基于公理设计的敏捷车间规划关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着产品个性化需求以及全球性竞争的加剧,对于制造系统的敏捷性要求越来越高。敏捷制造车间作为产品生产的重要场所,其规划技术的先进性直接影响产品的生产周期与成本。但是当前的车间规划技术主要基于经验或局部优化技术,难于满足现代车间规划的需求。基于车间规划技术在制造业中的重要地位和敏捷制造车间的实际需求,本文提出了基于公理设计的敏捷车间规划技术,建立了基于公理设计的敏捷车间规划框架,并从基于独立公理的敏捷车间布局优化技术、基于公理设计的多属性决策技术、制造车间敏捷规划平台开发和敏捷建模技术等方面进行了研究。
     由于车间规划技术对于企业的生产经营具有重要影响,本文分析了车间规划技术在国内和国外的研究内容与研究现状,指出当前车间规划技术的研究方法所存在的问题以及车间规划技术未来发展方向,在此基础上提出了基于公理设计的敏捷车间规划技术。把先进设计理论引入到车间规划领域,克服了现有车间规划方法主要基于经验和过程而缺乏系统的理论指导的缺陷。
     建立了基于公理设计的敏捷车间规划层次模型及层间映射模型,把车间规划过程划分为车间层、单元层和工位层三个层次,实现车间规划的由顶向下、逐层细化过程;在此基础上建立了基于公理设计的敏捷车间规划总体框架,实现了规划组织过程与公理设计过程并行推进,有效地减少由于任务分配不当造成的设计组之间沟通不畅与设计迭代,提高了布局设计的可靠性和设计效率。针对敏捷制造车间规划问题,建立了基于公理设计的多空间映射模型,分析了车间规划过程中各个空间之间的交互关系,结合基于公理设计的车间层规划过程,通过设施组、任务组、设计组之间的映射,分析了设计组之间的协调关系,有效减少了因设计组之间任务迭代所引起的时间浪费。
     运用独立公理分析了现有布局优化过程中存在的耦合性问题,提出了敏捷车间集成多目标布局优化过程。对敏捷车间集成多目标布局优化过程中的敏捷车间的单元构建、设备选择、物流网络构建、输入/输出站位置确定、生产运作性能等关键问题进行了详细分析,建立了具有纵向固定通道的multi-bay布局问题的多目标求解数学模型。在新的集成多目标优化过程指导下所得到的优化方案更加可靠,更能够满足敏捷制造车间要求。
     分析了多属性决策中的相关性问题,提出了基于公理设计的多属性决策方法,最大程度减少了决策过程中的目标冲突问题;并对信息公理中的信息量计算方法进行了改进,使其能够兼顾系统能力和决策者满意度,更适合于解决多属性决策问题。提出的基于设计公理的多属性决策过程为多次重复决策提供了新的思路。
     为了方便所研究的基于公理设计的敏捷车间规划技术在实际中的应用,开发了基于公理设计的制造车间敏捷规划平台。对基于布局沙盘的模型快速反求方法进行了研究,为了把车间布局数字模型快速转化为仿真模型,建立了制造系统分层面向对象赋时有色Petri网(HOTCPN)模型,并开发相应软件,把HOTCPN模型的控制逻辑自动转化为eM-Plant仿真模型的控制逻辑,实现了车间仿真模型的快速建模过程。该平台为基于公理设计的敏捷车间规划技术在现实中的应用提供了便捷工具、增强了技术可用性。
     最后,以对某企业焊装车间的规划作为基于公理设计的敏捷车间规划技术的实际工程应用。初步验证了所提出的基于公理设计的敏捷车间规划技术的在敏捷车间规划中的可行性和有效性。
Personalized products and increasing global competition require manufacturing systems with moreagility. In view of the important position of agile manufacturing workshop for production, whetherworkshop planning technology is advanced or not directly impacts on the production cycle andmanufacturing cost. Nevertheless, the present workshop planning technology based on experience orlocal optimization technology is difficult to meet the needs of the modern workshop planning. As theimportance of plant planning technology in the manufacturing firms and the actual needs of agilemanufacturing plant, the planning technology for agile manufacturing workshop based on the axiomaticdesign is presented. In this paper, the agile workshop planning theoretical framework based on theaxiomatic design is built and the agile workshop layout optimization techniques, multi-attributedecision-making based on axiomatic design, the development of agile manufacturing workshopplanning plantform and rapid modeling techniques are studied in detail.
     As the facilities planning techniques has important influence on the production operation, in thepaper The research situation of facility planning is analyzed and the research deficiencies and futuredevelopment direction are pointed out. Based on the above analysis, the concept of agile workshopplanning technique based on axiomatic design is proposed. The proposed technique introduce theadvanced design theory to the workshop planning area and overcome the shortcomings of present plantplanning methods which base on experience and lack the guide of systematic theory. The proposedtechnique will have an important impact on the workshop planning research.
     The agile manufacturing workshop planning hierarchical model based on axiomatic design andmapping model between levels are established. The workshop planning process is divided intoworkshop level, unit level and workstation level to achieve the top-down planning and taskdecomposition level by level. The overall framework of agile workshop planning based on axiomaticdesign is established. In the framework, the planning organization process and the design process arepropelled in parallel, the poor communication between the design groups and design iterations arereduced which are caused by improper tasks distribution and the layout reliability and the designefficiency are improved. Aiming at agile manufacturing workshop planning problem, the multi-spacemapping model of agile workshop planning based on axiomatic design is established. In the model, theinteraction between the spaces in the workshop planning process are analyzed, the mapping betweenfacilities group, task group and design group are established. Using the model, coordination between thedesign team is smooth and the wastes of time caused by task iterations between the design groups areeffectively reduced.
     Through the analysis to the plant layout planning process with independent axiom, the couplingproblem in the traditional layout optimization process is found. By coupling analysis, themulti-objective integrated layout optimization process for the agile workshop is presented. The cellformation, equipment selection, logistics network construction, input/output stations position andoperational performance about agile workshop are analyzed respect. The multi-bay layout problem withthe vertical fixed-channel has been studied and its multi-objective mathematical model is established.Under the guidance of the new integrated multi-objective layout optimization process, the optimizedlayout is more reliable and better able to meet the requirements of agile manufacturing workshop.
     The relations issues of multi-attribute decision-making are analyzed, multi-attribute decision-making method based on axiomatic design theory are proposed. In this theory, the hierarchicalcriteria system analysis model based on the independent axiom is constructed, which takes into accountof the impact of the relationship between criteria and reduces the objective conflicts in thedecision-making process by the greatest extent. In order to reflect the degree of fulfillment of thedecision maker's requirements, the computation method of information content is improved. Theimproved formula synthetically embodies decision-maker's satisfaction degree and the system ability,which better suites to solving multi-attribute decision making problems. The proposed multi-attributedecision-making model based on axiomatic design provides a new idea for the repeateddecision-making process.
     In order to support the study of agile layout theory based on axiomatic design, the layout softwareplatform based on axiomatic design for the agile manufacturing workshop is developed and rapidreverse engineering method based on sand table model of workshop layout is presented. In order totransform the workshop layout digital model into the simulation model, Hierarchical Object-orientedTimed Colored Petri Net (HOTCPN) model of manufacturing system is established and thecorresponding auto-conversion software is developed. Using the software, the control logic ofmanufacturing workshop HOTCPN model is automatically translated into the control logic of eM-Plantsimulation model, which achieves the rapidly modeling of the workshop simulation. The layout softwareplatform provides a convenient tool for agile workshop planning techniques based on axiomatic designto be applied in the real engineering and enhance the technical availability.
     Finally, the facility layout techniques of agile workshop based on axiomatic design are used todesign the welding workshop layout. The engineering application initially verifies the feasibility andeffectiveness of the proposed facility layout techniques for the agile workshop based on axiomaticdesign.
引文
[1]Benjaafar S., Heragu S.S., Irani S.A. Next generation factory layouts: research challenges andrecent progress[J]. Interfaces.2002,32(6),58-76.
    [2]罗振璧,盛伯浩,赵晓波等.快速重组制造系统[J].中国机械工程.2000,11(3):300-303.
    [3]易红,谢宁林,苏颖.敏捷制造模式下车间制造设备及布局研究[J].机械设计与制造工程.1999,28(6):49-51.
    [4]Tompkins J.A., White J.A. Fcilities Planning[M].3rd edn, Wiley, New York,2003.
    [5]董海,梁迪.设施规划与物流分析[M].北京:机械工业出版社.2005:25-30.
    [6]Quarterman Lee, William Nelson, Herbert Tuttle. Facilities and Workplace Design: An IllustratedGuide[M]. Norcross Georgia: Engineering&Management Press.1996:9-12.
    [7]John R. Glagola. An Introduction to Strategic Facilities Planning[J]. Real Estate Issues.2002,27(1):13-15.
    [8]理查德·缪瑟.系统布置设计[M].北京:机械工业出版社.1988:25-34.
    [9]Saad S. M., Lassula A. M. Layout design in fractal organizations[J]. International journal ofproduction reaserch.2004,42,(17),3529–3550.
    [10]Lahmar M.,Benjaafar S. Design of distributed layouts[J]. IIE Transactions.2005,37(4):303-318.
    [11]Askin R. G., Ciarallo F. W. Lundgren N. H.An empirical evaluation of holonic and fractallayouts[J]. International Journal of Production Research.1999,37(18):961-978.
    [12]Huang H. Facility layout using layout modules[D]. Ohio State University.2003.
    [13]Wang Chi-Tai. Static and Dynamic facility layout problems[D]. The university of Michigan.1999.
    [14]Meller R. D. Facility layout objective functions and robust layouts[J]. International Journal ofProduction Research.1996,34(10):2727–2742.
    [15]Meng G.; Heragu S. S.; Zijm H. Reconfigurable layout problem[J]. International Journal ofProduction Research.2004,42(22):4709–4729.
    [16]于瑞峰.基于人因学的工作地设施布局的优化设计研究[博士学位论文].清华大学:2004.
    [17]周亦波.制造单元布局设计研究与实现[硕士学位论文].华中科技大学:2002.
    [18]李火生,李志华,钟毅芳,戴同.生产车间设备布局线性模型及算法研究[J].计算机工程与应用.2002,(11):221-225.
    [19]李志华.多单元制造系统布局设计研究[博士学位论文].华中科技大学:2002.
    [20]幸研,易红,汤文成,仇晓黎.敏捷化车间虚拟环境的研究[J].制造业自动化.2000,22(2):21-24.
    [21]苏颖,易红,谢宁林.敏捷制造车间建模与仿真系统的研究[J].成组技术与生产现代化.1999,(4):20-26.
    [22]苏颖,易红,谢宁林,倪中华.敏捷制造模式下车间功能及其体系的研究[J].工程建设与设计.1998,151:37-40
    [23]马玉敏,陈炳森,张为民.基于敏捷制造理念下的车间布局设计[J].组合机床与自动化加工技术.2002,(4):42-45
    [24]武志军,宁汝新,王爱民.可重构制造系统布局规划方案的灰色模糊综合评价方法[J].中国机械工程.2007,18(19):3132-8132
    [25]武志军,宁汝新,王爱民.可重构制造系统的布局规划技术研究[J].工业工程与管理.2007,(5):68-73
    [26]陈希,王宁生.基于脑模型联接控制器的车间布局多目标优化技术研究[J].南京理工大学学报.2004,28(6):595-600.
    [27]陈希.面向设备布局和作业调度的车间虚拟制造关键技术研究[博士学位论文].南京航空航天大:2003.
    [28]锁小红.基于制造系统功能的设施布局设计研究[博士学位论文].山东大学:2008.
    [29]李波,邱枫.基于单亲遗传算法的动态设备布局仿真研究[J].智能系统学报.2007,2(1):74-79.
    [30]齐继阳,竺长安.改进型模拟退火算法在设备布局设计中的应用[J].计算机工程.2007,33(1):241-243.
    [31]阎长罡,曹战,刘清荣.基于遗传算法的车间设备布局设计[J].大连交通大学学报.2007,28(3):33-37
    [32]祝恒云,叶文华.模拟退火粒子群算法在动态单元布局中的应用[J].中国机械工程2009,20(2):181-185.
    [33]王定益,王丽亚.一种改进遗传算法在生产车间设备布局中的应用[J].计算机工程与应用.2005,(14):190-193.
    [34]应保胜,张华,杨少华.敏捷制造车间布局优化的启发式算法[J].计算机集成制造系统.2004,10(8):962-965.
    [35]柏甫荣,秦永法.基于智能优化算法的设备布局设计[J].组合机床与自动化加工技术.2004,(6):50-53.
    [36]李占国,唐慧君,王形宇,张秋萍.基于遗传算法的可重构制造单元设备布局优化方法的研究[J].长春理工大学学报.2003,26(2):17-19.
    [37]李火生,李志华,钟毅芳,戴同.生产车间设备布局线性模型及算法研究[J].计算机工程与应用.2002,(11):221-225.
    [38]王东奇,冯俊.基于遗传模拟退火算法的可重构单元布局的研究[J].组合机床与自动化加工技术.2006,(2):34-37.
    [39]潘磊.变速箱装配线车间虚拟优化仿真[硕士学位论文].广东交通大学.2006,4
    [40]何智春.基于的机加工车间设施布置目建模与仿真[硕士学位论文].武汉理工大学.2009.
    [41]黄超,徐向阳.基于仿真的车间设备布局优化设计[J].东北电力大学学报.2008,28(2):53-56.
    [42]锁小红,刘战强.基于物流路径的单行布局建模与仿真研究[J].中国机械工程.2007,18(21):2576-2578.
    [43]龚全胜,李世其.基于虚拟仿真的制造系统布局设计[J].机械科学与技术2004,23(7):857-859.
    [44]郝理想.基于虚拟仿真的生产车间布局设计方法研究[硕士学位论文].合肥工业大学.2006,4
    [45]贾晨辉,张浩,陆剑峰.离散制造系统规划与仿真建模研究[J].计算机工程与应用.2007,43(3):242-245.
    [46]谭胜伟.中小型企业生产系统布局方案与评价[硕士学位论文].上海交通大学.2007.
    [47]贝炳林.车间布局的综合评价[硕士学位论文].上海交通大学.2006.
    [48]刘飞,董明,侯文皓,翟钰.设施布局多重指标优化[J].上海交通大学学报.2007,41(4):664-668.
    [49]Koopmans TC, Beckman M. Assignment problems and the location of economic activities[J].Econometrica.1957,(25):53-76.
    [50]Bazaraa M S.Computerized lyout design: A branch and bound approach[J]. IIE Transactions,1975,7(4):432-437
    [51]Love R F, Wong J W. Solving quadratic assignment problems with rectilinear destance and integerprogramming[J]. Naval Research Logistics Quarterly,1976,28:623-627
    [52]Houshyar A, Whiter B. Exact optimal solution for facility layout–deciding which pairs oflocation should bi adjacent[J]. Compiters and Industrial Engineering,1993,24(2):177-187
    [53]Montreuil B. A modeling framework for integrating layout design and flow network design. In:Proceedings of the material handling research colloquium, Hebron, KY,1990,43–58
    [54]Zouein P P, Tommelein I D. Dynamic layout planning ysing a hybrid incremental solutionmethod[J]. Journal of Construction Engineering and Management,1999,125(6):400-408
    [55]Yang T, Peters B A. Flexible machine layout design for dynamic and uncertain prouctionenvironments[J]. European Journal of Operational Research.1998,108(1):49-64
    [56]Foulds L R, Robinson D F. Graph theoretic heuristics for the plant layout problem[J]. InternationalJournal of Production Research,1978,16(1):27-37.
    [57]Leung J. Graph-theoretic heuristic for designing loop-layout manufacturing ssystems[J]. EuropeanJournal of Operational Reseach.1992,57(2):243-252.
    [58]Maghsud Solimanpur, Amir Jafari. Optimal solution for the two-dimensional facility layoutproblem using a branch-and-bound algorithm[J]. Computers&Industrial Engineering.2008,(55):606–619.
    [59]Singh S. P.. Sharma R. K.. A review of different approaches to the facility layout problems[J].International Journal of Advantage Manufacturing Technology.2006,(30):425–433.
    [60]Hakim L A.On solving facility layout problems using genetic algorithms[J]. International Journalof Production Research.2000,38(11):2573–2582
    [61]Wu Y, Appleton E. The optimization of block layout and aisle structure by a genetic algorithm[J].Computers and Industrial Engineering.2002,41:371-387
    [62]Hernandez Gress E.S., Mora-Vargas J., Herrera del Canto L.E.; Diaz-Santillan E. A geneticalgorithm for optimal unequal-area block layout design [J]. International Journal of ProductionResearch,2011,49(8), p2183-95.
    [63]Solimanpur M, Vrat P., Shankar R. Ant colony optimization algorithm to the inter-cell layoutproblem in cellular manufacturing[J]. European Journal of Operational Research.2004,(157)592–606.
    [64]Kuan Yew Wong, Komarudin. Solving facility layout problems using Flexible Bay Structurerepresentation and Ant System algorithm[J]. Expert Systems with Applications.2010,37(7):5523-5527.
    [65]Hardin C.T., Usher J.S. Facility layout using swarm intelligence.2005IEEE Swarm IntelligenceSymposium (SIS-05). Pasadena, California, USA.2005June8-10.
    [66]Samarghandi Hamed, Taabayan Pouria, Jahantigh Farzad Firouzi. A particle swarm optimizationfor the single row facility layout problem[J]. Computers and Industrial Engineering.2010,58(4):529-534.
    [67]Baykasoglu A, Gindy NNZ. A simulated annealing algorithm for dynamic plant layout. Computersand Operations Research.2001,28(14):1403-1426.
    [68]Sahin R. A simulated annealing algorithm for solving the bi-objective facility layout problem[J].Expert Systems with Applications.2011,38(4):4460-4465.
    [69]Misevicius A. A modified simulated annealing algorithm for quadratic assignment problem[J].Informatica.2003,14(4):497-514.
    [70]Liang L Y, Chao W C. The strategies of tabu search technique for facility layout optimization[J].Automation in Construction.2008(17):657–669.
    [71]Tsuchiya K., Bharitkar S.,Takefuji Y. A neural network approach to facility layout problems[J].European journal of operational research.89:33,556-563.
    [72]Azadivar F, Wang JJ Facility layout optimization using simulation and genetic algorithms[J].International Journal on Production Research.2000,38(17):4369-4383.
    [73]Kumar SRT, Kashyap RL, Moodie CL. Application of expert systems and pattern recognitionmethodologies to facilities layout planning[J]. International Journal on Production Research.1988,26(5):905-930
    [74]Rosenblatt, M. J. The Dynamics of Plant Layout[J]. Management Science.1986,32(1):76-86,.
    [75]Rosenblatt, M. J.; Lee H.L. A Robustness Approach to Facilities Design[J]. International Journalon Production Research..1987,25(4),479-486,.
    [76]Mend G.., Heragu S. S.; Zijm H.. Reconfigurablc layout problem[J]. International Journal ofProduction Research.2004,42(22),4709-4729.
    [77]Singh S. P.; Sharma R. R. K. A review of different approaches to the facility layout problems.International journal of advangtage manufactering technology[J].2006,30(5-6):425–433.
    [78]Drira A, Pierreval H, Hajri-Gabouj S.Facility layout problems: A survey. Annual Reviews inControl[J].2007,31(2):255–267.
    [79]Ferrari E., Pareschi A., Persona A. and Regattieri A. Plant Layout Computerised Design: Logisticand Relayout Program (LRP)[J]. International journal of advantage manufacturing technology.2003,21(12):917-922.
    [80]Karray F., Zaneldin E., Hegazy T. Tools of Soft Computing as Applied to the Problem of FacilitiesLayout Planning[J]. IEEE transactions on fuzzy systems,2000,8(4):367-379.
    [81]Sly D. P. A systematic approach to factory layout and design with FactoryPLAN, FactoryOPT andFactoryFLOW[C]. the28th conference on Winter simulation. Coronado, California, United States.1996:584–587.
    [82]赵川.机械加工车间设备布局优化模型及求解算法研究[硕士学位论文].重庆大学.2010.03.
    [83]Montreuil B. A modelling framework for integrating layout design and flow network design[C].Proceedings of the Material Handling Research Colloquium, Hebron, Kentucky,1990:95-115.
    [84]AIELLO G., ENEA M. and GALANTE G.. An integrated approach to the facilities and materialhandling system design[J]. International journal of production research,2002,40(15),4007-4017.
    [85]Ioannou George. An integrated model and a decomposition-based approach for concurrent layoutand material handling system design[J]. Computers&Industrial Engineering.2007,52(4):459–485.
    [86]林立千.设施规划与物流中心设计[M].清华大学出版社.2003.
    [87]Bozer Y.A. and Kim J. Determining transfer batch sizes in trip-based materal handling systems[J].International journal of flexible manufacturing systems.1996,8(4):313-356.
    [88]Fu M.C and Kaku B.K. Minimizing work in process and material handling in the facilities layoutproblem[J]. IIE Transactions.1997,29(1):29-36.
    [89]Benjaafar S. Queueing effects in design of factory layouts[C]. Working paper. University ofMinnesota. Department of Mechanical Engineering. Minneapolis. MN.1999.
    [90]Pandey P. C., Janewithayapun S., Hasin M. A. A.. An integrated system for capacity planning andfacility layout[J]. Production Planning&Control,2000,11(8):742-753.
    [91]PHONG H.T., KUEHN W. Integration of optimization into a simulation environment[C],Proceedings of WORKSIM’94, The1st International Workshop on Simulation in ManufacturingSystems,1994,9-11November, Asian Institute of Technology:155-162.
    [92]Phong, H. T.(1997). Integrating multiobjective optimization into a simulation environment. Anapplication in facility layout, Asian Institute of Technology.
    [93]Wolfgang Kuehn. Digtal factory–intergration of simulation from product and productionplanning towards operative control[C]. Proceedings20th European Conference on Modelling andSimulation Wolfgang Borutzky, Alessandra Orsoni, Richard Zobel:2006.
    [94]Meller R.D., Kirkizoglu Z., Chen W.P. A new optimization model to support a bottom-up approachto facility design.Computers&Operations Research.2010,37(1):42-49.
    [95]Chae J.J. Concurrent design of facility layout and flow-based department formation[D]. TexasA&M University.2003.
    [96]Yang T.H., Kuo C.W. A hierarchical AHP/DEA methodology for the facilities layout designproblem. European Journal of Operational Research.2003,147(1):128-136.
    [97]Suh, N. P., Cochran, D. S., Paulo, C. L. Manufacturing system design. Annals of the CIRP,1998,47(2):627–639.
    [98]Kulak O., Durmusoglu M. B., Tufekci, S. A complete cellular manufacturing system designmethodology based on axiomatic design principles. Computers and Industrial Engineering,2005,48(4):765–787.
    [99]Suh N.P.The Principles of Design[M]. Oxford University Press, New York,USA1990
    [100]Suh N.P. Axiomatic Design: Advances and Applications[M]. Oxford University Press, New York,USA,2001.
    [101]朱龙英.公理化设计理论及其应用研究[博士论文].南京航空航天大学.2004.10.
    [102]Chen Chunhsien, LingShihfu, Chen Wei. Project scheduling for collaborative productdevelopment using DSM International[J]. Journal of Project Management,2003,21(1):291-299.
    [103]Browning, T. Applying the design structure matrix to system decomposition and integrationproblems: A review and new directions. IEEE Transactions on Engineering Management[J].2001,48(3):292-306.
    [104]Chen H., Ling S., and Chen W. Project scheduling for collaborative product development usingDSM[J]. International Journal of Project Management.2003,21(3):291-300.
    [105]Roth K. Design models and design catalogs[C]. In Proceedings of ICED’87, ASME, New York:1987.
    [106]Zitzler E., Thiele L., Multiobjective Evolutionary Algorithms: A Comparative Case Study and theStrength Pareto Approch[J]. IEEE Transactions on Evolutionary Computation.1999,3(4):257-271.
    [107]齐继阳,竺长安,曾议.可重构制造系统重组过程中设备选择模型的研究[J].运筹与管理,2006,15(2):137-143.
    [108]王志亮,汪惠芬,张友良.敏捷制造单元重构算法[J].中国制造业信息化,2003,32(6):96-99
    [109]Boctor F. A. linear formulation of the machine-part cell formation problem. International Journalof Production Research.1991,29(6):343–56.
    [110]Goncalves J, Resende M..An evolutionary algorithm for manufacturing cell formation[J].Computers&Industrial Engineering.2004,47(2):247–73.
    [111]WuT, Low C,Wu W. A tabu search approach to the cell formation problem[J]. International Journalof Advanced Manufacturing Technology.2004,23(11):916–24.
    [112]Tretheway S.J.; Foote, B.L..Automatic computation and drawing of facility layouts with logicalaisle structures. International Journal of Production Research[J],1994,32(7),1545-1555;
    [113]Wu Y. and Appleto, E. The optimisation of block layout and aisle structure by a genetic algorithm.Computers&Industrial Engineering,2002,(41),371–387.
    [114]Chang CH, Lin JL, Lin HJ Multiple-Floor Facility Layout Design with Aisle Construction[J].Journal of Industrial Engineering&Management Systems.2006,5(1):1-10.
    [115]石为人,王楷.基于Floyd算法的移动机器人最短路径规划研究[J].仪器仪表学报.2009,30(10):2088-2092.
    [116]Kouvelis P., Kiran A. The plant layout problem in automated manufacturing systems[J]. Annals ofOperations Research.1990,26(1-4):397-412.
    [117]Fu m.; Kaku B.K. Minimizing work-in-process and material handling in the facilities layoutproblem[J].IIE Transactions.1997,29:29-36.
    [118]Saifallah Benjaafar. Modeling and analysis of congestionin the design of facility layouts[J].Management Science,2002,48(5);679-204.
    [119]Kamrani,A.K.and P.Salhieh, A features-based approach to integrated product and facility design.Preceeding of the8th Annual Industrial Engineering Reseach Conference.1999,3,23-26,Phoenix,AZ
    [120]Whitt W. The queueing network analyzer[J].Bell SystemTechnical Journal,1983,62(9):2779-2816.
    [121]Fu M C, Kaku B K. Minimizing work-in-process and material handling in the facilities layoutproblem[J]. IIE Trans,1997,29;29-36.
    [122]Saifallah Benjaafar. Modeling and analysis of congestion in the design of facility layouts[J].Management Science,2002,48(5);679-204.
    [123]Deb K. Multiobjective optimization using evolutionary algorithms[M]. Chichester, U K: Wiley,2001.
    [124]Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm:NSGA-II [J]. IEEE Transactions on Evolutionary Computation.2002,6(2):182-197.
    [125]郑强,卢建钢.带精英策略的非支配排序遗传算法的研究与应用[D].杭州:浙江大学,2006.
    [126]岳超源.决策理论与方法[M].科学出版社.北京,2003.
    [127]闫书丽.多属性决策与集成方法研究[硕士论文].武汉理工大学.2005,10.
    [128]刘树林.多属性决策理论方法与应用研究[博士学位论文].北京航空航天大学.1997,5.
    [129]徐泽水.几类多属性决策方法研究[博士学位论文].东南大学.2003.3.
    [130]DEB S. K.,BHATTACHARYYA B. Facilities layout planning based on Fuzzy multiple criteriadecision-making methodology[J]. International Journal of Production Research.2003,41(18):4487–4504
    [131]Yang Taho, Kuo Chunwei.A hierarchical AHP/DEA methodology for the facilities layout designproblem. European Journal of Operational Research[J].2003(147):128–136.
    [132]Yang Taho, Hung Chih-Ching. Multiple-attribute decision making methods for plant layout designproblem[J]. Robotics and Computer-Integrated Manufacturing.2007,(23):126–137.
    [133]胡培.决策偏好的有关理论与方法研究[博士学文论文].成都,西南交通大学,1999
    [134]黄德才.两种多指标决策方法逆序的成因与消除[J].系统工程,2001,19(2):93-96.
    [135]王莲芬,朱峰涛. AHP中逆序问题的综述[J].系统工程理论与实践.1994,16(6):1-6.
    [136]Belton V. T. Gear. On a short-Coming of Saaty’s Method of Analytic Hierarchies[J]. OMEGA,1983,11(3):228-230.
    [137]章玲,周德群.线性分配方法的逆序问题研究[J].中国工程科学.2008,10(2):50-54.
    [138]黄德才,郑河荣.理想解决策方法的逆序问题与逆序的消除[J].系统工程与电子技术,2001,23(12):80-83.
    [139]徐泽水. AHP中新元素导入的强保序性研究[J].控制与决策,2004,19(4):433-436.
    [140]Millet I, Saaty T L. On the relativity of relative measures accommodating both rank preservationand rank reversals in the AHP[J]. European Journal of Operational Research,2000,121(1):205-212.
    [141]章玲,周德群,李洪伟,朱佩枫.应用规范化公式的MCDM保序研究[J].中国工程科学,2006.8(12):85-88.
    [142]章玲,周德群.规范化公式对无关方案独立性的影响.系统工程[J].2005,23(5):124-126.
    [143]Felix R. Entscheidungen bei qualitativen Zielen. PhD Dissertation, University of Dortmund,Department of Computer Sciences,1991.
    [144]Felix R. Relationships between goals in multiple attribute decision making. Fuzzy Sets andSystems, Vol.67,47-52,1994.
    [145]Felix R. On fuzzy relationships between goals in decision analysis. Proceedings of the3rdInternational Workshop on Preferences and Decisions, Trento, Italy,37-41,2000.
    [146]Felix R. Efficient Decision Making with Interactions Between Goals. Proceedings of the2007IEEE Symposium on Computational Intelligence in Multicriteria Decision Making (MCDM2007).
    [147]Carlsson C., Fullér R. Multiple criteria decision making: The case for interdependence [J].Computers&Operations Research, Volume22, Issue3, March1995, Pages251-260.
    [148]Carlsson C., Fullér R., Interdependence in fuzzy multiple objective programming[J], Fuzzy Setsand Systems.1994,(65):19-29.
    [149]Carlsson C., Fuller R., Fuzzy if-then rules for modeling interdependencies in FMOP problems[C],Proceedings of EUFIT'94Conference, September20-23,1994Aachen, Germany, Verlag derAugustinus Buchhandlung, Aachen,1994, pp.1504-1508.
    [150]Carlsson C., Fuller R., Fuzzy multiple criteria decision making: Recent developments[J]. FuzzySets and Systems,1996,(78)139-153.
    [151]李洪伟.运用DEMATEL方法及交叉增援矩阵法对层次分析法的改进[J].统计与决策.2006,(8):10-11.
    [152]章玲,周德群,汤建影.基于DEMATEL方法的高等教育教学质量影响因素分析[J].南京航空航天大学学报(社会科学版).2009,11(1):49-52.
    [153]Hori S, Shimizu Y. DesigningMethods of Human Interface for Supervisory Control Systems [J].Control Engineering Practice,1999,(11):1413-1419.
    [154]Tzeng Gwo-Hshiung, Chiang Cheng-Hsin, Li Chung-Wei,Evaluating intertwined effects ine-learning programs: A novel hybrid MCDM model based on factor analysis andDEMATEL[J].Expert Systems with Applications.2007,(32):1028–1044.
    [155]Chiou H K, Tzeng G H, Cheng D C. Evaluating sustainable fishing development st rategies usingfuzzy MCDM approach[J]. Omega,2005,33(3):223-234.
    [156]Grabidch M. k-order addtive discrete fuzzy measures and their representation[J]. Fuzzy Set s andSystems,1997,92(2):167-189.
    [157]朱龙英,朱如鹏,刘正埙.基于信息公理的产品设计方案评价方法[J].南京航空航天大学学报.2005,37(3):387-390.
    [158]林晓鹰,侯亮,韩东辉等.基于公理化理论的自动装配与焊接系统设计[J].厦门大学学报.2007,46(3):351-356.
    [159]向东,段广洪,汪劲松等.公理性设计在绿色工艺选择中的应用[J].中国机械工程,2000,11(9):972-976.
    [160]Kulak O, Kahraman C. Multi-attribute comparison of advanced manufacturing systems usingfuzzy vs. crisp axiomatic design approach[J]. International Journal of Production Economics,2005;95(3):415-424.
    [161]KULAK O, Kahraman C. Fuzzy multi-attribute selection among transportation companies usingaxiomatic design and analytic hierarchy process [J]. Information Sciences,2005;170:191-210.
    [162]姜立军,李哲林.装配型制造业生产现场的三维图形仿真建模[J].华南理工大学学报(自然科学版).2007,35(3):83-88.
    [163]施於人. eM-Plant仿真技术教程[M].北京希望电子出版社,科学出版社,北京,2008.
    [164]Tecnomatix Group. eM-Plant7.5User Guide.2000–2005.
    [165]郝理想,蒋增强,葛茂根,刘明周.基于可视化仿真的车间设施布局研究[J].合肥工业大学学报(自然科学版).2006,29(10):1204-1207.
    [166]饶冬青,李晓鸥,徐心和.基于面向对象着色Petr i网的FMS对象类划分及建模[J].控制与决策.1999,14(1):36-39.
    [167]Lin J.T., Lee C.C. A Petri net-based integrated controland scheduling scheme for flexiblemanufacturing cells[J].Computer Intergrated Manufacturing System.1997,10(2):109-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700