七氟烷预处理对兔脊髓缺血/再灌注损伤保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】尽管临床上已采用多种方法减轻脊髓缺血损伤,但是胸腹主动脉瘤手术患者不可避免发生脊髓缺血,有数据显示3%~18%患者发生永久性损伤(急性截瘫和/或延迟性截瘫)。除此之外,脊髓肿瘤压迫,脊柱畸形,椎管狭窄等患者围手术期也会出现脊髓缺血/再灌注损伤。截瘫造成患者失去工作能力并担负巨额的医疗费用,给患者本人及家庭造成深痛的打击和巨大的经济负担,同时加重整个社会的医疗保险的负担。
     七氟烷具有刺激性低,诱导、苏醒迅速,麻醉维持平稳,肝、肾毒性低,心律失常发生率低等优点,被广泛应用于临床麻醉。已有研究报道,七氟烷预处理可诱导缺血耐受,对缺血、缺氧的心、脑起保护作用,但其对脊髓缺血/再灌注损伤是否具有保护作用尚不清楚。
     本研究采用兔肾下腹主动脉阻闭20min缺血/再灌注模型,研究单次七氟烷预处理是否可诱导快速缺血耐受,减轻脊髓缺血/再灌注损伤,并探讨其可能的作用机制。
     【方法】雄性新西兰大白兔,2.0千克~2.9千克。
     实验一:随机分为2组,每组各6只动物。I/R组动物行20min脊髓缺血后再灌注48h。Sham组动物接受同样的麻醉和手术准备,但不行缺血/再灌注损伤。于再灌注后4h,8h,12h,24h及48h行后肢运动功能评分,再灌注后48h取L5节段脊髓行HE染色、p-ERK1/2染色、Fluoro-Jade B染色和TUNEL染色。计数脊髓前角正常神经元、Fluoro-Jade B阳性神经元和TUNEL阳性神经元。
     实验二:随机分为4组,每组10只动物。Sev+W1h组和Sev+W15min组动物面罩密闭吸入3.7%(1.0MAC)七氟烷+96%氧气预处理30min,分别洗脱1h或15min;O2+W1h组和O2+W15min组动物面罩密闭吸入96%氧气30min,分别洗脱1h或15min;4组动物均行20min脊髓缺血后再灌注48h。于再灌注后4h,8h,12h,24h及48h行后肢运动功能评分,再灌注后48h取L5节段脊髓行HE染色和脊髓前角正常神经元计数。
     实验三:随机分为2大组,Sev组和O2组。Sev组动物面罩密闭吸入3.7%(1.0MAC)七氟烷+96%氧气预处理30min;O2组动物面罩密闭吸入96%氧气30min,两组动物均洗脱1h后行脊髓缺血20min后再灌注。每组分别按最后观察点为再灌注后8h,1d,2d,3d,5d,7d分为六组,每组6只动物。于再灌注后8h,1d,2d,3d,5d,7d行后肢运动功能评分,取L5节段脊髓行HE染色、Fluoro-Jade B染色和TUNEL染色。计数脊髓前角正常神经元、Fluoro-Jade B阳性神经元和TUNEL阳性神经元。
     实验四:随机分为4组,每组8只动物。Vehicle+Sev组和Vehicle+O2组动物静脉注射溶剂DMSO 50μL/kg,20min后分别吸入七氟烷和氧气预处理;U0126+Sev组和U0126+O2组动物静脉注射50μL/kg 0.4% U0126(溶于DMSO),20min后分别吸入七氟烷和氧气预处理;预处理方法和兔脊髓缺血/再灌注方法同实验三。于再灌注后4h,8h,12h,24h及48h行后肢运动功能评分,再灌注后48h取L5节段脊髓行HE染色、Fluoro-Jade B染色和TUNEL染色。计数脊髓前角正常神经元、Fluoro-Jade B阳性神经元和TUNEL阳性神经元。
     【结果】
     实验一:再灌注48h时,与Sham组相比,I/R组动物后肢运动功能评分降低,脊髓前角正常神经元数量显著减少,脊髓前角Fluoro-Jade B阳性神经元数量和TUNEL阳性神经元数量显著增多(P < 0.01);脊髓组织白质p-ERK1/2大量表达,并与星形胶质细胞标记物GFAP复染,但脊髓前角神经元没有表达p-ERK1/2。
     实验二:再灌注48h时,与O2+W1h组相比,Sev+W1h组动物后肢运动功能评分增高,脊髓前角正常神经元数量显著增多(P<0.01),而Sev+W15min组和O2+W15min组比较差异无显著意义(P > 0.05)。
     实验三:再灌注后1d起,Sev组动物后肢运动功能评分显著高于O2组(P < 0.05),再灌注后2d~7d,每组动物后肢运动功能评分随时间变化无显著差异(P > 0.05); 2组动物脊髓前角神经元计数均从再灌注后8h开始减少,48h时计数减到最少,随后没有显著变化(P > 0.05),各时间点Sev组动物脊髓前角正常神经元数量显著多于O2组(P < 0.05); Sev组动物的脊髓前角变性神经元计数从再灌注后8h开始从0增加,3d时计数增至最多,随后逐渐减少;O2组动物脊髓前角变性神经元计数8h时已增加,至3d时增至最多,随后逐渐减少,7d时2组动物脊髓前角Fluoro-Jade B阳性神经元计数均为0,其余各时间点Sev组动物脊髓前角Fluoro-Jade B阳性神经元数量显著少于O2组(P < 0.05); 2组动物脊髓前角凋亡神经元计数均从再灌注后8h以后开始从0增加,2d时计数增至最多,随后逐渐减少;7d时均减至0点,再灌注后1d~5d时Sev组动物脊髓前角TUNEL阳性神经元数量显著少于O2组(P < 0.05)。
     实验四:再灌注48h时,与Vehicle+O2组和U0126+Sev组相比,Vehicle+Sev组动物后肢运动功能评分增高,脊髓前角正常神经元数量显著增多,脊髓前角Fluoro-Jade B阳性神经元数量和TUNEL阳性神经元数量显著减少(P≤0.01),而U0126+Sev组与U0126+O2组比较实验结果差异无统计学意义(P > 0.05)。
     【结论】
     1.脊髓缺血20min再灌注后5d内脊髓前角运动神经元发生变性和凋亡,证实神经元变性和凋亡是缺血/再灌注后脊髓前角运动神经元损伤、死亡的重要形式。
     2.脊髓缺血20min再灌注48h时星形胶质细胞p-ERK1/2表达阳性,脊髓神经元无p-ERK1/2表达。证实ERK1/2的激活在脊髓缺血/再灌注中扮演重要角色。
     3.缺血前1h给予30min 3.7%(1.0MAC)七氟烷预处理可以诱导快速缺血耐受,减轻兔脊髓缺血20min再灌注神经损伤。
     4.缺血前1h给予30min 3.7%(1.0MAC)七氟烷预处理诱导快速缺血耐受的保护效果可以持续至再灌注后7d,此时神经元变性和凋亡均已结束,证实七氟烷预处理是通过减轻神经损伤而不是延迟神经损伤对脊髓缺血/再灌注起保护作用。
     5. ERK1/2抑制剂U0126可以抑制七氟烷预处理对脊髓缺血/再灌注损伤的保护作用,同时也抑制了七氟烷预处理减轻脊髓组织缺血/再灌注后前角运动神经元变性和凋亡的作用。一定程度上说明七氟烷预处理通过激活ERK1/2磷酸化,抑制其下游神经元变性和凋亡对脊髓缺血/再灌注损伤起保护作用。
【Background】Despite many strategies have been developed to increase the ischemic tolerance of spinal cord and minimize the incidence of neurological complications, spinal cord ischemia occurred in the patients undergoing thoracic aorta or thoracoabdominal aorta aneurysm surgery. The quoted figure 3% to 18% was incidence of residual permanent injury (acute and/or delayed paraplegia) caused by the ischemic episode. Spinal cord ischemia/reperfusion (I/R) injury could also take place during spinal surgery of tumor, disc decompression and deformity. The social expense associated with the medical management and lost earnings of this disorder over the course of one’s life was significant.
     Sevoflurane, as a novel inhalational anesthetic with minimal pungency, low solubility, less hepatic toxicity, and absence of arrhythmogenicity is a preferable choice in clinic. Recently, studies demonstrated that sevoflurane preconditioning could induce ischemic tolerance in brain and heart, and alleviate hypoxic and ischemic injury. However, few study attempting to describe the protective effect of this agent on spinal cord I/R appeared.
     The present study was designed to investigate whether sevoflurane preconditioning could induce rapid ischemic tolerance to spinal cord in a rabbit model of transient spinal cord ischemia, and the potential mechanism of the protection.
     【Methods】New Zealand White male rabbits (2.0 kg - 2.9 kg) were used in this experiment.
     Protocol 1: Animals were randomly assigned to 2 groups (n = 6, each). Animals in the I/R group received spinal cord I/R induced by infrarenal aorta occlusion for 20 min; Sham group received the same anesthesia and surgical preparation but no preconditioning or spinal cord I/R. All animals were assessed at 4 h, 8 h, 12 h, 24 h and 48 h after reperfusion with modified Tarlov criteria, and the spinal cord segments (L5) were harvested 48 h after reperfusion for HE staining, Fluoro-Jade B staining, TUNEL staining and p-ERK1/2 immunofluorescent staining.
     Protocol 2: Animals were randomly assigned to 4 groups (n = 10, each). Animals in the Sev+W1h group and Sev+W15min group received preconditioning with 3.7% sevoflurane (1.0 MAC) in 96% oxygen for 30 min 1 h or 15 min after preconditioning, animals were subjected to spinal cord I/R respectively. Animals in the O2+W1h group and O2+W15min group as control inhaled only 96% oxygen for 30 min instead. All animals were assessed at 4 h, 8 h, 12 h, 24 h and 48 h after reperfusion with modified Tarlov criteria, and the spinal cord segments (L5) were harvested 48 h after reperfusion for histopathological examination.
     Protocol 3: Animals were randomly assigned to 2 groups. Animals in the Sev group received preconditioning with 3.7% sevoflurane (1.0 MAC) in 96% oxygen for 30 min, while animals in the O2 group as control inhaled only 96% oxygen for 30 min instead. One hour after preconditioning, the animals were subjected to spinal cord I/R. Animals in each group were randomly assigned to 6 small groups by their end point of investigation (8 h, 1 d, 2 d, 3 d, 5 d, 7 d after reperfusion, n = 6, each). All animals were assessed at 8 h, 1 d, 2 d, 3 d, 5 d, 7 d after reperfusion with modified Tarlov criteria, and the spinal cord segments (L5) were harvested for HE staining, Fluoro-Jade B staining and TUNEL staining.
     Protocol 4: Animals were randomly assigned to 4 groups (n = 8). U0126, an ERK1/2 inhibitor, was administered intravenously 20 min before the beginning of preconditioning in the U0126 + O2 and U0126 + Sev groups. DMSO was administered intravenously at the same time in the Vehicle + O2 and Vehicle + Sev groups. Animals were subjected to spinal cord I/R 1 h after preconditioning. The methods of preconditioning and spinal cord I/R procedure were the same as described in protocol 3. All animals were assessed at 4 h, 8 h, 12 h, 24 h and 48 h after reperfusion with modified Tarlov criteria, and the spinal cord segments (L5) were harvested 48 h after reperfusion for HE staining, Fluoro-Jade B staining and TUNEL staining.
     Normal motor neurons, Fluoro-Jade B-positive neurons and TUNEL-positive neurons in the anterior of the L5 spinal cord were counted.
     【Results】
     Protocol 1: Compared with Sham group, animals in the I/R group had lower neurological scores, less normal motor neurons, more Fluoro-Jade B-positive neurons and TUNEL-positive neurons in the anterior of spinal cord (P < 0.01) 48 h after reperfusion. There were many p-ERK1/2-positive astroglias (double labled with GFAP, the marker of astroglia) in the white matter of spinal cord in I/R group, while all neurons were p-ERK1/2-negative.
     Protocol 2: 48 h after reperfusion, compared with O2+W1h group, animals in the Sev+W1h group had higher neurological scores and more normal motor neurons in the anterior of spinal cord (P < 0.01). There was no difference between the Sev+W15min group and O2+W15min group (P > 0.05).
     Protocol 3: From 1 d after reperfusion, animals in Sev group had higher neurological scores than those in O2 group (P < 0.05). There was no significant change of neurological scores from 2 d to 7 d after reperfusion in every group (P > 0.05). The number of normal neurons in the anterior of spinal cord decreased from 8 h after reperfusion in 2 groups, and downed to the bottom at 48 h after reperfusion, then the number had no significant change (P > 0.05). Animals in Sev group had more normal motor neurons than O2 group at every investigative time point (P < 0.05). The number of Fluoro-Jade B-positive neurons in the anterior of spinal cord increased from 8 h after reperfusion in Sev group, while it increased before 8 h after reperfusion in the O2 group, and rose to the top at 3 d after reperfusion, then decreased to zero at 7 d after reperfusion gradually. Animals in Sev group had less Fluoro-Jade B-positive neurons than O2 group at every investigative point except 7 d after reperfusion (P < 0.05). The number of TUNEL-positive neurons in the anterior of spinal cord elevated from 8 h after reperfusion in 2 groups, and rose to the top at 2 d after reperfusion, then decreased to zero at 7 d after reperfusion gradually. Animals in Sev group had less TUNEL-positive neurons than O2 group from 1 d to 5 d after reperfusion (P < 0.05).
     Protocol 4: Compared with Vehicle+Sev group, U0126+Sev group presented worse neurological outcomes, fewer viable neurons and more degenerative neurons and more apoptotic neurons (P≤0.01 for each comparison). There were no significant differences in the outcomes among Vehicle+O2, U0126+O2, and U0126+Sev groups (P > 0.05).
     【Conclusion】
     1. This study demonstrates that neuronal degeneration and apoptosis are important mechanisms of spinal cord I/R injury, as they presented within 5 d after spinal cord I/R.
     2. This experiment indicates that ERK1/2 plays a crucial role in spinal cord I/R, because there were many p-ERK1/2-positive astroglias in the white matter of spinal cord in animals suffered spinal cord I/R, while all neurons were negative staining.
     3. The investigation displays that 3.7% (1.0 MAC) sevoflurane preconditioning 1 h before ischemia induces rapid tolerance to spinal cord I/R in rabbits.
     4. The research proves that the protection of sevoflurane preconditioning is caused by attenuating neurological injury instead of delaying the injury. The beneficial effect could last 7 d after reperfusion, and there were no neuronal degeneration or apoptosis at that time.
     5. This test indicates that sevoflurane preconditioning induced rapid tolerance to spinal cord I/R in rabbits is possibly mediated through the activation of ERK1/2 and the pathway of ERK1/2 mediated for anti-apoptosis in the spinal cord.
引文
1. Svensson LG, Grawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg, 1993,17(2):357-68
    2. MacArthur RG, Carter SA, Coselli JS, LeMaire SA. Organ protection during thoracoabdominal aortic surgery: rationale for a multimodality approach. Semin Cardiothorac Vasc Anesth, 2005,9(2):143-9
    3. Kitagawa K, Matsumoto M, Tagaya M, Hata R, Uede H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, et al.‘Ischemic tolerance’phenomenon found in the brain. Brain Res, 1990,528(1):21-4
    4. Dong H, Xiong L, Zhu Z, Chen S, Hou L, Sakabe T. Preconditioning with hyperbaric oxygen and hyperoxia induces tolerance against spinal cord ischemia in rabbits. Anesthesiology, 2002,96(4):907-12
    5. Nie H, Xiong L, Lao N, Chen S, Xu N, Zhu Z. Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits. J Cereb Blood Flow Metab, 2006,26(5):666-74
    6. Xiong L, Zheng Y, Wu M, Hou L, Zhu Z, Zhang X, Lu Z. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of adenosine triphosphate-regulated potassium channels after focal cerebral ischemia in rats. Anesth Analg, 2003,96(1):233-7
    7. Sang H, Cao L, Qiu P, Xiong L, Wang R, Yan G. Isoflurane produces delayed preconditioning against spinal cord ischemic injury via release of free radicals in rabbits. Anesthesiology, 2006,105(5):953-60
    8. Zhang X, Xiong L, Hu W, Zheng Y, Zhu Z, Liu Y, Chen S, Wang X. Preconditioning with prolonged oxygen exposure induces ischemic tolerance in the brain via oxygen free radical formation. Can J Anaesth, 2004,51(3):258-63
    9. Xiong L, Lu Z, Hou L, Zheng H, Zhu Z, Wang Q, Chen S. Pretreatment with repeated electroacupuntare attenuates transient focal cerebral ischemic injury in rats. Chin Med J (Engl), 2003,116(1):108-11
    10. Wang Q, Xiong L, Chen S, Liu Y, Zhu X. Rapid tolerance to focal cerebral ischemia in rats is induced by preconditioning with electroacupuncture: window of protection and the role of adenosine. Neurosci Lett, 2005, 381(1-2):158-62
    11. Pape M, Engelhard K, Eberspa¨cher E, Hollweck R, Kellermann K Zintner S, Hutzler P, Werner C. The long-term effect of sevoflurane on neuronal cell damage and expression of apoptotic factors after cerebral ischemia and reperfusion in rats. Anesth Analg, 2006,103(1):173-9
    12. Wang J, Lei B, Popp S, Meng F, Cottrell JE, Kass IS. Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. Neuroscience, 2007,145(3):1097- 107
    13. Barinaga M. New view of spinal cord injury. Science, 1996,274(5292): 1466
    14. Sakurai M, Hayashi T, Abe K, Sadahiro M, Tabayashi K. Delayed and selective motor neuron death after transient spinal cord ischemia: a role of apoptosis? J Thorac Cardiovasc Surg, 1998,115(6):1310-5
    15. Matsushita K, Wu Y, Qiu J, Lang-Lazdunski L, Hirt L, Waeber C, HymanBT, Yuan J, Moskowitz MA. Fas receptor and neuronal cell death after spinal cord ischemia. J Neurosci, 2000, 20(18):6879-87
    16. Kiyoshima T, Fukuda S, Matsumoto M, Iida Y, Oka S, Nakakimura K, Sakabe T. Lack of evidence for apoptosis as a cause of delayed onset paraplegia after spinal cord ischemia in rabbits. Anesth Analg, 2003,96(3): 839-46
    17. Fu Q, Hou C, Li M, Zhao J, Lu K, Shi Z, Xu W. Change of internal ionic environment in local tissue after spinal cord injury in rats. Modern Rehabilitation, 2000,4(11):1684
    18. LoPachin RM, Lehning EJ. Mechanism of calcium entry during axon injury and degeneration. Toxicol Appl Pharmacol, 1997,143(2):233-44
    19. Vink R, McIntosh TK, Demediuk P, Weiner MW, Faden AI. Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma. J Biol Chem, 1988,263(2):757-61
    20. Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis, 2004,19(3-4):151-67
    21. Simpson RK Jr, Robertson CS, Goodman JC. Spinal cord ischemia-induced elevation of amino acids: extracellular measurement with microdialysis. Neurochem Res, 1990,15(6):635-9
    22. Li S, Stys PK. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci, 2000,20(3): 1190-8
    23. Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci, 1999, 22(7):295-9
    24. Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinalcord injury in Sprague-Dawley and Lewis rats. J Comp Neurol, 1997,377(3): 443-64
    25. Tonai T, Taketani Y, Ueda N, Nishisho T, Ohmoto Y, Sakata Y, Muraguchi M, Wada K, Yamamoto S. Possible involvement of interleukin-1 in cyclooxygenase-2 induction after spinal cord injury in rats. J Neurochem, 1999,72(1):302-9
    26. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma, 1999,16(10):851-63
    27. Lavine SD, Hofman FM, Zlokovic BV. Circulating antibody against tumor necrosis factor-alpha protects rat brain from reperfusion injury. J Cereb Blood Flow Metab, 1998,18(1):52-8
    28. Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A, 1995,92(20):9328-32
    29. Cheng B, Christakos S, Mattson MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron, 1994,12(1):139-53
    30. Knoblach SM, Faden AI. Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol, 1998,153(1):143-51
    31. Brewer KL, Bethea JR, Yezierski RP. Neuroprotective effects ofinterleukin-10 following excitotoxic spinal cord injury. Exp Neurol, 1999, 159(2):484-93
    32. Cuzzocrea S. Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/ reperfusion injury. Pharmacol Rev, 2001,51(1):135-59
    33. Sakamoto A, Ohnishi ST, Ohnishi T, Ogawa R. Relationship between free radical production and lipid peroxidation during ischemia-reperfusion injury in the rat brain. Brain Res, 1991,554(1-2):186-92
    34. Lombardi V, Valko L, Stoic S, Valko M, OndrejickováO, HorákováL, Placek J, Troncone A. Free radicals in rabbit spinal cord ischemia: electron spin resonance spectroscopy and correlation with SOD activity. Cell Mol Neurobiol, 1998,18(4):399-412
    35. Danielisova V, Chavko M. KB-2796, a calcium channel blocker, ameliorates ischemic spinal cord damage in rabbits. Neurochem Res, 1994, 19(12):1503-7
    36. Peasley MA, Shi R. Ischemic insult exacerbates acrolein-induced conduction loss and axonal membrane disruption in guinea pig spinal cord white matter. J Neurol Sci, 2003,216(1):23-32
    37. Halestrap AP, Clarke SJ, Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta, 2007,1767(8): 1007-31
    38. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol, 2001,2(1):63-7
    39. Matsumoto S, Friberg H, Ferrand-Drake M, Wieloch T. Blochade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab,1999,19(7):763-41
    40. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev, 2004,68(2):320-44
    41. Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, Nishida E. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem,1997,272(30):18518-21
    42. Kummer JL, Rao PK, Heidenreich KA. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem, 1997,272(33):20490-4
    43. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995,270(5240): 1326-31
    44. Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke, 2003,34(9):2165-70
    45. Guan QH, Pei DS, Zong YY, Xu TL, Zhang GY. Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways. Neuroscience, 2006, 139(2):609-27
    46. Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res, 2008,86(8):1659-69
    47. Irving EA, Barone FC, Reith AD, Hadingham SJ, Parsons AA. Differential activation of MAPK/ERK and p38/SAPK in neruones and glia following focal cerebral ischemia in the rat. Brain Res Mol Brain Res, 2000,77(1):65-75
    48. Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neruopathol Exp Neurol, 2003,62(4):329-39
    49. Friguls B, Petegnief V, Justicia C, Pallas M Planas AM. Activation of ERK and Akt signaling in focal cerebral ischemia: modulation by TGF-alpha and involvement of NMDA receptor. Neurobiol Dis, 2002,11(3):443-56
    50. Kim JM, Lee JC, Chang N, Chun HS, Kim WK. S-Allyl-L-cysteine attenuates cerebral ischemic injury by scavenging peroxynitrite and inhibiting the activity of extracellular signal-regulated kinase. Free Radic Res, 2006,40(8):827-35
    51. Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci U S A, 2001,98(20): 11569-74
    52. Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci, 2000, 20(15):5775-81
    53. Kilic E, Kilic U, Soliz J, Bassetti CL, Gassmann M, Hermann DM. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. FASEB J, 2005,19(14):2026-8
    54. Noble R. The development of resistance by rats and guinea pigs to amount of trauma usually fatal. Am J Physiol, 1943,138:346-56
    55. Janoff A. Alterations in lysosomes (intracellular enzymes) during shock: effects of preconditioning (tolerance) and protective drugs. Int Anesth Clin,1964,2:251-9
    56. Schurr A, Reid KH, Tseng MT, West C, Rigor BM. Adaptation of adult brain tissue to anoxia and hypoxia in vitro. Brain Res, 1986,374(2):244-8
    57. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 1986,74(5): 1124-36
    58. Perdrizet GA, Lena CJ, Shapiro DS, Rewinski MJ. Preoperative stress conditioning prevents paralysis after experimental aortic surgery: increased heat shock protein content is associated with ischemic tolerance of the spinal cord. J Thorac Cardiovasc Surg, 2002,124(1):162-70
    59. Cizkova D, Carmel JB, Yamamoto K, Kakinohana O, Sun D, Hart RP, Marsala M. Characterization of spinal HSP72 induction and development of ischemic tolerance after spinal ischemia in rats. Exp Neurol, 2004,185(1): 97-108
    60. Yu QJ, Wang YL, Zhou QS, Huang HB, Tian SF, Duan DM. Effect of repetivive ischemia preconditioning on spinal cord ischemia in a rabbit model. Life Sci, 2006,79(15):1479-83
    61. Yang C, Ren Y, Liu F, Cai W, Zhang N, Nagel DJ, Yin G. Ischemic preconditioning suppresses apoptosis of rabbit spinal neurocytes by inhibiting ASK1-14-3-3 dissociation. Neurosci Lett, 2008,441(3):267-71
    62. Zvara D, Zboyovski JM, Deal DD, Vernon JC, Colonna DM. Spinal cord blood flow after ischemic preconditioning in a rat model of spinal cord ischemia. ScientificWoeldJournal, 2004,4:892-8
    63. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Criculation, 1993,87(3):893-9
    64. Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury-- a review. J Surg Res, 2008,150(2):304-30
    65. Gurcun U, Discigil B, Boga M, Ozkisacik E, Badak MI, Yenisey C, Kurtoglu T, Meteoglu I. Is remote preconditioning as effective as direct ischemic preconditioning in preventing spinal cord ischemic injury? J Surg Res, 2006,135(2):385-93
    66. Zhao H, Xiong LZ, Dong HL, Chen SY, Lu ZH, Sun YY, Sun J, Gao P. Protective effect of remote ischemic preconditioning against focal cerebral ischemia/reperfusion injury in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2007,19(6):340-2
    67. Ren C, Gao X, Steinberg GK, Zhao H. Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience, 2008,151(4): 1099-103
    68. Vlasov TD, Korzhevskii DE, Polyakova EA. Ischemic preconditionging of the rat brain as a method of endothelial protection from ischemic/ repercussion injury. Neurosci Behav Physiol, 2005,35(6):567-72
    69. Rehni AK, Singh N, Jaggi AS. Possible involvement of insulin, endogenous opioids and calcitonin gene-related peptide in remote ischaemic preconditioning of the brain. Yakugaku Zasshi, 2007,127(6):1013-20
    70. Selimoglu O, Ugurlucan M, Basaran M, Gungor F, Banach M, Cucu O, Ong LL, Gasparyan AY, Mikhailidis D, Ogus TN. Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury: association with heat shock protein expression. Folia Neuropathol, 2008,46(3):204-12
    71. Schubert A. Side effects of mild hypothermia. J Neurosurg Anesthesiol, 1995,7(2):139-47
    72. Sessler DI. Deliberate mild hypothermia. J Neurosurg Anesthesiol, 1995, 7(1):38-46
    73. Mack WJ, Ducruet AF, Angevine PD, Komotar RJ, Shrebnick DB, Edwards NM, Smith CR, Heyer EJ, Monyero L, Connolly ES Jr, Solomon RA. Deep hypothermic circulatory arrest for complex cerebral aneurysms: lessons learned. Neurosurgery, 2007,60(5):815-27
    74. Nishio S, Yunoki M, Chen ZF, Anzivino MJ, Lee KS. Ishemic tolerance in the rat neocortex following hypothermic preconditioning. J Neurosurg, 2000,93(5):845-51
    75. Yunoki M, Nishio S, Ukita N, Anzivino MJ, Lee KS. Hypothermic preconditioning induces rapid tolerance to focal ischemic injury in the rat. Exp Neurol, 2003,181(2):291-300
    76. Yuan HB, Huang Y, Zheng S, Zuo Z. Hypothermic preconditioning increases survival of purkinje neurons in rat cerebellar slices after an in vitro simulated ischemia. Anesthesiology, 2004,100(2):331-7
    77. Strauch JT, Lauten A, Spielvogel D, Rinke S, Zhang N, Weisz D, Bodian CA, Griepp RB. Mild hypothermia protects the spinal cord from ischemic injury in a chronic porcine model. Eur J Cardiothorac Surg, 2004,25(5): 708-15
    78. Wang LM, Yan Y, Zou LJ, Jing NH, Xu ZY. Moderate hypothermia prevents neural cell apoptosis following spinal cord ischemia in rabbits. Cell Res, 2005,15(5): 387-93
    79. Zhang P, Abraham VS, Kraft KR, Rabchevsky AG, Scheff SW, Swain JA. Hyperthermic preconditioning protects against spinal cord ischemic injury.Ann Thorac Surg, 2000,70(5):1490-5
    80. Sasara T, Cizkova D, Mestril R, Galik J, Sugahara K, Marsala M. Spinal heat shock protein (70) expression: effect of spinal ischemia, hyperthermia (42 degrees C)/hypothermia (27 degrees C), NMDA receptor activation and potassium evoked depolarization on the induction. Neurochem Int, 2004, 44(1):53-64
    81. Wada K, Ito M, Miyazawa T, Katoh H, Nawashiro H, Shima K, Chigasaki H. Repeated hyperbaric oxygen induces ischemic tolerance in gerbil hippocampus. Brain Res, 1996,740(1-2):15-20
    82. Xiong L, Zhu Z, Dong H, Hu W, Hou L, Chen S. Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chin Med J (Engl), 2000,113(9):836-9
    83. Ohgami Y, Chung E, Shirachi DY, Quock RM. The effect of hyperbaric oxygen on regional brain and spinal cord levels of nitric oxide metabolites in rat. Brain Res Bull, 2008,75(5):668-73
    84. Wang L, Li W, Kang Z, Liu Y, Deng X, Tao H, Xu W, Li R, Sun X, Zhang JH. Hyperbaric Oxygen Preconditioning Attenuates Early Apoptosis after Spinal Cord Ischemia in Rats. J Neurotrauma, 2009,26:55-66
    85.张民,刘剑波,张宏亮,王伯云,王强,刘艳红,熊利泽.单次电针预处理诱导大鼠局灶性脑缺血耐受的时程.中华麻醉学杂志, 2003,23(5): 355-7
    86.曾毅,熊利泽,陈绍洋,巩固,雷毅,郑恒兴.重复电针预处理对兔脊髓缺血损伤后热休克蛋白90表达的影响.针刺研究, 2004,29(4):261-5
    87.曾毅,熊利泽,陈绍洋,雷毅,雷霆.重复电针预处理对兔脊髓缺血-再灌注损伤生化指标的影响.中国中西医结合急救杂志, 2004,11(2):80-2
    88.路志红,熊利泽,朱正华,王强,郑玉,郑恒兴,候立朝,陈敏.电针诱导大鼠脑缺血耐受作用的穴位特异性研究.中国针灸, 2002,22(10): 671-3
    89.杨静,熊利泽,王强,刘艳红,陈绍洋,徐宁.不同刺激参数及其组合对电针诱导大鼠脑缺血耐受效应的影响.中国针灸, 2004,24 (3):208-12
    90.雷毅,熊利泽,张龙芳,陈绍洋,钱若筠,黄建成.腺苷A1受体阻断剂对电针预处理诱导脊髓缺血耐受作用的影响.中国中西医结合急救杂志, 2005,12(4):199-203
    91.路志红,熊利泽,田磊,刘晓亮,刘艳红,陈绍洋.重复电针预处理对脑缺血/再灌注大鼠皮层热休克蛋白70表达的影响.中华麻醉学杂志, 2004,24(6):453-6
    92.田代实,邓医宇,王光海,郭国际,茹立强.针刺预处理对大鼠局灶性脑缺血的抗细胞凋亡作用.第四军医大学学报, 2004,25(1):27-9
    93.雷毅,熊利泽,陈绍洋,胡渤,曾毅,王强,贺大银.纳洛酮对重复电针预处理诱导脊髓缺血耐受作用的影响.中国中西医结合急救杂志, 2003, 10(5):275-8
    94.杨静,熊利泽,王强,刘艳红.阿片受体在电针预处理诱导大鼠脑缺血耐受效应中的作用.中华老年多器官疾病杂志, 2006,5 (3):218-21
    95.雷毅,熊利泽,张龙芳,曾毅,陈绍洋,黄怡,贺大银.电针预处理对兔脊髓缺血/再灌注损伤细胞内Ca2+变化的影响.中国针灸, 2004,24(4): 279-82
    96. Cope DK, Impastato WK, Cohen MV, Downey JM. Volatile anaesthetics protect the ischaemic rabbit myocardium from infarction. Anesthesiology, 1997,86(3):699-709
    97. Liu Y, Xiong L Chen S, Chen S, Wang Q. Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. Can JAnesth, 2006,53(2):194-201
    98. Park HP, Jeon YT, Hwang JW, Kang H, Lim SW, Kim CS, Oh YS. Isoflurane preconditioning protects motor neurons from spinal cord ischemia: its dose–response effects and activation of mitochondrial adenosine triphosphate-dependent potassium channel. Neurosci Lett, 2005, 387(2):90-4
    99. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, Dimagl U. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke, 2002, 33(7):1889-98
    100.Zhang B, Wei X, Cui X, Zhou H, Ding W, Li W. Desflurane affords greater protection than halothane in the function of mitochondria against forebrain ischemia reperfusion injury in rats. Anesth Analg, 2008,106(4):1242-9
    101.Bhardwaj A, CastroⅢAF, Alkayed NJ, Hum PD, Kirsch JR. Anesthetic choice of halothane versus propofol: impact on experimental perioperative stroke. Stroke, 2001,32(8):1920-5
    102.Kawaguchi M, Drummond JC, Cole DJ, Kelly PJ, Spurlock MP, Patel PM. Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia. Anesth Analg, 2004,98(3):798-805
    103.Zheng S, Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol, 2004,65(5):1172-80
    104.Sakai H, Sheng H, Yates RB, Ishida K, Pearlstein RD, Warner DS. Isoflurane provides long-term protection against focal cerebral ischemia in the rat. Anesthesiology, 2007,106(1):92-9
    105.Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics asneuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab, 2007,27(6):1108-28
    106.Kaneko T, Yokoyama K, Makita K. Late preconditioning with isoflurane in cultured rat cortical neurons. Br J Anaesth, 2005,95(5):662-8
    107.Kehl F, Payne RS, Roewer N, Schurr A. Sevflurane-induced preconditioning of rat brain in vitro and the role of KATP channel. Brain Res, 2004,1021(1):76-81
    108.Wang ZP, Zhang ZH, Zeng YM, Jiang S, Wang SQ, Wang S. Protective effect of sevoflurane preconditioning on oxygen-glucose deprivation injury in rat hippocampal slices: the role of mitochondrial KATP channels. Sheng Li Xue Bao, 2006,58(3):201-6
    109.Zheng S, Zuo Z. Isoflurane preconditioning reduces purkinje cell death in an in vitro model of rat cerebellular ischemia. Neuroscience, 2003,118(1): 99-106
    110.Bhardwaj A, Alkayed NJ, Kirsch JR, Hurn PD. Mechanisms of ischemic brain damage. Curr Cardiol Rep, 2003,5(2):160-7
    111.Zhao P, Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rat. Anesthesiology, 2004,101(3):695-702
    112.Drummond JC, McKay LD, Cole DJ, Patel PM. The role of nitric oxide synthase inhibition in the adverse effects of etomidate in the setting of focal cerebral ischemia in rat. Anesth Analg, 2005,100(3):841-6
    113.Kawaguchi M, Furuya H, Patel PM. Neuroprotective effects of anesthetic agents. J Anesth, 2005,19(2):150-6
    114.Zheng S, Zuo Z. Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices.Brain Res, 2005,1054(2):143-51
    115.Bickler PE, Zhan X, Fahlman CS. Isoflurane preconditions hippocampal neurons against oxygen–glucose deprivation: role of intracellular Ca2+ and mitogen-activated protein kinase signaling. Anesthesiology, 2005,103(3): 532–9
    116.Wise-Faberowski L, Raizada MK, Sumners C. Oxygen and glucose deprivation-induced neuronal apoptosis is attenuated by halothane and isoflurane. Anesth Analg, 2001,93(5):1281-7
    117.Bickler PE, Fahlman CS. The inhaled anesthetic, isoflurane, enhances Ca2+-dependent survival signaling in cortical neurons and modulates MAP kinases, apoptosis proteins and transcription factors during hypoxia. Anesth Analg, 2006,103(2):419–29
    118.Gray JJ, Bickler PE, Fahlman CS, Zhan X, Schuyler JA. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases. Anesthesiology, 2005,102(3):606-15
    119.Wells BA, Keats AS, Cooley DA. Increased tolerance to cerebral ischemia produced by general anesthesia during temporary carotid occlusion. Sugery, 1963,54:216-23
    120.Goldstein A Jr, Wells BA, Keats AS. Increased tolerance to cerebral anoxia by pentobarbital. Arch Int Pharmacodyn Ther, 1966,161(1):138-43
    121.Cole DJ, Shapiro, HM, Drummond JC, Zivin JA. Halothane, fentanyl/ nitrous oxide, and spinal lidocaine protect against spinal cord injury in the rat. Anesthesiology, 1989,70(6):967-72
    122.Takayama K, Suzuki T, Miura M. The comparison of effects of various anesthetics on expression of Fos protein in the rat brain. NeruoscienceLetters, 1994,176(1):59-62
    123.Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW. MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol Heart Circ Physiol, 2002, 283(3):H1005-11
    124.Riepe MW, Esclaire F, Kasischke K, Schreiber S, Nakase H, Kempski O, Ludolph AC, Dirnagl U, Hugon J. Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation:‘chemical preconditioning’. J Cereb Blood Flow Metab, 1997,17(3):257-64
    125.Prass K, Ruscher K, Karsch M, Isaev N, Megow D, Priller J, Scharff A, Dirnagl U, Meisel A. Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro. J Cereb Blood Flow Metab, 2002, 22(5):520-25
    126.Nagy K, Kis B, Rajapakse NC, Bari F, Busija DW. Diazoxide preconditioning protects against neuronal cell death by attenuation of oxidative stress upon glutamate stimulation. J Neurosci Res, 2004,76(5): 697-704
    127.Xu WB, Gu YT, Wang YF, Lu XH, Jia LS, Lv G. Bradykinin preconditioning modulates aquaporin-4 expression after spinal cord ischemic injury in rats. Brain Res, 2008,1246:11-8
    128.Jacobs TP, Kempski O, Mckinley D, Dutka AJ, Hallenbeck JM, Feuerstein G. Blood flow and vascular permeability during motor dysfunction in a rabbit model of spinal cord ischemia. Stroke, 1992,23(3):367–73
    129.Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res, 2000, 874(2):123-30
    130.Xu Z, Wang BR, Wang X, Kuang F, Duan XL, Jiao XY, Ju G. ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Life Sci, 2006,79(20): 1895–905
    131.Shackelford DA, Yeh RY. Activation of extracellular signal-regulated kinases (ERK) during reperfusion of ischemic spinal cord. Brain Res Mol Brain Res, 2003,115(2):173-86
    132.Mandell JW, Gocan NC, Vandenberg SR. Mechanical trauma induces rapid astroglial activation of ERK/MAP kinase: Evidence for a paracrine signal. Glia, 2001,34(4):283-95
    133.Scheller MS, Saidman LJ, Partridge BL. MAC of sevoflurane in human and the New Zealand white rabbit. Can J Anaesth, 1988,35(2):153-6
    134.Pagliaro P, Gattullo D, Rastaldo R, Losano G. Ischemic preconditioning: from the first to the second window of protection. Life Sci, 2001,69(1): 1-15
    135.Zvara DA, Bryant AJ, Deal DD, DeMarco MP, Campos KM, Mansfield CM, Tytell M. Anesthetic preconditioning with sevoflurane does not protect the spinal cord after an ischemic-reperfusion injury in the rat. Anesth Analg, 2006,102(5):1341–7
    136.Moore WM Jr, Hollier LH. The influence of severity of spinal cord ischemia in the etiology of delayed-onset paraplegia. Ann Surg, 1991,213(5): 427–31
    137.Jacobs TP, Shohami E, Baze W, Burgard E, Gunderson C, Hallenbeck JM, Feuerstein G. Deteriorating stroke model: histopathology, edema, and eicosanoid changes following spinal cord ischemia in rabbits. Stroke, 1987, 18(4):741–50
    138.Wang Z, Chen X, Zhou L, Wu D, Che X, Yang G. Effects of extracellular signal-regulated kinase (ERK) on focal cerebral ischemia. Chin Med J (Engl), 2003,116(10):1497-503
    139.Cho DG, Mulloy MR, Chang PA, Johnson MD, Aharon AS, Robison TA, Buckles TL, Byrne DW, Drinkwater DC Jr. Blockade of the extracellular signal-regulated kinase pathway by U0126 attenuates neuronal damage following circulatory arrest. J Thorac Cardiovasc Surg, 2004,127(4): 1033-40
    140.Chen HT, Yang CX, Li H, Zhang CJ, Wen XJ, Zhou J, Fan YL, Huang T, Zeng YM. Cardioprotection of sevoflurane postconditioning by activating extracellular signal-regulated kinase 1/2 in isolated rat hearts. Acta Pharmacol Sin, 2008,29(8):931-41
    141.Lee HT, Kim M, Song JH, Chen SW, Gubitosa G, Emala CW. Sevoflurane-mediated TGF-beta1 signaling in renal proximal tubule cells. Am J Physiol Renal Physiol, 2008,294(2):F371-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700