用户名: 密码: 验证码:
汽车与两轮车碰撞事故的仿真研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在各种类型的交通碰撞事故中,汽车与自行车、摩托车等两轮车发生的碰撞事故占有较大比例,各国学者正积极开展相关方面的研究。在我国汽车与两轮车碰撞事故频繁发生,造成了大量的人员伤亡和财产损失,迫切需要大力展开这方面的事故研究和防范工作。目前,计算机仿真技术已经成为辅助事故研究分析的主要手段。事故发生的整个过程在计算机上被准确地仿真重现,解决了事故快速处理中遇到的疑难问题,为交通事故的准确鉴定提供了客观的科学依据。
     本文通过分析目前国内外汽车与两轮车碰撞事故的研究现状,尤其针对我国此类交通碰撞事故的实际特点,基于计算机仿真技术对汽车与自行车、摩托车等两轮车发生的碰撞事故展开研究,并结合到真实的碰撞事故进行应用。研究的主要方面包括:
     在两轮车骑车人仿真假人模型的研究方面,通过分析现有数值假人的建模特点和其用于对骑车人进行仿真模拟上存在的问题,根据本文研究的需要,提出组合式定制假人建模技术建立适合于两轮车碰撞事故研究的骑车人数值仿真假人。组合式骑车人数值仿真假人在将人体进行模块化的基础上,采用有限元建模方法建立详细的人体上肢生物力学模型,然后将其和多刚体身体部分进行组合装配,生成完整的数值仿真假人。该数值仿真假人模型具有较高的生物逼真度,对两轮车骑车人的模拟更加准确。
     在两轮车仿真模型的研究方面,本文着重于实际情况将两轮车、骑车人和路面视为一个力学耦合系统进行分析,基于此提出了人-车-路耦合系统的建模方法。在建立两轮车仿真模型时,考虑到两轮车的类型和骑车人的坐骑姿态,针对自行车和摩托车的特点分别建立了四种两轮车仿真模型,便于后续工作较为全面地展开分析。通过仿真试验确定组合式骑车人数值仿真假人的手部抓握特性,突出骑车人与两轮车之间的相互作用力,两轮车的行驶惯性和其轮胎与地面之间的耦合力,从而建立了骑车人-两轮车-路面耦合系统仿真模型。
     为了客观地反映出两轮车和骑车人之间运动的关联性和一致性,基于不同的仿真试验进行了分析说明。通过两轮车在不同行驶速度下与前障碍物碰撞的仿真试验,说明了骑车人的运动特点以及与两轮车的运动关联性。通过两轮车行驶动力学仿真试验,表明在侧向干扰作用力下两轮车和骑车人具有较好的运动一致性。由此从不同角度论证了在事故研究中将两轮车、骑车人和路面作为一个整体进行分析的正确性和必要性。
     考虑到汽车与两轮车碰撞事故发生的复杂性,本文通过仿真试验研究两轮车碰撞事故的分析方法,同时研究多种因素变化对碰撞仿真结果的影响。根据对碰撞事故中主要肇事车型的分析,建立了长头型轿车和平头型大客车仿真模型。然后,全面地分析两轮车骑车人的碰撞运动和损伤特点,能够为对真实碰撞事故的研究提供参考和指导。
     在上述大量研究工作的基础上,将本文研究成果用于进行真实汽车与两轮车碰撞事故的仿真研究。通过在5起真实碰撞事故上的应用,说明了事故研究的仿真分析方法,从多个角度重现了碰撞事故发生的整个过程,仿真结果与事故勘查情况符合,论证了数值模型的可靠性和研究方法的实用性。
Collision accidents between vehicle and two-wheelers such as bicycles and motorcycles account for a large proportion of all kinds of traffic accidents. Scholars all over the world are now actively doing research in this field. In China, traffic accidents between vehicle and two-wheelers occur frequently, causing a large number of casualties and property loss, which brings the need to carry out relative research and prevention work urgently. Computer simulation technology is currently the major approach to assist in the analysis of collision accidents. The course of collision accidents can be reconstructed accurately on computer, which resolves the difficulties that encountered in the quick disposal of accidents, and provides objective scientific references for accurate identification of traffic accidents.
     Based on the analysis of the current domestic and foreign research on collision accidents between vehicle and two-wheelers, and especially taking into consideration the actual situation of such accidents in China, this paper presents the approach to study collision accidents between vehicle and two-wheelers combing with computer simulation technology, and also how to be applied in real accidents. The main research areas of this paper include:
     For simulation model of cyclist dummy, it is proposed that a combined custom modeling technique set up new cyclist dummy that adapts for two-wheeler collision accidents. The technique is achieved based on the analysis of modeling features of existing numerical dummy and the problems that occur when it is used to simulate the two-wheeler cyclists. The combined numerical cyclist dummy is made on basis of modularization of human body, and a detailed biomechanical model of upper limb is established by using finite element method. The upper limb model is then assembled with rigid body parts, combining them into a complete numerical dummy. This dummy has a high degree of biological resemblance, thus enhances the simulation accuracy for the two-wheeler cyclist.
     For simulation model of two-wheelers, this paper regards the two-wheeler, the cyclist and the road as a mechanical coupling system while emphasizing the actual situation, and proposes a human-vehicle-road coupling system modeling method. Considering different types of the two-wheeler and the riding posture, four models of the bicycle and the motorcycle are established based on their distinctive features, making it easier to carry out the following work. And the grasp features of the combined numerical cyclist dummy’s hand is determined by simulation experiments, highlighting the interaction force between the cyclist and the two-wheeler, the driving inertia of the two-wheeler, the coupling force between the tyre and the ground, and thus set up the human-vehicle-road coupling system simulation model.
     In order to objectively reflect the movement relevance and consistency of the two-wheeler and the cyclist, different simulation experiments are carried out. Simulation experiments that the two-wheeler with unequal speed collide with barrier show the movement characteristic of the cyclist and its relevance with the two-wheeler. Dynamic simulation experiments of the two-wheeler show the consistency of the two-wheeler and the cyclist when there is a lateral disturbance force. These results provide proof from different perspectives that it is proper and necessary for the analysis of accidents to consider the two-wheeler, the cyclist and the road as a whole.
     Taking into consideration the complexity of collision accidents between vehicle and two-wheelers, this paper studies the simulation method and analyzes various factors that influence the simulation result. Based on the analysis of vehicle types that cause collision accidents with the two-wheeler, simulation models of the long bonnet car and the flat front bus are set up. The movement and injury characteristics of the two-wheeler cyclist are studied by conducting a comprehensive analysis of collision course in the conditions of various factors, and provide reference and guidance for the research on the real accidents.
     The research result in this paper is applied to real collision accidents between vehicle and the two-wheeler on the basis of extensive research work. Through studying five real collision accidents, analysis methods according to accident situation are illustrated, and the collision course are reconstructed from multiple perspectives. The simulation results are in accordance with the investigation results of the accidents, demonstrating the reliability of numerical models and the practicability of methods presented in this paper.
引文
[1] NHTSA. Traffic Safety Facts 2006. National Highway Traffic Safety Administration National Center for Statistics & Analysis, USA, 2006
    [2]公安部交通管理局.中华人民共和国道路交通事故统计年报(2005年度).无锡:公安部交通管理科学研究所, 2006
    [3]公安部交通管理局.中华人民共和国道路交通事故统计年报(2006年度).无锡:公安部交通管理科学研究所, 2007
    [4] European Enhanced Vehicle-safety Committee Working group 7 on pedestrian injury accidents. Pedestrian Injury Accidents. Proceedings of the Ninth ESV Conference, Kyoto, November 1982
    [5] European Enhanced Vehicle-safety Committee Working group 8 on cycle and light-powered two-wheeler accidents. Cycle and light powered two-wheeler accidents. Proceedings of the Ninth IRCOBI Conference, Delft, September 1984, and Proceedings of the Tenth ESV Conference, Oxford, July 1985
    [6] Preusser D.F., Williams A.F., Ulmer R.G. Analysis of fatal motorcycle crashes: crash typing. Accident Analysis and Prevention, 1995, 27(6):845-851
    [7] Rasanen M., Summala H. Attention and expectation problems in bicycle-car collision: an in-depth study. Accident Analysis and Prevention, 1998, 30:657-666
    [8] Simoncic M. Road accidents in Slovenia involving a pedestrian, cyclist or motorcyclist and a car. Accident Analysis and Prevention, 1998, 30:147-156
    [9]裴剑平,吴卫东.交通事故再现碰撞模型综述.交通运输工程学报, 2001, 1(4):75-78
    [10]袁泉,李一兵.车辆碰撞事故再现技术研究的现状与发展方向.公路交通科技, 2002, 19(2):122-125
    [11] EEVC. European Experimental Vehicles Committee, http://www.eevc.org
    [12] NASTHA. National Highway Traffic Safety Administration, http://www-nrd.nhtsa.dot.gov
    [13] JARI. Japan Automobile Research Institute, http://www.jari.or.jp
    [14] ISO. International Standards Organization, http://www.iso.org
    [15] Huijbers J.J.W., Janssen E.G. Experiment and mathematical car-bicycle collision simulations. SAE 881726, 1988
    [16] Otte D. Injury mechanism and crash kinematic of cyclists in accidents-an analysis of real accidents. SAE 892425, 1989
    [17] Haight W.R., Eubanks J.J. Trajectory analysis for collisions involving bicycles andautomobiles. SAE 900368, 1990
    [18] Maki T., Asai T., Kajzer J. The behavior of bicyclists in accidents with cars. JSAE Review, 2000, 21:357-363
    [19] Werner S., Newberry W., Fijan R. Modeling of bicycle rider collision kinematics. SAE 2001-01-0765, 2001
    [20] McLundie W.M. Simulation of 2-wheeled rider to car accident scenarios, using an adapted LS-DYNA pedestrian humanoid. Proceedings of the 18th International Conference on the Enhanced Safety of Vehicle (ESV), Nagoya, Japan, May 19-22, 2003
    [21] Severy D.M., Brink H.M., Blaisdell D.M. Motorcycle Collision Experiments. In Proceedings of the 14th Stapp Car Crash Conference, Society of Automotive Engineers, Warrendale, PA, 1970
    [22] THOM, D.R. and HURT, H.H. Basilar skull fractures in fatal motorcycle crashes. 37th Annual Conference of the Association for the Advancement of Automotive Medicine, 1993, pp. 61-76
    [23] Bly H. A review of motorcycle safety. Proceedings of the 14th International Conference on the Enhanced Safety of Vehicle (ESV), Munich, Germany, May 1994
    [24] International Standard ISO 13232. Motorcycles-Test and analysis procedures for research evaluation of rider crash protective devices fitted to motorcycles. International Standards Organizations, Geneva, December 1996
    [25] Osendorfer H., Rauscher S. The development of a new class of two-wheeler vehicles. Proceedings of the 17th International Conference on the Enhanced Safety of Vehicle (ESV), Amsterdam, Netherlands, June 2001
    [26] Chawla A., Mukherjee S., Mohan D., et al. FE simulations of motorcycle-car frontal crashes, validation and observations. Proceedings of the 18th International Conference on the Enhanced Safety of Vehicle (ESV), Nagoya, Japan, May 19-22, 2003
    [27] Deguchi M. Modeling of a motorcycle for collision simulation. Proceedings of the 18th International Conference on the Enhanced Safety of Vehicle (ESV), Nagoya, Japan, May 19-22, 2003
    [28] Deguchi M. Simulation of motorcycle of motorcycle-car collision. Proceedings of the 19th International Conference on the Enhanced Safety of Vehicle (ESV), Washington D.C., USA, June 6-9, 2005
    [29] Husher S., Smith T., Hermitte T. Computational analysis of motorcycle crash tests-a basis for motorcycle accident reconstruction. Proceedings of the 19th International Conference on the Enhanced Safety of Vehicle (ESV), Washington D.C., USA, June 6-9, 2005
    [30]许洪国,苏键,高蔚等.汽车-自行车碰撞速度确定的探讨.中国公路学报, 1996, 9(03):100-103
    [31]宋景芬,张国方.摩托车碰撞交通事故再现研究.武汉汽车工业大学学报, 1999, 21(2):1-3
    [32]袁泉,李一兵,梅冰松.汽车撞行人和骑自行车人事故特征参数对比研究.交通运输工程与信息学报, 2005, 3(3):92-99
    [33]李发宗,陈胜金,朱西产等.摩托车与汽车侧面碰撞计算机仿真.武汉理工大学学报(交通科学与工程版), 2005, 29(4):583-586
    [34]林庆峰,许洪国,成波.交通事故行人、骑车人和自行车抛距模型.交通运输系统工程与信息, 2006, 6(6):73-78
    [35]郭磊,金先龙,申杰等.汽车-自行车碰撞事故三维仿真再现研究.振动与冲击, 2006, 25(6):66-70
    [36] Wismans J.S.H.M., Janssen E.G., Beusenberg M., et al. Injury biomechanics. Netherlands: Eindhoven University of Technology, 1994
    [37] TNO. MADYMO model manual version 6.2. TNO, Holland, 2004
    [38] Iijima S., Hosono S., Ota A., et al. Exploratory study of an airbag concept for a large touring motorcycle. Proceedings of the 16th International Conference on the Enhanced Safety of Vehicle (ESV), Ontario, Canada, May 1998
    [39] Maki T., Kajzer J. The behavior of bicyclists in frontal and rear crash accidents with cars. JSAE Review, 2001, 22:357-363
    [40] Maki T., Kajzer J., Mizuno K., Sekine Y. Comparative analysis of vehicle-bicyclist and vehicle-pedestrian accidents in Japan. Accident Analysis and Prevention, 2003, 35:927-940
    [41] Berg F.A., Rücker P., G?rtner M. Motorcycle impacts into roadside barriers-real-world accidents studies, crash tests and simulations carried out in Germany and Australia. Proceedings of the 19th International Conference on the Enhanced Safety of Vehicle (ESV), Washington D.C., USA, June 6-9, 2005
    [42] Auken R.M.V., Zellner J.W., Smith T. Development of an improved neck injury assessment criteria for the ISO 13232 motorcyclist anthropometric test dummy. Proceedings of the 19th International Conference on the Enhanced Safety of Vehicle (ESV), Washington D.C., USA, June 6-9, 2005
    [43] Namiki H., Nakamura T., Iijima S. A computer simulation for motorcycle rider injury evaluation in collision. Proceedings of the 19th International Conference on the Enhanced Safety of Vehicle (ESV), Washington D.C., USA, June 6-9, 2005
    [44] Ibitoye A.B., Hamouda A.M.S., Wong S.V., et al. Simulation of motorcyclist’s kinematics during impact with W-Beam guardrail. Advances in Engineering Software, 2006, 37:56-61
    [45]郭磊,金先龙,张晓云等.自行车碰撞事故的动力学响应仿真,系统仿真学报, 2007,19(14):3331-3334
    [46]刘军勇,金先龙,张晓云等.轿车-自行车碰撞事故再现及仿真试验.上海交通大学学报, 2008, 42(6):865-869
    [47]乔维高,朱西产,王仲范.车辆类型对行人碰撞伤害的影响分析及模拟.农业机械学报, 2005, 36(10):42-45
    [48]邹冬华,刘宁国,陈建国等.轿车与自行车碰撞事故仿真研究及骑车者致伤特点分析.法医学杂志, 2007, 23(4):250-253
    [49]刘宁国,邹冬华,毛明远等.骑跨伤在机动车碰撞自行车事故中的特征及生物力学分析.法医学杂志, 2007, 23(6):401-404
    [50]田利华,刘开俊,胡高等.道路交通伤机动车碰撞类型比较研究.中华创伤杂志, 2002, 18(6):332-335
    [51]洪嘉振.计算多体动力学.北京:高等教育出版社, 2003
    [52]刘延柱,洪嘉振,杨海兴.多刚体系统动力学,北京:高等教育出版社, 1989
    [53] TNO. MADYMO theory manual version 6.2. TNO, Holland, 2004
    [54]黄世霖,张金换,王晓冬等.汽车碰撞与安全.北京:清华大学出版社, 2000
    [55]张君媛.微型客车乘员约束系统参数优化与系统性能稳定性研究.博士学位论文,吉林大学, 2003
    [56]申杰.汽车-行人碰撞事故再现研究与应用.博士学位论文,上海交通大学, 2007
    [57]陈乐生,王以伦.多刚体动力学基础.哈尔滨:哈尔滨工程大学出版社, 1995
    [58]张晓云.基于车身三维变形的汽车碰撞事故再现研究.博士学位论文,上海交通大学, 2004
    [59] Belytschko T., Liu W.K., Moran B. Nonlinear finite Elements for continua and structures. West Sussex: John Wiley & Sons, 2000
    [60]王勖成,邵敏.有限元基本原理和数值方法(第二版).北京:清华大学出版社, 1997
    [61] Hallquist J.O. LS-DYNA theoretical manual. Livermore: LSTC, 1998
    [62]王正国.交通医学.天津:天津科学技术出版社, 1997
    [63] Sacks J.J., Holmgreen P, Smith S, et al. Bicycle-associated head injuries and deaths in the United States from 1984-1988. JAMA 1991, 266:3016-3018
    [64] Consumer Products Safety Commission. Bicycle-related head injury or death. USA,Washington (DC):CPSC, 1994
    [65] Mccarthy M., Gilbert K. Cyclist road deaths in London 1985-1992: drivers, vehicles, manoeuvres and injuries. Accident Analysis and Prevention, 1996, 28:275-279
    [66] Depreitere B., Lierde C.V., Maene S., et al. Bicycle-related head injury: a study of 86 cases. Accident Analysis and Prevention, 2004, 36:561-567
    [67] Neilson L.D. Pedestrian and cyclist protection on road vehicles with high or flat fronts.Proceedings of the 17th International Conference on the Enhanced Safety of Vehicle (ESV), Amsterdam, Netherlands, June 2001
    [68] NHTSA. Traffic Safety Facts 2005. National Highway Traffic Safety Administration National Center for Statistics & Analysis, USA, 2005
    [69] DfT. Road Casualties Great Britain: 2004. Department for Transport, UK, 2004
    [70] RODGERS G.B. Bicyclist deaths and fatality risk patterns. Accident Analysis and Prevention, Accident Analysis and Prevention, 1995, 27:215-223
    [71] Callaghan M.J. Lower body problems and injury in cycling. Journal of Bodywork and Movement Therapies, 2005, 9:226-236
    [72] Toro K., Hubay M., Sotonyi P., Keller E. Fatal traffic injuries among pedestrians, bicyclists and motor vehicle occupants. Forensic Science International, 2005, 151:151-156
    [73] Wyatt J.P., Donnellb J.O., Beard D., Busuttil A. Injury analyses of fatal motorcycle collisions in south-east Scotland. Forensic Science International, 1999, 104:127-132
    [74]童建菁,陈尔真,史以珏等.上海市2003年道路交通事故伤流行病学分析.中华急救医学, 2005, 25(10):738-741
    [75]张丹. 1998-2005年灵宝市道路交通事故流行病学研究.硕士学位论文,复旦大学, 2007
    [76]张弢,王繁泷,梅冰松等.自行车道路交通事故损伤特征研究与应用,中国法医学杂志, 2003, 18(1):21-22
    [77]林汉生,王声涌.交通事故伤与碰撞类型的关系.中华创伤杂志, 1995, 11(2):75-77
    [78]曾四清.自行车交通事故死亡的现状及其预防对策.国外医学社会医学分册, 1995, 12(2):49-53
    [79]王正国.自行车伤.中华创伤杂志, 1999, 11(2):222-226
    [80]陈尔真,童建菁,史以珏等.上海市道路交通事故伤亡人员特征分析.中华急诊医学杂志, 2006, 15(8):728-731
    [81]张冬先.摩托车交通事故损伤特征和法医学应用研究.硕士学位论文,昆明医学院, 2007
    [82]贾振林,蔡方敏,郑慧等.摩托车致伤768例分析.菏泽医专学报, 1999, 11(2):51-52
    [83]曾晓锋.道路交通事故所致骨折特点、致伤机制及其与交通方式关系的研究.硕士学位论文,昆明医学院, 2007
    [84] Viano C., King A.I., Melvin J.W., et al. Injury biomechanics research: an essential element in the prevention of trauma. Journal of Biomechanics, 1989, 22(5):403-417.
    [85]赵子琴,陈玉川,张益鹄等.法医病理学(第三版).北京:人民卫生出版社, 2004
    [86] Ankarath S., Giannoudis P.V., Barlow I., et al. Injury patterns associated with mortality following motorcycle crashes. Injury, Int. J. Care Injured, 2002, 33:473-477
    [87] Bradbury A., Robertson C. Pattern and severity of injury sustained by motorcyclists in roadtraffic accidents in Edinburgh, Scotland. Health Bull (Edinburgh), 1993, 51(2):86-91
    [88] Gotzen L. The abbreviated injury scale-1990 revision. USA: Association for the Advancement of Automotive Medicine, 1990
    [89] Lissner H.R., Lebow M., Evans F.G. Experimental studies on the relation because acceleration and intracranial pressure changes in man. Surgery Gynecology and Obstetrics, 1960, 111:329-338
    [90] Versace J. A review of the severity index. SAE 710881, 1971
    [91] Kuppa S. Injury criteria for side impact dummies. USA: National Highway Traffic Safety Administration, 2004
    [92] Eppinger R.H., Marcus J.H., Morgan R.M. Development of dummy and injury index for NHTSA’s thoracic side impact protection research program. SAE 840885, 1984
    [93] Morgan R.M., Marcus J.H., Eppinger R.H. Side impact-the biofidelity of NHTSA’s proposed ATD and efficacy of TTI. Proceedings of the 30th Stapp Car Crash Conference, SAE 861877, 1986
    [94] Cavanaugh J.M., Zhu Y., Huang Y., et al. Injury and response of the thorax in side impact cadaveric tests. Proceedings of the 37th Stapp Car Crash Conference, San Antonio, Texas, 1993
    [95] Lau I.V., Viano D.C. Influence of impact velocity on the severity of nonpenetrating hepatic injury. Journal of Trauma, 1981, 21:115-123
    [96] Nyquist H.B., Cheng R., El-Bohy A.A.R., et al. Tibia bending: strength and response. SAE 851728, 1985
    [97] Yang J.K., L?vsund P.J., Cavallero C., et al. A human-body 3D mathematical model for simulation of car-pedestrian impacts. International Journal of Crash Prevention and Injury control, 2000, 2(2):131-149
    [98] European Enhanced Vehicle-safety Committee. EEVC working group 17 report-improved test methods to evaluate pedestrian protection afforded by passenger cars. European Commission: EEVC, 1998
    [99]高士濂.实用解剖图谱,上肢分册.北京:上海科学技术出版社, 2004
    [100]王怀经.局部解剖学.北京:人民卫生出版社, 2005
    [101] Maeno T., Hasegawa J. Development of a finite element model of the total human model for safety (THUMS) and application to car-pedestrian impacts. Proceedings of the 17th International Conference on the Enhanced Safety of Vehicle (ESV), Amsterdam, Netherlands, June 2001
    [102] Iwamoto M., Kisanuki Y., Watanabe I., et al. Development of a finite element model of thetotal human model for safety (THUMS) and application to injury reconstruction. Proceedings of the International IRCOBI Conference on the Biomechanics of Impacts, Munich, Germany, September 2002
    [103] McElhaney J. Dynamic response of bone and muscle tissue. Journal of Applied Physiology, 1966, 21(4):1231-1236
    [104] Untaroiu C., Darvish K., Crandall J., et al. Development and validation of a finite element model of the lower limb. Proceedings of 2004 ASME International Mechanical Engineering Congress and RD&D Congress, Anaheim, USA, November 13-17, 2004
    [105] Yamada H. Strength of biological materials. Baltimore Maryland: Williams and Wilkins, 1973
    [106] Frankel V.H., Nordin M. Basic Biomechanics of the skeletal system. USA: Lea & Febiger, 1980
    [107] Crandall J.R., Portier L., Petit P., et al. Biomechanical response and physical properties of the leg, foot and ankle. Proceedings of the 40th Stapp Car Crash Conference, Albuquerque, New Mexico, November 1996
    [108] Rooij L. van, Meissner M., Bhalla K., et al. The evaluation of the kinematics of the MADYMO human pedestrian model against experimental tests and the influence of a more biofidelic knee joint. Proceedings of the 5th MADYMO Users’Meeting of the Americas, Troy, Michigan, October 2003
    [109] TNO. MADYMO reference manual version 6.2. TNO, Holland, 2004
    [110] Dokko Y., Anderson R., Manavis J., et al. Validation of the human head FE model against pedestrian accident and its tentative application to the examination of the existing tolerance curve. Proceedings of the 18th International Conference on the Enhanced Safety of Vehicle (ESV), Nagoya, Japan, May 19-22, 2003
    [111] TNO. MADYMO tyremodels manual version 6.2. TNO, Holland, 2004
    [112] Bakker E., Pacejka H.B., Lidner L. A New Tire Model with an Application in Vehicle Dynamics Studies, SAE 890087, 1989
    [113] Pacejka H.B., Bakker E. The Magic Formula Tire Model, Proceedings 1st International Colloquium on Tire Models for Vehicle Dynamics Analysis, Swets & Zeitlinger B.V., Amsterdam/Lisse, 1993
    [114] Cooney W.P., Chao E.Y. Biomechanical Analysis of Static Forces in the Thumb. The Journal of Bone and Joint Surgery, 1977, 59:27-36
    [115] Astin A. D. Finger force capability: measurement and prediction using anthropometric and myoelectric measures. Master paper, USA, 1999
    [116] Vigouroux L., Quaine F., Labarre-Vila L., et al. Estimation of finger muscle tendon tensions and pulley forces during specific sport-climbing grip techniques. Journal of Biomechanics,2006, 39:2583-2592
    [117]雷正保,钟志华.汽车碰撞仿真研究发展趋势.长沙交通学院学报, 1999, 15(1):18-22
    [118] Hughes T.J.R., Taylor R.L., Sackman J.L., et al. A finite element method for a class of contact-impact problems. Computer Method in Applied Mechanics and Engineering, 1976, 8: 249-276
    [119]甄希金.载人机动摩托车的动态特性及其平顺性研究.硕士学位论文,山东大学, 2005
    [120]黄泽好.摩托车人-机刚柔耦合系统动态特性研究.博士学位论文,重庆大学, 2007
    [121] Mammar S., Espie S., Honvo C. Motorcycle modeling and roll motion stabilization by rider leaning and steering torque. Proceedings of the 2005 IEEE Conference on Control Applications Toronto, Canada, August 28-31, 2005
    [122]郭孔辉,吴海东,卢荡.冰面上轮胎稳态侧偏刷子模型.吉林大学学报(工学版), 2007, 37(2):253-258
    [123]彭旭东,郭孔辉,谢友柏.干燥路面上轿车轮胎侧偏特性试验.上海交通大学学报, 2006, 40(1):148-151
    [124]尚进,管迪华,任礼行.利用模态参数模型研究轮胎稳态侧偏特性.清华大学学报(自然科学版) , 1999, 39(4):64-67
    [125]正交试验法编写组.正交试验法.北京:国防工业出版社, 1976
    [126]张铁茂,丁建国.试验设计与数据处理.北京:兵器工业出版社, 1990
    [127] Rooij L. van, Bhalla K., Meissner M., et al. Pedestrian crash reconstruction using multi-body modeling with geometrically detailed, validated vehicle models and advanced pedestrian injury criteria. Proceedings of the 18th International Conference on the Enhanced Safety of Vehicle (ESV), Nagoya, Japan, May 19-22, 2003
    [128] Steffan D. PC-CRASH Technical Manual. Austria: Maclnnis Engineering, 2001
    [129] Mizuno K., Kajzer J. Head injuries in vehicle-pedestrian impact. SAE 2000-01-0157, 2000
    [130] Ishikawa H., Kajzer J., Schroeder G. Computer simulation ofimpact response of the human body in car-pedestrian accidents. Proceedings of the 37th STAPP Car Crash Conference, 1993, 235-248
    [131] Linder A., Douglas C., Clark A., et al. Mathematical simulations of real-world pedestrian-vehicle collisions. Proceedings of the 19th International Conference on the Enhanced Safety of Vehicle (ESV), Washington D.C., USA, June 6-9, 2005
    [132] Janssen E.G., Wismans J.S.H.M. Experimental and mathematical simulation of pedestrian-vehicle and cyclist-vehicle accidents. Proceedings of the 10th International Technical Conference on Experimental Safety Vehicles, 1985, 977-988
    [133] Otte D. Injury mechanism and crash kinematics of cyclists in accidents-an analysis of real accidents, SAE STAPP 892425, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700