automation, Otsu, Japan, July, 1998 (2): 659-666
    [4] Yong-Mo Moon, Sridhar Kota. Design of Reconfigurable Machine Tools. ASME Journal of Manufacturing Systems, 1999:218-221
    [5] Dhrubajyoti Kalita, Pramod P. Khargonekar. Formal Verification for Analysis and Design of Reconfigurable Controllers for Manufacturing Systems. Proceedings of the American Control Conference, Chicago, June, 2000:3533-3539
    [6] Eric W. Endsley, Morrison R. Lucas, Dawn M. Tilbury. Software Tools for Verification of Modular FSM Based Logic Control for Use in Reconfigurable Machining Systems. 2000 Japan-USA Symposium on Flexible Automation, Ann arbor, Michigan, USA, 2000, July: 23-26
    [7] Benhabin, B., Zak, B., and Lipton, M. G. A Generalized Kinematic Modeling Method for Modular Robots. Journal of Robotic Systems, 1989 (6): 545-547
    [8] Kota, S., Chiou, J. Conceptual Design of Mechanisms Based on Computational Synthesis and Simulation of Kinematic Building Blocks. Journal of Research in Engineering Design, 1992 (25), 3:75-87
    [9] Yong-Mo Moon. Reconfigurable Machine Tool Design: Theory and Application. Ph. D. Dissertation, the University of Michigan, 2000
    [10] Hong Li, Robert Landers, Sridhar Kota. A Review of Feasible Joining Methods for Reconfigurable Machine Tool Components 2000 Japan-USA Symposium on Flexible Automation, Ann Arbor, Michigan, July: 23-26
    [11] Lucas M. R., Endley E. W., Tilbury D. M. Coordinated Logic Control for Reconfigurable Machine Tools. American Control Conference, San Diego, CA, 1999:2107-2114
    [12] Park E., Tilbury D. M., and Khargonekar P. P. A Formal Implementation of Logic Controllers for Machining Systems Using Petri Nets and Sequential Function Charts. Japan-USA Symposium on Flexible Automation, Otsu, Japan, 1998:683-690
    [13] Ramadge P. J. G., Wonham W. M. The Control of Discrete Event Systems. Proceedings of the IEEE, 1989 (1): 81-98
    [14] Koren, Y., Heisel, U. Etc. Reconfigurable Manufacturing Systems. Annals of the CIRP, 1999, (48/2):527-540
    [15] Shige W., Kang G. S. Architecture for Embedded Software Integration Using Reusable Components. Proceedings of CASES 2000, November, 2000:110-118
    [16] Robert G. L. A New Paradigm in Machine Tools: Reconfigurable Machine Tools. 2000 Japan-USA Symposium on Flexible Automation, Ann Arbor, Michigan, USA, 7:23-26
    [17] Tilbury D. M., Kota, S. Integrated Machine and Control Design for Reconfigurable Machine Tools. Proceedings of the IEEE/ASME Conference on Advanced Intelligent Mechatronics, Atlanta, 1999:629-634
    [18] Koren, Y., Ulsoy, A. G., Landers, R. G., Mehrabi, M., Pasek, A., Yip-Hoi, D. NSF Engineering Research Center for Reconfigurable Machining Systems. Proc. 2001 NSF Design, Manufacturing and Industrial Innovation Research Conference, 2001
    [19] Degaspari, J. All In The Family: Flexible Machining Systems Give Manufacturers A Hedge On Their Bets. Mechanical Engineering Magazine, 2002 (124) 2:56-58
    [20] Chen, F. -C., Yah, H. -S. Configuration Synthesis Of Machining Centres With Tool Change Mechanisms. International Journal of Machine Tools and Manufacture, 1999, 39 (2): 273-295
    [21] Mehrabi, M. G., Ulsoy, A. G., Koren, Y. Reconfigurable Manufacturing System and Their Enabling Technologies. International J. Of Manufacturing Technology and Management, 2000 (1)1:113-130
    [22] Ling, C., Yip-Hoi, D., Koren, Y. Operation Clustering In Process Planning For Reconfigurable Machining System Design", Proceedings Of The 2000 Japan-USA Symposium On Flexible Automation (2000 JUSFA), International Conference On Manufacturing Systems: Innovations For The 21th Century, Ann Arbor, MI, USA., 2000, 7:23-26
    [23] Birla, S. K., Shin, K. G. Reconfiguration Requirements for Software to Control Automotive Manufacturing Machine Tools. Japan-U. S. A. Symposium on Flexible Automation, 1998:643-650
    [24] Brusher, G. A., Kabamba, P. T., Ulsoy, A. G. Coupling between the Modeling and Controller-Design Problems-Part Ⅰ: Analysis. Transactions of the ASME, 1997 (119): 498-502.
    [25] Brusher, G. A., Kabamba, P. T., Ulsoy, A. G. Coupling between the Modeling and Controller-Design Problems-Part Ⅱ: Design. Transactions of the ASME, 1997 (199): 278-283
    [26] Chert, B. -C., Tilbury, D. M., Ulsoy, A. G. Modular Control for Machine Tools: Cross-Coupling Control with Friction Compensation. Proceedings of the ASME-IMECE Dynamic Systems and Control Division, Anaheim, California, 1998 (64): 455-462
    [27] Koren, Y., Pasek, Z. J., Ulsoy, A. G., Benchetrit, U. Real-Time Open Control Architectures and System Performance. Annals of the CIRP, 1996 (45): 377-380
    [28] Landers, R. G., Ulsoy, A. G. Supervisory Control of a Face Milling Operation in Different Manufacturing Environments. Transactions on Control, Automation and Systems Engineering, 2001(3)1:1-9
    [29] Landers, R. G., Ulsoy, A. G. Supervisory Machining Control: Design, Approach, and Experiments. CIRP Annals, 1998 (47) 1
    [30] Lian, F. -L., Moyne, J. R., Tilbury, D. M. Control Performance Study of a Networked Machining Cell. Proceedings of the American Control Conference, Chicago, 2000:2337-2341.
    [31] Moon, Y. -M., Kota, S. Synthesis of Reconfigurable Machine Tool with Screw Theory," ASME/DETC Mechanism Design and Robotics Conference, Baltimore, 2000, MECH-14066
    [32] Park, J., Pasek, Z.J., Shan, Y., Koren, Y., Shin, K.G., Ulsoy, A.G. An Open-Architecture Real-Time Controller for Machining Processes. Manufacturing Systems, 1996 (25)1: 23-27
    [33] Park, E., Tilbury, D.M., Khargonekar, P.P. Performance Analysis of Machining Systems with Modular Logic Controllers. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, 1999:137-144
    [34] Shiu, C, Washburn, M.J., Wang, S., Ravishankar, C.V., Shin, K.G. Specifying Reconfigurable Control Flow for Open Architecture Controllers. Japan-USA Symposium, 2000: 659-666
    [35] Copyara, M., Soparkar, N., Yook, J., Tilbury, D. Real-Time Data And Coordination Control For Reconfigurable Manufacturing Systems. A. Bestarros and V. Fay-Wolfe, Eds., Real-Time Database and Information Systems: Research Advances, 1997: 23-48
    [36] Ulsoy, A. G. Dynamic Modeling and Control of Machining Processes. Nonlinear Dynamics of Material Processing and Manufacturing, NY, 1998: 33-35
    [37] Yigit, A.S., Ulsoy, A.G. Dynamic Stiffness Evaluation for Reconfigurable Machine Tools Including Weakly Nonlinear Joint Characteristics. Proc. IME, Part B: Journal of Engineering Manufacture, 2002 (216) B1: 87-101
    [38] Yook, J., Tilbury, D., Chervela, K., Soparkar, N. Decentralized, Modular Real- Time Control for Machining Applications. Proceedings of the American Control Conference, 1998: 844-849
    [39] Yook, J.K., Tilbury, D.M., Soparkar, N.R. A Design Methodology For Distributed Control Systems To Optimize Performance In The Presence Of Time Delays. International Journal of Control, 2001(74)1: 58-76
    [40] Aronson, R.B. Operation Plug-And-Play Is On The Way. Manufacturing Engineering, 1997:108-112
    [41] National Research Concil (NRC). Visionary Manufacturing Challenges for 2020, National Academy Press, Washington, D.C. 1998
    [42] Rogers, G.G., Bottaci, L. Modular Production Systems: A New Manufacturing Paradigm. Journal of Intelligent Manufacturing, 1997(8): 147-156
    [43] Wright, P.K. Principle of Open-Architecture Manufacturing. Journal of Manufacturing Systems, 1995 (14) 3: 187-202
    [44] Mostafa G.M., Ulsoy A.G., Yoram Koren Reconfigurable Manufacturing Systems and Their Enabling Technologies. International Journal of Manufacturing Technology and Management, 2000 (1)1: 113-130
    [45] Lee, G.H. Reconfigurability Consideration Design of Components and Manufacturing Systems. International Journal of Advanced Manufacturing Technology, 1997 (13)5: 376-386
    [46] Altintas, Y. Munasinghe, W.K. A Hierarchical Open-Architecture CNC System for Machine Tools. Annals of the CIRP, 1994 (43)1: 349-354
    [47] Altintas, Y. Munasinghe, W.K. Modular CNC Design for Intelligent Machining Part1: Design of a Hierarchical Motion Control Module for CNC System Machine Tools. ASME Journal of Manufacturing Science and Engineering, 1996 (118)3: 514-521
    [48] Kota, S. Chiou, S. J. Conceptual Design of Mechanisms Based In Computational Synthesis of Kinematic Building Blocks. Journal of Research in Engineering Design, 1994 (4): 75-87
    [49] Nits K., Herbert B. Development of Modular Structures: The Prerequisite for Successful Modular Products, Journal of Engineering Design, 1996 (7)3:279-291
    [50] Lee, H. S. Eckehard, F. M., Yoshimi I. Functional Description of Machine Tools and Its Application to Marketability Analyses, Journal of Engineering Design, 1996 (7) 1: 83-94
    [51] Landers, R. G., Min, B. -K., Koren, Y. Reconfigurable Machine Tools. Annals of the CIRP 2001 (50)1: 269-274
    [52] Koren, Y., Kota, S. Reconfigurable Machine Tools. U. S. 1999, Patent 5943750
    [53] Zatarain, M., Lejardi, E., Egana, F. Modular Synthesis of Machine Tools. Annals of the CIRP, 1998 (47)1: 333-336
    [54] Prischow, G., Daniel, C. H. Etc. Open Systems Controllers-A Challenge For The Future Of The Machine Tool Industry. Annals of the CIRP, 1993 (42)1:449-452
    [55] Prischow, G. Etc. Open Architecture Controller. Annals of the CIRP, 2001 (50)2
    [56] 邹慧君,梁庆华,郭为忠等.功能——运动行为——结构的概念设计模型及运动行为的多层表示.机械设计,2000(8):1-4
    [57] 高广达,徐燕申,林汉元.产品模块化设计中的模块选择算法.机械设计,2000(8):5-7
    [58] 盛伯浩,罗振璧,赵宏林等.快速重组制造系统(RRMS)——新一代制造系统的原理及应用.制造技术与机床,2001(8):37-44
    [59] Shyam, R., Derek, Y. -H., Debasish, D. Part and Workpiece Reconfiguability for Reconfigurable Machining Systems. Proceedings of the ASME, 1998 (8): 21-29
    [60] Huang, C. -C., Kusiak, A. Modularity in Design of Product and Systems. IEEE Transnactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 1998 (28)1:66-77
    [61] 梁庆华,邹慧君,何有钧.基于功能构件的机械产品概念设计过程建模方法.机械设计与研究,1999(4):14-16
    [62] 应济,李剑敏,谭孟恩.产品功能相似性分析方法.工程设计,1999(4):5-8
    [63] Yang, C., Chen, I. -M. Task-Based Optimization Of Modular Robot Configurations: Minimized Degree-Of-Freedom Approach. Mechanism and Machine Theory, 2000 (35): 517-540
    [64] Rao, S. B. Metal Cutting Machine Tool Design-A Review. Journal of Manufacturing Science and Engineering, 1997 (119): 713-716
    [65] Chert, I. -M., Burdick, J. W. Enumerating the Non-Isomorphic Assembly Configurations of Modular Robotic Systems. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993 (7): 26-30
    [66] Huang, C. -C. Overview of Modular Product Development. Proceedings of the National Science Conference, 2000 (24)3:149-165
    [67] Gandhi, M. V. Automated Design of Modular Fixtures for Flexible Manufacturing System. Journal of Manufacturing Systems, (5)4:243-251
    [68] 张伯鹏,孟威,赵大泉等.新型可重组机器人化机床的研究开发.中国机械工程,2000(11)2:168-172
    [69] Venkat G. K., Shidhar, K. A Parallely Actuated Work Support Module for Reconfigurable Machining Systems. Proceedings of DETC'98, Atlanta, Georgia, 1998, 9:13-16
    [70] 罗振璧,盛伯浩,赵晓波等.快速重组制造系统.中国机械工程,2000(11)3:300-303
    [71] 罗振璧编译.新一代工程技术:基于可重组性的设计.制造业设计技术,2000(4):22-25
    [72] Http://Erc.Engin.Umich.Edu
    [73] Chen, I-M. Rapid Response Manufacturing Through a Rapidly Reconfigurable Robotic Workcell. Robotics and Computer Integrated Manufacturing, 2001 (17): 199-213
    [74] 肖田元,乔桂秀,韩向利.汽车制造业大批量定制实施策略及关键技术.计算机集成制造系统,2001(7)9:1-7
    [75] Son, S. -Y. Design Principles and Methodologies for Reconfigurahle Machining Systems. Ph. D. Dissertation, the University Of Michigan, 2000
    [76] Shah, S. S., Endsley, E. W., Lucas, M. R. Reconfigurable Logic Control Using Modular Fsms: Design, Verification, Implementation, and Integrated Error Handling. Proceedings of the American Control Conference, Anchorage, AK, 2002 (5): 8-10
    [77] 游有鹏,张晓峰,王珉.可重构机床的模块化设计.机械科学与技术,2001(20)6:815-818
    [78] Dusan, N. S., Behrokh, K. Process Sequencing And Process Clustering In Process Planning Using State Space Search. Journal of Intelligent Manufacturing, 1996 (7): 189-200
    [79] Richard E. B., Bopaya, B., David T. A Genetic Cluster Algorithm for the Machine-Component Grouping Problem. Journal of Intelligent Manufacturing, 1996 (7): 229-241
    [80] 张伯鹏,汪劲松.制造系统中状态聚类、系统复杂性测度、组织与重组织.机械工程学报,1994(30)6:10-15
    [81] 张伯鹏,汪劲松,郑力等.机械制造中的并行工程.中国机械工程,1993(4)6:
    [82] 李迎.面向敏捷制造的虚拟轴机床可重组研究.组合机床与自动化加工技术,2001(12):7-13
    [83] 李晔,王宇晗,胡俊.小型可重组数控机床的设计.制造技术与机床,2002(5):25-27
    [84] 付宜利,石旭东,何霆等.基于遗传算法的制造单元重组技术研究.计算机工程与设计,2002(23)4:1-4
    [85] 江魁多.现代机床技术与我国机床工业的发展方向.制造技术与机床,1999(8):5-7
    [86] Shinno, H., Ito, Y. Computer Aided Concept Design for Structural Configuration of Machine Tools: Variant Design Using Directed Graph. Transactions of the ASME, 1987 (109)9: 372-376
    [87] Ito, Y., Shinno, H. Structural Description of Machine Tools (1st Report). Bulletin of the JSME, 1981 (24)187:251-258
    [88] Shinno, H., Ito, Y. Structural Description of Machine Tools (2st Report). Bulletin of the JSME, 1981 (24)187:259-265
    [89] Giusti, F., Santuchi, M., Dini, G. A Reconfigurable Assembly Cell for Mechanical Products. Annals of the CIRP, 1994 (43)1:1-4
    [90] Yotaro, H. Takaaki, N. Mamoru, M. Actual Conceptual Design Process For an Intelligent Machining Center. Annals of the CIRP, 1995 (44)1:123-128
    [91] 徐志刚.基于广义映射原理的组合夹具结构设计自动化.工程设计,2000(1):31-36
    [92] 张晓峰,李桥梁,朱剑英.虚拟可重构机床模块数据库的建立与管理.
    [93] 张冠伟,徐燕申,高广达.基于实例推理的机床模块概念设计系统.机械设计,2000(5):29-31
    [94] 何建美.工艺方案对专机设计的作用.组合机床与自动化加工技术,1992(2):15-16
    [95] Michael S.著,张立昂,王捍贫等译.计算理论导引.机械工业出版社,北京:2000,2
    [96] 郑焕文,王宛山编.机械制造工艺学.东北工学院出版社,沈阳:1988
    [97] 丁年雄主编.机械加工工艺辞典.学苑出版社,北京:1988
    [98] 谢忠佑,洪志贤,张文奖编著.Solidworks 2000中文版实作范例.北京大学出版社,北京:2001
    [99] 魏国华,傅家良,周仲良编著.实用运筹学.复旦大学出版社,上海:1987
    [100] 薛毅编著.最优化原理与方法.北京工业大学出版社,北京:2001
    [101] 焦振学主编.先进制造技术.北京理工大学出版社.北京:1997
    [102] 谢季坚,刘承平.模糊数学方法及其应用.华中理工大学出版社,武汉:2000
    [103] 唐梓荣,陆翠英,张常有.机械加工基础.北京航空航天大学出版社,北京:1991
    [104] 廖效果,朱启逑主编.数字控制机床.华中理工大学出版社,武汉:1992
    [105] 肖位枢主编.图论及其算法.航空工业出版社,北京:1993
    [106] 哈尔滨工业大学,上海工业大学主编.轴、箱体、丝杠加工.上海科学技术出版社,上海:1988
    [107] 成组技术.超星图书馆,Http://Www.Ssreader.Com
    [108] 计算机辅助工艺设计——CAPP.超星图书馆,Http://Www.Ssreader.Com
    [109] 可编程控制器原理与应用.超星图书馆,Http://Www.Ssreader.Com
    [110] 模式识别理论、方法和应用.超星图书馆,Http://Www.Ssreader.Com
    [111] 汽车制造工艺学.超星图书馆,Http://Www.Ssreader.Com
    [112] 拓扑学在苏联.超星图书馆,Http://Www.Ssreader.Com
    [113] 遗传算法——理论、应用与软件实现.超星图书馆,Http://Www.Ssreader.Com
    [114] 组合机床设计.超星图书馆,Http://Www.Ssreader.Com
    [115] Marti, M. Representation Of Process Planning Knowledge For Part Families. Annals of the CIRP, 1993 (42)1:561-564
    [116] Sunderesh, S. H. Group Technology and Cellular Manufacturing. IEEE Transactions on Systems, Man, and Cybernetics, 1994 (24)2:203-214
    [117] 唐寅,易红.可重构生产系统.制造业自动化.2000(22)5:4-6
    [118] 王东,庞川,张宏群.制造单元的可重配置技术与可重配置制造.机械工程师,1999(8):1-2
    [119] 罗振璧等.未来的制造和过程工程.制造业设计技术,2000(1):7-9
    [120] Koren, Y., Hu, S. J. Thomas, W. W. Impact of Manufacturing System Configuration on Performance. Annals of the CIRP, 1998 (47)1:369-372
    [121] Tolio, T., Matta, A. A Method for Performance Evaluation of Automated Flow Lines. Annals of the CIRP, 1998 (47)1:373-376
    [122] Paredis, C. J. J., Brown H. B. A Rapidly Deployable Manipulator System. Proceedings of the 1996 IEEE International Conference on Robotics and Automation. Minneapolis, Minnesota, 1996, 4:1434-1439
    [123] Owen, S., Bonney M. C., Denford, A. A Modular Reconfigurable Approach to the Creation of Flexible Manufacturing Cells for Educational Purpose. IEE, Savoy Place, London WC2R OBL, UK, 1995:1-13
    [124] Sun. J., Zhang Y. F. Agent-Based Product Design And Planning For Distributed Concurrent Engineering. Proceedings of the 2000 IEEE International Conference on Robot & Automation, San Francisco, CA, 2000 (4): 3101-3106
    [125] 吴锡英.论相似性思维与技术创新.制造业自动化,2000(22)5:1-3
    [126] Candadai, A., Herrnann, J. W., Minis, I. Applications Of Group Technology In Distributed Manufacturing. Journat of Intelligent Manufacturing, 1996 (7): 271-291
    [127] Eusiu, P., Tilbury, D. W. Performance Analysis Of Machining Systems With Modular Logic Controllers. Proceedings of the 1999 IEEE International Conference on Robotics & Automation. Detroit, Michigan, 1999 (5): 137-144
    [128] Wang, S., Ravishankar, C. V. Open Architecture Controller Software for Integration of Machine Tool Monitoring, Proceedings of the 1999 IEEE International Conference on Robotics & Automation. Detroit, Michigan, 1999 (5): 1152-1157
    [129] 刘小鹏,张卫国,钟毅芳.机床模块化设计中的模块创建及应用.华中理工大学学报,2000(28)5:16-17
    [130] 童时钟.模块化概念的由来及发展.机械制造与自动化,1993(4):17-19
    [131] 童时钟.模块化的目的和对象.机械制造与自动化,1993(5):19-21
    [132] 吴锡英.机械制造相似工程.中国机械工程,1997(8)4:104-105
    [133] 遇立基.数控机床模块化设计.制造业设计技术,2000(4):5-7
    [134] Samuel, A. E., Mcaree, P. R., Hunt, K. H. Unifying Screw Geometry And Matrix Transformations. The International Journal of Robotics Research, 1991 (10)5:454-472
    [135] Ratchev, S. M. Hitendra, H. Concurrent Requirement Specification for Conceptual Design of Modular Assembly Cells. Proceedings Of The 4th IEEE International Symposium On Assembly And Task Planning Soft Research Park, Fukuoka, Japan, 2001 (5): 79-84
    [136] Jeffrey, D. A. Application of Screw Theory to Constraint Analysis of Assembles Of Rigid Parts. Proceedings Of The 1999 IEEE International Symposium On Assembly And Task Planning Soft Research Park, Porto, Portogal, 1999 (7): 69-74
    [137] Yang, G, Chen, I. -M. A Novel Kinematic Calibration Algorithm for Reconfigurable Robotic Systems. Proceedings of the 1997 IEEE International Conference on Robotic and Automation, Albuquerque, New Mexico, 1997, 4:3197-3202
    [138] Chen, F. -C., Yan, H. -S. Configuration Synthesis Of Machining Centres With Tool Change Mechanisms. International Journal of Machine Tools & Manufacture, 1999 (39): 273-295
    [139] Kott, A., Agin, G., Fawcett, and D. Configuration Tree Solver: A Technology for Automated Design and Configuration. Journal of Mechanical Design, 1992 (114) 187-195
    [140] Chou, Y. -C., Chandru, V., Barash, M. M. A Mathematical Approach To Automation Configuration Of Machining Fixtures: Analysis And Synthesis. Journal of Engineering for Industry, 1989 (111) 11: 299-306
    [141] Jozef, W. Graph Representation of Mechanical Systems. Mech. Mach. Theory, 1995 (30)7:1099-1112
    [142] Perti, M., Persson, J. -G, Configuration and Dimensional Synthesis in Mechanical Design: An Application for Planar Mechanisms. Annals of the CIRP, 1994 (43)1:145-148
    [143] 李如松.组合机床和自动线的技术发展.组合机床与自动化加工技术,1999(1):5-10
    [144] 李如松.组合机床和自动线的技术发展.组合机床与自动化加工技术,1999(2):28-34
    [145] 佟璞玮.浅谈组合机床设计思想的变革.组合机床与自动化加工技术,1992(2):39-41
    [146] 潘滨,韩松.如何正确理解与选定组合机床的柔性.组合机床与自动化加工技术,1999(12):1-4
    [147] 张根保.可重构机床及其关键技术.世界制造技术与装备市场,2002(58):33-35
    [148] Fumiki, T., Takeshi, K. Geometrical Characteristics Of Machined Shape For Computer Aided Operation Planning. Journal of Materials Proceeding Technology, 1998 (76): 109-114
    [149] Baker, R. P., Maropoulos, P. G. An Automatic Clustering Algorithm Suitable For Use by a Computer-Based Tool for the Design, Management and Continuous Improvement of Cellular Manufacturing Systems. Computer Integrated Manufacturing Systems, 1997 (10)3:217-230
    [150] Dusan, N. S. Modeling Of Manufacturing Feature Interactions For Automated Process Planning. Journal of Manufacturing Systems, 2000 (19) 1: 28-45
    [151] Euisu, P., Dwan, M. T., Pramod, P. K. A Modeling and Analysis Methodology for Modular Logic Controllers of Machining Systems with Auto, Hand, and Manual Control Modes. Proceedings of the American Control Conference, Chicago, Illinois, 2000, 6:3158-3164
    [152] Luc, B., Laszlo, M. Etc. Hierarchy In Distributed Shop Floor Control. Computers in Industry, 2000 (43): 123-137
    [153] 赵天奇,陈禹六,李培根.柔性制造工作站控制模型及控制逻辑的自动生成研究.计算机集成制造系统,2000(6)3:41-48
    [154] Oldlnow, KD., Yellowley, I. Design Implementation and Validation of A System for the Dynamic Reconfiguration of Open Architecture Machine Tool Controls. International Journal of Machine Tools & Manufacture, 2001 (41): 795-808
    [155] Wang, S., Kang, G. S. Reconfigurable Software For Open Architecture Controllers. Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, 2001, 5:4090-4095
    [156] Storoshchuk, O. Wang, S., Shin, G. Modeling Manufacturing Control Software. Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, 2001, 5:4072-4077
    [157] Fummi, F., Sciuto, D. A Complete Testing Strategy Based On Interacting and Hierarchical Fsms. Inregation, the VLSI Journal, 1997 (23): 75-93
    [158] Huang, C. -C. Overview of Modular Product Development. Proc. Natl. Sci. Counc. ROC (A), 2000 (24)3: 149-165
    [159] Masahiro, E, Hiroaki, K., Koji, K. A Reconfigurable Robot Platform, Robotics and Autonomous Systems, 1999 (29): 119-132
    [160] Moon, S. -K Etc. Screw Theory Based Metrology for Design and Error Compensation of Machine Tools. DETC 2001/DAC-21083:1-11
    [161] Eiichi, Y., Satoshim M. Etc. A Distributed Reconfiguration Method for 3-D Homogeneous Structure. Proceedings of the 1998 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Victoria, B. C., Canada, 1998, 10:852-859
    [162] Wu, B. -C., Young, G. S., Huang, T-Y. International Journal of Machine Tools & Manufacture, 2000 (40): 783-794
    [163] Chen, I. -M., Burdick, J. W. Determining Task Optimal Modular Robot Assembly Configurations. IEEE International Conference on Robotics and Automation, 1995, 132-137
    [164] Yoshida, E., Murata, S. Kamimura, A. Reconfiguration Planning For A Self-Assembling Modular Robot. Proceedings Of The 4th IEEE International Symposium On Assembly And Task Planning Soft Research Park, Fukuoka, Japan, 2001 (5): 276-281
    [165] Castano, A., Will, P. Mechanical Design Of A Module For Reconfigurable Robots. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000:2203-2209
    [166] 王成恩.制造系统的可重构性.计算机集成制造系统,2000(6)4:1-5
    [167] Al-Hakim, L., Kusiak, A., Mathew, J. A Graph-Theoretic Approach to Concept Design with Functional Perspectives. Computer-Aided Design, 2000 (32): 867-875
    [168] Tseng, M. T., Jiao, J. A Module Identification Approach to the Electrical Design of Electronic Products by Clustering Analysis of the Design Matrix. Computer Industry Engineering, 1997 (33) 1-2:229-233
    [169] 蔡建国.成组技术与我国机械制造工业的重组.工业工程与管理,1998(4):3-9
    [170] 裘皇.成组技术与相似性系数.自动化学报,1999(25)2:275-278
    [171] 谢小平,席俊国,申茹.基于GT的模块化产品设计.工业工程与管理,2000(2):45-48
    [172] 张明杰,朱靖波,张跃等.基于相似性评估的近似实例求解策略.东北大学学报,1999(20)5:482-485
    [173] 周祖德,魏仁选,陈幼平.开放式控制系统的现状、趋势与对策.中国机械工程,1999(10)10:1090-1093
    [174] 徐燕申,齐尔麦,高广达等.模块化加工中心基型结构的概念设计模型研究.机床设计研究与经营管理新技术研讨会论文集:180-184
    [175] 姜惠,徐燕申,谢燕等.机械产品模块化设计总体规划方法的研究.机械设计,1999(12)12:1-2
    [176] 徐燕申,候亮,张连洪等.液压机广义模块化设计原理及其应用.机械设计,2001(7)7:1-3
    [177] Shirinzadeh, B. A CAD-Based Hierarchical Approach to Interference Detection among Fixture Modules in a Reconfigurable Fixture System. Robotics and Computer-Integrated Manufacturing, 1996 (12)1:41-53
    [178] Hollis, R. H., Quaid, A. Architecture for Agile Assembly. Proc. Am. Soc. Of Precision Engineering, Austin, 1995, 10:15-19
    [179] 杨东超,刘莉,汪劲松.利用奇次变换矩阵进行运动学正问题分析.机械设计与研究,2002(18)2:20-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700