基于“质量—成本”均衡的车身公差设计博弈模型及求解方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轿车车身是具有大批量生产和复杂制造系统特征的典型产品。零件的尺寸偏差对整车性能及制造成本均具有显著影响。盲目提高偏差要求,虽然保证了质量,但将使产品制造成本增加,造成投资浪费和市场竞争力下降;降低偏差要求,虽然减少了成本,但会影响最终产品质量,导致客户投诉和返修率上升。因此,制订合理的车身零部件公差设计方案,是均衡解决产品质量要求和生产成本限制之间矛盾的重要手段。传统车身公差设计主要采用的方法包括试凑与校核调整法、以质量为约束的成本最优法以及质量、成本的加权评价法等。这些方法难以合理、有效地考量不同性能指标之间的相互影响和冲突,从而在质量、成本多目标优化建模与均衡优化方面存在一定的局限性。
     为了解决车身产品公差设计中质量与成本综合优化和均衡协调难题,弥补传统方法的不足,本文引入博弈理论,建立一套车身公差设计博弈建模及求解方法。首先,针对车身产品公差设计需求,提出车身公差设计问题及其相应模型的表达形式;其次,将车身公差设计工程问题转化为博弈数学模型;在此基础上,建立基于合作博弈Shapley值理论的公差设计求解方法,并结合典型车身设计案例进行了工程应用。本文的主要研究工作如下:
     (1)基于“质量-成本”均衡的车身公差设计问题分类与表达
     根据车身产品公差设计需求,将车身公差设计问题分为两类:面向制造工艺信息的车身公差设计问题与面向历史数据信息的车身公差设计问题。针对第一类问题,结合零件偏差传递规律以及不同公差等级所对应的生产消耗及加工条件的变化,提出表达装配产品质量水平的制造偏差模型和表达装配产品成本水平的制造成本模型;针对第二类问题,结合评价车身产品关键区域质量、成本的主要指标,提出零件和装配产品的质量水平和成本水平的表达方法。
     (2)车身公差设计博弈模型构建
     对于面向制造工艺信息的车身公差设计问题,首先将装配产品的质量、成本需求视为对策环境中的博弈方,其次针对设计变量与各博弈方之间的映射关系,基于模糊聚类方法将设计变量进行分组,并定义各博弈方的策略空间,最后根据制造偏差模型与制造成本模型建立各博弈方的效用函数。通过上述三要素构造完整的博弈模型及相应的博弈效用矩阵;对于面向历史数据信息的车身公差设计问题,首先根据评价车身关键区域质量、成本的主要指标,定义博弈决策方、博弈策略及博弈效用,从而建立初始博弈效用矩阵。根据搜集、整理的历史数据信息,通过多元回归分析的技术手段补充效用矩阵中的缺失数据,从而形成完备的博弈模型。
     (3)车身公差设计博弈模型求解方法研究
     针对车身公差设计的“质量-成本”均衡需求,提出基于Nash均衡理论的车身公差设计非合作博弈求解方法,用以求解面向个体效用最优下的公差设计方案;提出基于Shapley值理论的车身公差设计合作博弈求解方法,用以求解面向集体效用最优下的公差设计方案。通过对比和分析不同决策环境下的博弈求解方法与传统多目标优化方法的数学本质,研究了各种优化解之间的差异性和关联性,发现在处理车身公差设计多目标优化问题时,合作博弈方法能够根据质量和成本博弈方对“质量、成本综合性能最优”的贡献度评估,给出一种合理协调两者相互影响和冲突的设计方案,优化解不依赖于经验权值,并且稳定性较好。
     (4)基于博弈理论的车身公差设计案例应用
     在前面研究的基础上,开发基于“质量-成本”均衡的车身公差设计软件分析模块,并在前机舱水箱架总成和前部大灯区域的公差设计中应用。首先根据水箱架与大灯区域的质量、成本函数或数据信息,构建博弈方、策略和效用,形成博弈数学模型,进而通过合作博弈方法计算均衡点,并与传统多目标优化解进行对比分析。优化结果表明,合作博弈方法能够根据实际工程冲突给出一种合理、公平的“质量-成本”均衡方案,该方案不依赖于经验权值,并且具有较好的稳定性。通过案例应用,揭示了从工程问题表达、博弈模型构建到模型优化求解的车身公差设计全过程,验证了应用博弈理论解决车身公差设计问题的有效性和可靠性。
Automotive body is a kind of complex product that has the large-scalemanufacturing characteristics. Part tolerance is a crucial factor affecting productperformance and manufacturing cost. Tight tolerances can ensure good part quality,but simultaneously pose a high investment stress on the manufacturers. On contrary,loose tolerances may cause a series of problems such as the rework rate increase orcustomer complaints. Consequently, it is significant to develop a reasonable tolerancescheme considering the demands and conflicts of quality and cost. Traditionaltolerance design methods for automotive body products consist of the trial-designand revision method, the least cost method under the quality constraint and thecomprehensive evaluating method combining several optimization objectives withdifferent weights. These approaches may not be desirable as it is difficult toeffectively evaluate the interactive influences and the conflict among differentdemands.
     Game theory is introduced into this research and a kind of auto-body tolerancedesign method based on game modelling and solving is established. The purpose is tobalance the quality and the cost demand and avoid the disadvantages of the traditionalmethods. This paper first describes the tolerance design problems and proposes thecorresponding theoretical models according to the research on the variation and thecost propagation. Then the engineering problem is converted to the game model.Further, the equilibrium points are calculated by the Shapley value method incooperative game. The solutions are also compared with the traditionalmulti-objective optimization methods. Finally, the feasibility of the procedure isdemonstrated through some engineering examples. Main research contents are shownas bellows.
     (1) Classification and description of the tolerance design problems ofautomotive body based on the “quality-cost” trade-off
     The tolerance design problems of automotive body are divided into twocategories: the tolerance design problem of automotive body based on the specific process information and the tolerance design problem of automotive body based onthe historical data information. For the first tolerance design problem, themanufacturing variation model and the manufacturing cost model are presentedconsidering the variation propagation rules and the process cost of different tolerancegrades. For the second tolerance design problem, common quality, cost evaluationapproaches of parts&assemblies in the automotive body manufacturing process arepresented.
     (2) Establishment of the game models in the automotive body tolerancedesign
     For the tolerance design problem of automotive body based on the specificprocess information, the quality and the cost requirement of the assembly product areconsidered as the game players. The corresponding game payoffs are established.Simultaneously, the tolerance design variables are divided into several groups usingthe fuzzy clustering theory. The game strategy belonging to each player is thendesigned. Finally, the game model (also described by a kind of game payoff matrix) isestablished. For the tolerance design problem of automotive body based on thehistorical data information, the game players, the game strategies and the gamepayoffs are defined by the common indicators that are used to evaluate the quality andthe cost level of parts&assemblies. A primary game payoff matrix is established.Then it is further transformed into a complete payoff matrix using the multipleregression analysis theory based on the measuring data.
     (3) Solving methods of the game models in the automotive body tolerancedesign
     The Nash equilibrium theory is first proposed to solve the game model based onthe optimal individual payoff. Then the Shapley value theory is presented to solve thegame model based on the optimal collective payoff. The game solution is comparedwith the traditional multi-objective optimization solutions in order to show thetheoretical and the engineering advantage of the game method on solving thetolerance design problems of automotive body. It can be considered to be a kind ofimportance evaluation of each player based on their contribution to the profit of thewhole coalition. The game method is not dependent on the weights and has goodstability.
     (4) Application of the tolerance design of automotive body with game theory
     The software module for the tolerance design of automotive body based on“quality-cost” trade-off is developed and introduced. The water tank supportassembly and the front lamp assembly are analyzed with the game method. First thequality and the cost information that are relevant to the tolerances of parts&assemblies are converted to the game components in order to form the game model.Further, the equilibrium points are calculated by the non-cooperative and thecooperative game method. The solutions are also compared with the traditionalmulti-objective optimization methods. The optimization conclusion indicates that akind of reasonable and fair tolerance scheme is obtained and it is not dependent on theweights and has good stability. The whole process of the game analysis from thedescription of the design problem to the game modeling and solving is shown. It canbe effective and reliable for the tolerance design of automotive body with gametheory.
引文
[1]王宝玺,贾庆祥.汽车制造工艺学(第3版)[M].北京:机械工业出版社,2010.
    [2] Chase, K. W., Gao, J. and Magleby, S. P. General2-D tolerance analysis ofmechanical assemblies with small kinematic adjustments [J]. Journal of Designand Manufacturing,1995,5(4):263-274.
    [3] Gao, J., Chase, K. W. and Magleby, S. P. General3-D tolerance analysis ofmechanical assemblies with small kinematic adjustments [J]. IIETRANSACTIONS,1998,30(4):367-377.
    [4] Apley, D. W. and Shi, J. Diagnosis of multiple fixture faults in panel assembly[J]. ASME Journal of Manufacturing Science and Engineering,1998,120(4):793-801.
    [5] Asada, H. and By, A. B. Kinematic analysis of workpiece fixturing for flexibleassembly with automatically reconfigurable fixtures [J]. IEEE Journal ofRobotics and Automation,1985,(2):86-94.
    [6] Weill, R., Darel, I. and Laloum, M. The influence of fixture positioning errorson the geometric accuracy of mechanical parts [C]. Proceedings of CIRPConference on PE&MS,1991:215-225.
    [7] Adams, J. D. and Whitney, D. E. Application of screw theory to constraintanalysis of assemblies of rigid parts [C]. Proceedings of the IEEE InternationalSymposium on Assembly and Task Planning, Porto, Portugal,1999:69-74.
    [8] Cai, W., Hu, S. J. and Yuan, J. X. A variational method of robust fixtureconfiguration design for3-D workpieces [J]. ASME Journal of ManufacturingScience and Engineering,1997,119(5):593-601.
    [9] Cai, W. Robust pin layout design for sheet-panel locating [J]. InternationalJournal of Advanced Manufacturing Technology,2006,28(5-6):486-494.
    [10]曹俊.基于确定性定位分析的三维偏差模型及求解方法研究[D].上海:上海交通大学,2008.
    [11] Takezawa, N. An improved method for establishing the process wise qualitystandard reports of statistical and applied research [J]. Union of JapaneseScientists and Engineers,1980,27(3):63-76.
    [12] Liu, S. C. and Hu, S. J. Tolerance analysis for sheet metal assemblies [J]. ASMEJournal Mechanical Design,1995,118(1):62-66.
    [13] Liu, S. C. and Hu, S. J. Variation simulation for deformable sheet metalassemblies using Finite Element Methods [J]. ASME Journal of ManufacturingScience and Engineering,1997,119(3):369-374.
    [14]罗来军.基于焊装特征和偏差控制的车身柔性件焊装夹具设计方法研究[D].上海:上海交通大学,2002.
    [15]邢彦锋.基于装配质量分析的车身零部件装配顺序优化研究[D].上海:上海交通大学,2008.
    [16]于奎刚.车身柔性薄板产品装配建模及工艺稳健设计研究[D].上海:上海交通大学,2010.
    [17] Jin, J. and Shi, J. State space modeling of sheet metal assembly for dimensionalcontrol [J]. ASME Journal of Manufacturing Science and Engineering,1999,121(4):756-762.
    [18] Cai, W., Hsieh, C. C., Long, Y. F., Marin, S. P. and Oh, K. P. Digital panelassembly methodologies and applications for compliant sheet components [J].Journal of Manufacturing Science and Engineering,2006,128(1):270-279.
    [19] Jeang, A. Computer-aided tolerance synthesis with statistical method andoptimization techniques [J]. Quality and Reliability Engineering International,2001,17(2):131-139.
    [20] Hsieh, C. C. and Oh, K. P. Simulation and optimization of assembly processesinvolving flexible parts [J]. International Journal of Vehicle Design,1997,18(5):455-465.
    [21]孙奇,赵群娥.公差分配方法与制造成本浅析[J].航空制造技术,1998,(2):35-38.
    [22] Chase, K. W. and Greenwood, W. H. Design issues in mechanical toleranceanalysis [J]. ASME Manufacturing Review,1988,1(1):50-59.
    [23] Chase, K. W., Greenwood, W. H., Loosli, B. G. and Hauglund, L. F. Least costtolerance allocation for mechanical assemblies with automated processselection [J]. ASME Manufacturing Review,1990,3(1):49-59.
    [24] Speckhart, F. H. Calculation of tolerance based on a minimum cost approach [J].ASME Journal of Engineering for Industry,1972,94Ser B(2):447-453.
    [25] Spotts, M. F. Allocation of tolerance to minimize cost of assembly [J]. Journalof Engineering for Industry, Transactions of the ASME,1973,(6):762-764.
    [26] Sutherland, G. H. and Roth, B. Mechanism design: accounting formanufacturing tolerances and costs in function generating problems [J]. ASMEJournal of Engineering for Industry,1973,97Ser B(1):283-286.
    [27] Michael, W. and Siddall, J. N. Optimization problem with tolerance assignmentand full acceptance [J]. ASME Journal of Mechanical Design,1981,103(4):842-848.
    [28] Lee, W. J. and Woo, T. C. Optimum selection of discrete tolerances [J]. Journalof Mechanisms, Transmissions, and Automation in Design,1989,111(2):243-251.
    [29] Dong, Z. and Soom, A. Automatic optimal tolerance design for relateddimension chains [J]. ASME Manufacturing Review,1990,3(4):262-271.
    [30] Dong, Z. and Hu, W. Optimal process sequence identification and optimalprocess tolerance assignment in computer-aided process planning [J]. Computerin industry,1991,17(1):19-32.
    [31] Dong, Z., Hu, W. and Xue, D. New production cost-tolerance models fortolerance synthesis [J]. ASME Journal of Engineering for Industry,1994,116(2):199-206.
    [32]杨将新,顾大强,吴昭同.基于神经网络的机械加工-成本模型[J].中国机械工程,1996,7(6):41-42.
    [33]凌芸,姬舒平,马玉林,蔡鹤皋.一种基于模糊综合评判的设计方法[J].计算机集成制造系统,2000,6(1):85-91.
    [34] Dupinet, E. Tolerance allocation based on fuzzy logic and simulated annealing[J], Journal of Intelligent Manufacturing,1996,7(6):487-497.
    [35]姬舒平,孙宏伟,马玉林,蔡鹤皋.一种新的公差优化数学模型的研究[J].哈尔滨工业大学学报,2000,32(3):12-16.
    [36] Jeang, A. and Leu, E. Robust tolerance design by computer experiment [J].International Journal of Production Research,1999,37(9):1949-1961.
    [37] Wu, C. C., Chen, Z. N. and Tang, G. R. Computer tolerance design forminimum quality loss and manufacturing cost [J]. Computers in Industry,1998,35(3):223-232.
    [38]黄平捷,杨将新.基于工序能力指标的工序公差优化设计研究[J].工程设计,2000,(3):45-47.
    [39]徐先懂,宋述稳.基于最大工序能力的工序公差优化方法[J].装备制造技术,2003,(4):3-5,9.
    [40]程治华,陈家起,付凤岚,吴秋梅.基于最低成本的装配尺寸链求解方法[J].武汉汽车工业大学学报,1996,18(1):16-20.
    [41]何勇,方红芳.装配成功率估算方法的研究[J].中国纺织大学学报,1998,24(1):46-49.
    [42]刘玉生,吴昭同,杨将新.基于成本模型的计算机辅助公差优化设计的研究[J].浙江大学学报,1995,29(6):698-705.
    [43] Li, Z., Kokkolaras, M., Papalambros, P. Y. and Hu, S. J. Product and ProcessTolerance Allocation in Multistation Compliant Assembly Using AnalyticalTarget Cascading [J], ASME Journal of Mechanical Design,2008,130(9),0917011-0917019.
    [44] Li, Z., Izquierdo, L. E., Kokkolaras, M., Hu, S. J. and Papalambros, P. Y.Multiobjective optimization for integrated tolerance allocation and fixturelayout design in multistation assembly. ASME Journal of ManufacturingScience and Engineering,2008,130(4),0445011-0445016.
    [45] Chase, K. W. Tolerance allocations methods for designers [R]. U.S.A.: BrighamYoung University,1999.
    [46] Ji, S. P., Li, X. L. and Du, R. Tolerance synthesis using second-order fuzzycomprehensive evaluation and genetic algorithm [J]. International Journal ofProduction Research,2000,38(15):3471-3483.
    [47] Ji, S., Li, X., Ma, Y. and Cai, H. Optimal Tolerance Allocation Based on FuzzyComprehensive Evaluation and Genetic Algorithm [J]. International Journal ofAdvanced Manufacturing Technology,2000,16(7):461-468.
    [48] Ashiagbor, A., Liu, H. C. and Nnaji, B. O. Tolerance control and propagationfor the product assembly modeler [J]. International Journal of ProductionResearch,1998,36(1):75-93.
    [49] Gadallah, M. and ElMaraghy, H. The tolerance optimization problem using asystem of experimental design [J], In Advances in Design Automation,1994,69(1):251-265.
    [50]向文,黄彤军,康有树,周济.面向特征的公差分析与综合[J].华中理工大学学报,1994,22(增刊):63-67.
    [51] Janakiram, D., Prasad, L. V. and Rao, U. R. K. Tolerancing of parts using anexpert system [J], International Journal of Advanced Manufacturing Technology,1989,5(4):157-167.
    [52] Kopardkar, P. and Anand, S. Tolerance allocation using neural networks [J],International Journal of Advanced Manufacturing Technology,1995,10(4):269-276.
    [53] von Neumann, J. and Morgenstern, O. The Theory of games and economicbehavior [M]. U.S.A.: Princeton University Press,1944.
    [54] Nash, J. The bargaining problem [J]. Econometrica,1950,18:155-162.
    [55] Shapley, L. S. A value for n-person games, in: Kuhn H W and Tucker A W(Eds.), Contributions to the theory of games [M]. U.S.A.: Princeton UniversityPress,1953.
    [56] Nash, J. Non-cooperative games [J]. Annals of mathematics,1951,54:286-295.
    [57] Osborne, M. J. An introduction to game theory [M]. Shanghai: ShanghaiUniversity of Finance&Economics Press,2005.
    [58] Osborne, M. J. and Rubistein, A. A course in game theory [M]. U.S.A.: MITPress,1994.
    [59]董雨,胡兴祥,陈景雄.多目标决策问题的博弈论方法初探[J].运筹与管理,2003,12(6):35-39.
    [60]席裕庚,王长军.控制、规划和调度问题中的博弈论应用[J].中国计量学院学报,2005,16(1):8~16.
    [61]甘应爱,田丰,李维铮,李梅生,陈秉正,胡运权,顾基发,郭耀煌,钱颂迪.运筹学(第三版)[M].北京:清华大学出版社,2008.
    [62] Marler, R. T. and Arora, J. S. Survey of multi-objective optimization methodsfor engineering [J]. Structural and Multidisciplinary Optimization,2004,26(6):369-395.
    [63] Sunar, M. and Kahraman, R. A comparative study of multiobjectiveoptimization methods in structural design [J]. Turkish Journal of Engineeringand Environmental Sciences,2001,25(2):69-78.
    [64] Shan, S. Q. and Gary Wang, G. An efficient Pareto set identification approachfor multiobjective optimization on black-box functions [J], ASME Journal ofMechanical Design,2005,127(5):866-874.
    [65] Tseng, H. E., Chen, M. H., Chang, C. C. and Wang, W. P. Hybrid evolutionarymulti-objective algorithms for integrating assembly sequence planning andassembly line balancing [J], International Journal of Product Research,2008,46(21):5951-5977.
    [66] Xie, N. G., Shi, N., Bao, J. H. and Fang, H. Analysis and application ofmulti-objective decision design based on game theory [C].6thWorld Congresson Structural and Multidisciplinary Optimization,30May-03June, Rio deJaneiro, Brazil,2005.
    [67] Mcdonnell, P., Joshi, S. and Qiu, R. G. Set-up games: a heuristic game-theoreticapproach to set-up decisions for heterarchical manufacturing systems [J].International Journal of Production Research,2004,42(19):4195-4210.
    [68]丁晓燕,席裕庚.基于博弈模型的多智能体覆盖控制问题[J].计算机仿真,2009,26(10):148-152.
    [69]陈林,曹树刚.矿产资源综合开发利用评价的博弈及最优化分析[J].矿业快报,2005,(11):11-13.
    [70]叶林,刘人境.网络化制造环境下任务调度的非合作博弈模型及实现[J].中国机械工程,2006,17(8):819-822.
    [71] Cooper, R., de Jong, D. V., Forsythe, R. and Ross, T. W. Forward induction incoordination games [J]. Economics Letters,1992,40(2):167-172.
    [72]刘宗谦,王峰.多重均衡选择中的风险占优与混合策略[J].数学的实践与认识,2005,35(5):216-224.
    [73]李艳.有限策略型博弈及协调博弈中的风险占优均衡[D].北京:首都师范大学,2008.
    [74] Rao, S. S., Venkayya, V. B. and Khot, N. S. Game theory approach for theintegrated design of structures and controls [J]. AIAA Journal,1988,26(4):463-469.
    [75] Annamdas, K. K. and Rao, S. S. Multi-objective optimization of engineeringsystems using game theory and particle swarm optimization [J]. EngineeringOptimization,2009,41(8):737-752.
    [76] Dhingra, A. K. and Rao, S. S. A cooperative fuzzy game theoretic approach tomultiple objective design optimization [J]. European Journal of OperationalResearch,1995,83(3):547~567.
    [77] Spallino, R. and Rizzo, S. Multi-objective discrete optimization of laminatedstructures [J]. Mechanics Research Communications,2002,29(1):17-25.
    [78]孙林松,张伟华,谢能刚.基于博弈理论的拱坝体形多目标优化设计[J].河海大学学报(自然科学版),2006,34(4):392-396.
    [79]侯定丕.博弈论导论[M].合肥:中国科学技术大学出版社,2004.
    [80] Krus, L. and Bronisz, P. Cooperative game solution concepts to a costallocation problem [J]. European Journal of Operational Research,2000,122(2):258-271.
    [81]彭育松,周敏.合作博弈下的共同配送利益合理分配模型[J].云南财贸学院学报,2006,22(1):60-64.
    [82]陈志,段贵军.基于Shapley值法的班轮运输联盟利益分配研究[J].交通运输工程与信息学报,2005,3(4):55-64.
    [83]叶志坚,杜文,向秋.共同配送问题中的费用分担[J].系统工程理论方法应用,2004,13(3):276-281.
    [84]牛海鹏,艾凤义.上下游投资、下游研发的收益分配和成本分摊的机制[J].数量经济技术技术研究,2004,(7):109-114.
    [85]李波,杨灿军,陈鹰.基于合作对策的行业联合采购费用分摊研究[J].系统工程理论与实践,2003,(11):65-70.
    [86] da Silva, E. L., Morales, J. C. and de Melo, A. C. G. Allocating congestion costusing game theory [C].2001IEEE Porto Power Tech Conference,10-13September, Porto, Portugal,2001.
    [87] Lima, D.A., Contreras, J. and Padilha-Feltrin, A. A cooperative game theoryanalysis for transmission loss allocation [J]. Electric Power Systems Research,2008,78(2):264-275.
    [88]韩勇,谭忠富.合作博弈方法在输电费用分配中的应用[J].华北电力大学学报,2004,31(1):73-76.
    [89]江辉,彭建春,欧亚平,肖顺良,李朝昀.基于Shapley值的输电网损分配[J],电力自动化设备,2003,23(2):18-21.
    [90]陈衍泰,陈国宏,李美娟.应用合作博弈确定组合评价权重系数的方法研究[J].中国管理科学,2005,13(3):89~94.
    [91]郭金,曹福成,杨尚东.基于Shapley值的组合预测方法[J].华东电力,2005,33(2):7-10.
    [92]胡世祥,李磊,佘春东,唐智礼.应用博弈理论的多目标分布式气动设计[J].航空学报,2004,25(4):321-326.
    [93]王江峰, Jacques, P.,伍贻兆.基于基因算法与博弈论的翼型跨音速Euler方程气动优化[J].南京航空航天大学学报,2001,33(6):531-536.
    [94] Wang, J. F., Wu, Y. Z. and Jacques, P. Genetic algorithms and game theory forhigh lift design problems in aerodynamics [J]. Transaction of NanjingUniversity of Aeronautics&Astronautics,2002,19(1):7-13.
    [95]包家汉,裴令明,谢能刚,张玉华.机构多目标优化与博弈决策设计[J].安徽工业大学学报,2005,22(2):108-111.
    [96]谢能刚,方浩,包家汉,赵雷.博弈决策分析在补偿滑轮组变幅机构多目标设计中的应用[J].机械强度,2005,27(2):202-206.
    [97]谢能刚,孙林松,郭兴文.博弈分析方法在重力坝多目标设计中的应用[J].河海大学学报(自然科学版),2006,34(2):161~164.
    [98]张弢,纪德云.模糊聚类分析法[J].沈阳大学学报,2000,12(2):73-79.
    [99] Ross, T. J. Fuzzy Logic with Engineering Applications (2nd Edition)[M].England: John Wiley and Sons Inc,2005.
    [100]谭德庆,胡培,欧阳彦昆. Bertrand双寡头多维博弈模型及均衡[J].西南交通大学学报,2002,37(6):698-702.
    [101]谭德庆.多维博弈论[M].成都:西南交通大学出版社,2006.
    [102]任晓宾,宗蓓华.多人合作博弈理论在沿海干散货航运企业联盟中的应用[J].中国造船,2006,47(2):89-95.
    [103]肖条军.博弈论及其应用[M].上海:上海三联书店,2004.
    [104]杨慰祖等.概率论与数理统计教程[M].西安:西北工业大学出版社,2000.
    [105]王黎明,陈颖,杨楠.应用回归分析[M].上海:复旦大学出版社,2008.
    [106] Giang, P. H. and Shenoy, P. P. Two axiomatic approaches to decision makingusing possibility theory [J]. European Journal of Operational Research,2005,162(2):450-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700