人工耳蜗植入前EABR检测参数的优化及临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:不同脉宽条件下人工耳蜗植入者EABR检测的特点分析
     目的:比较不同脉宽条件下人工耳蜗植入者EABR的特点,分析脉宽与EABR波V引出率和阈值之间的关系,总结不同脉宽条件对EABR波V引出率和阈值的影响,选择更优化的EABR脉宽测试参数。方法:无残余听力的人工耳蜗植入患者24例(其中耳蜗形态正常12例、LVAS4例、Mondini畸形4例、共同腔畸形2例、内听道狭窄2例)(实验组),筛选条件相近的24例有残余听力的人工耳蜗植入者配对(对照组)。应用改装的Cochlear Freedom人工耳蜗及自制的铂铱合金球电极对拟行人工耳蜗植入的两组者术中分别给予50μs、100μs、200μs不同脉宽的电刺激,Bio-logic Navigator Pro听觉诱发电位仪记录不同脉宽条件下EABR波V引出率和阈值。结果:脉宽50μs、100μs、200μs时,EABR波V引出率实验组(分别为91.7%、91.7%、91.7%)低于对照组(分别为100%、100%、95.8%),而EABR阈值实验组(分别为183.73±8.96CL、151.28±10.05CL、120.56±12.82CL)高于对照组(分别为175.50±9.14CL、142.71±11.45CL、110.63±10.24CL),差异均有统计学意义(P值均〈0.05,t值分别为18.87、16.82、17.64)。结论:蜗内单极刺激能诱发出良好的的EABR波形。无残余听力的患者EABR阈值要明显高于有残余听力的患者。脉宽50μs、100μs相对于脉宽200μs, EABR波形波V引出率高;脉宽50μ s波形分化更好、动态范围广,畸形严重可能需要适当加大刺激量(如将脉宽改为100μ s)。
     第二部分:不同刺激速率条件下人工耳蜗植入者EABR检测的特点分析
     目的:比较不同刺激速率条件下人工耳蜗植入者EABR的特点,分析刺激速率与EABR波V引出率之间的关系,总结不同刺激速率对EABR波V引出率影响,选择更优化的EABR刺激速率测试参数,比较优化参数下的EABR阈值和潜伏期。方法:无残余听力的人工耳蜗植入患者16例(其中耳蜗形态正常10例、LVAS3例、Mondini畸形2例、共同腔畸形1例)(实验组),筛选条件相近的16例有残余听力的人工耳蜗植入者配对(对照组)。对拟行人工耳蜗植入的两组者术中分别给予23Hz、35Hz、70Hz不同刺激速率的电脉冲刺激,记录不同刺激速率条件下EABR波V引出率。结果:刺激速率23Hz时EABR波V引出率实验组和对照组都是100%,35Hz、70Hz时EABR波V引出率实验组(分别为87.5%、68.8%)低于对照组(分别为93.8%、87.5%)。脉宽50μs、刺激速率23Hz时,EABR阈值实验组(180.1±6.33CL)高于对照组(172.50±8.37CL)有显著性差异(P<0.05t=8.85),而EABRV波潜伏期实验组(4.42±0.13ms)和对照组(4.43±0.09ms)无显著性差异(P=0.80t=0.27)。结论:刺激速率对EABR波形的波V引出率影响较大,较低的刺激速率所测的EABR波V引出率高。耳蜗畸形的患者对测试所用刺激速率变化更为敏感。脉宽主要影响EABR的阈值及波形分化,而刺激速率主要影响EABR的波V引出率。脉宽50us、刺激速率23Hz是比较理想的刺激条件。
     第三部分:内听道狭窄患者人工耳蜗术中EABR特点及术后疗效评估
     目的:探讨内听道狭窄患者EABR特点及与人工耳蜗植入术后听力言语康复效果关系。方法:分析内听道狭窄(IACS)的语前聋人工耳蜗植入患者16例(IACS组),筛选条件相近的16例无内听道狭窄的语前聋人工耳蜗植入者配对(对照组),术中人工耳蜗植入前采用电刺激听觉脑干诱发电位(EABR)评估听觉传导通路,记录EABR波形、阈值和动态范围;对患者的家长和康复教师进行调查随访,根据听觉行为分级标准(CAP)和言语可懂度分级标准(SIR)对患者听力言语康复效果分级评估。采用配对样本T检验比较术前和术后1年患者CAP和SIR评分,Spearman检验对术中EABR分级和术后CAP评分进行相关性分析。结果:IACS组2例患者术中未记录到典型EABR波形,术后开机无反应。IACS组EABR波形分化差于对照组,其EABR阈值(192.5±11.73)高于对照组(168.75±6.94),动态范围(32.50±19.69)小于对照组(80.63±9.04)。术后1年IACS组的听觉言语康复效果的CAP和SIR值(分别为3.47±1.09和1.62±0.50)得分低于对照组(分别为5.06±0.79和2.59±0.58)(P<0.05),但都较术前差异有统计学意义。术中EABR分级和术后CAP评分具有明显相关性(r=0.78,P<0.05)。结论:EABR能够较准确地反映听觉传导通路功能完整性,有利于判断内听道狭窄患者人工耳蜗植入后能否获得听觉反应。EABR辅助人工耳蜗植入前的全面评估,内听道狭窄患者的听觉言语能力可以得到不同程度的康复。
Part I analysis of intra-operative EABR characteristics under the conditions of different pulse width in cochlear implant recipients
     Objective:To compare the intra-operative electrical evoked auditory brain stem response(EABR) characteristics under the conditions of different pulse width, analysis the relationship of pulse width with EABR wave V lead-out rate and threshold, summarize the affects of different pulse width conditions on EABR wave V lead-out rate and threshold, and select optimized EABR pulse width test parameters.
     Method:A study was performed on24patients with no residual hearing (12cases with normal cochlear,4cases with LVAS,4cases with Mondini deformation,2cases with common cavity deformation,2cases with internal auditory canal stenosis)(test group) matched with24implantees with residual hearing (control group). With modified Freedom cochlear implant and ball-end platinum-iridium wire electrode, the two groups were given the electrical stimulation of50μs,100μs and200μs pulse width, recording EABR wave V lead-out rate and the threshold under the conditions of different pulse width with Bio-logic Navigator Pro evoked potential instrument.
     Result:EABR wave V lead-out rate of the test group(91.7%、91.7%and91.7%) was lower than that of the control group(100%、100%and95.8%),while the threshold of the test group(183.73±8.96CL、151.28±10.05CL、120.56±12.82CL) was higher than that of the control group (175.50±9.14CL、142.71±11.45CL、110.63±10.24CL) and differences were statistically significant.(P<0.05, t=18.87、16.82and17.64)
     Conclusion:Intra-cochlear monopolar stimulation can induce good EABR waveform. Patients with no residual hearing EABR threshold are significantly higher than in patients with residual hearing. EABR wave V lead-out rate under pulse width50μs and100μs was higher than that under pulse width200μs. EABR waveform differentiation was better under pulse width50μs, severe deformity may need to increase the amount of stimulation (pulse width instead of100μs).
     PartⅡ analysis of intra-operative EABR characteristics under the conditions of different stimulation rate in cochlear implant recipients
     Objective:To compare the intra-operative electrical evoked auditory brain stem response(EABR) characteristics under the conditions of different stimulation rate, analysis the relationship of stimulation rate with EABR wave Ⅴ lead-out rate, summarize the affects of different stimulation rate conditions on EABR wave Ⅴ lead-out rate, select optimized EABR stimulation rate test parameters, and compare the EABR threshold value and latency. Method:A study was performed on16patients with no residual hearing (10cases with normal cochlear,3cases with LVAS,2cases with Mondini deformation,1cases with common cavity deformation)(test group) matched with16implantees with residual hearing (control group). The two groups were given the electrical stimulation rate of23Hz、35Hz and70Hz, recording EABR wave Ⅴ lead-out rate under the conditions of different stimulation rate. Result: EABR wave Ⅴ lead-out rate of the two groups was100%under the conditions of23Hz.EABR wave Ⅴ lead-out rate of the test group(87.5%and68.8%) was lower than that of the control group(93.8%and87.5%) under the conditions of35Hz and70Hz. The threshold of the test group(180.1±6.33CL) was higher than that of the control group (172.50±8.37CL) and differences were statistically significant.(P<0.05, t=8.85),while the difference of EABR wave Ⅴ latency between two groups was not statistically significant.(P=0.80t=0.27) Conclusion:The cochlear with malformations is more sensitive to the changes of the stimulation rate. Pulse width mainly affects EABR threshold and waveform differentiation, while stimulation rate mainly affects EABR wave Ⅴ lead-out rate, lower stimulation rate inducing higher EABR wave Ⅴ lead-out rate. The pulse width50us and stimulation rate23Hz is an ideal stimulus condition.
     Part III Evaluation of intra-operative EABR characteristics and rehabilitation effects of cochlear implantation in patients with internal auditory canal stenosis
     Abstract Objective:To investigate the intra-operative electrical evoked auditory brain stem response(EABR) characteristics and the hearing and speech rehabilitation effects of cochlear implantation(CI) in patients with internal auditory canal stenosis(IACS). Method:A retrospective study was performed on16patients with IACS(IACS group) matched with16implantees without IACS(control group),who received multi-channel CI because of pre-lingual sensorineural hearing loss. The integrity and functional status of the auditory pathway were assessed by EABR, recording waveforms, threshold sand dynamic ranges intra-operation before Cl. Interviewed the implantees' parents or teachers, asking them to rate the implantees' hearing and speech ability according to Categories of Auditory Performance(CAP)and Speech Intelligibility Rating(SIR).Paired T test was performed to compare scores of CAP and SIR between before and1year after CI, while Spearman test was performed to compare correlation between EABR grades and post-operative CAP scores. Result: Among the IACS group,2cases weren't recorded typical EABR waveforms and without auditory response1year after a successful CI. The EABR waveforms in the IACS group were poorer than that in the control group, their EABR thresholds higher than the control group, and their EABR dynamic ranges less than the control group. The hearing and speech rehabilitation after CI showed that the results of CAP and SIR values (3.47±1.09and1.62±0.50) scored significantly lower than the control group(5.06±0.79and2.59±0.58)(P<0.05), but significantly increased compared with pre-operation. Intra-operative EABR grades and post-operative CAP scores showed significant correlation(r=0.78, P<0.05). Conclusion:Intra-operative EABR can accurately monitor the integrity and functional status of the auditory pathway, be of important clinical value in predicting whether patients can acquire auditory responses with the aid of CI. CI can help patients with IACS to improve the ability of hearing and speech with EABR to screen out compatible implantees.
引文
[1]Kong WJ, Cheng HM, Wang YJ, et al. Integrated profile to assess auditory nerve-auditory pathway integrity. ORL J Otorhinolaryngol Relat Spec.2009. 71(4):196-208.
    [2]Bettman R, Beek E, Van Olphen A, Zonneveld F, Huizing E. MRI versus CT in assessment of cochlear patency in cochlear implant candidates. Acta Otolaryngol.2004.124(5):577-81.
    [3]Joshi VM, Navlekar SK, Kishore GR, Reddy KJ, Kumar EC. CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics.2012.32(3):683-98.
    [4]Ellul S, Shelton C, Davidson HC, Harnsberger HR. Preoperative cochlear implant imaging:is magnetic resonance imaging enough. Am J Otol.2000. 21(4):528-33.
    [5]Simmons FB, Epley JM, Lummis RC, et al. AUDITORY NERVE: ELECTRICAL STIMULATION IN MAN. Science (80-).1965.148(3666): 104-6.
    [6]Starr A, Brackmann DE. Brain stem potentials evoked by electrical stimulation of the cochlea in human subjects. Ann Otol Rhinol Laryngol.1979.88(4 Pt 1): 550-6.
    [7]Kileny PR, Zwolan TA, Zimmerman-Phillips S, Kemink JL. A comparison of round-window and transtympanic promontory electric stimulation incochlear implant candidates. Ear Hear.1992.13(5):294-9.
    [8]Kubo T, Yamamoto K, Iwaki T, Matsukawa M, Doi K, Tamura M. Significance of auditory evoked responses (EABR and P300) in cochlear implant subjects. Acta Otolaryngol.2001.121(2):257-61.
    [9]Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol.2004.43 Suppl 1: S16-21.
    [10]Kileny PR, Kim AH, Wiet RM, et al. The predictive value of transtympanic promontory EABR in congenital temporal bonemalformations. Cochlear Implants Int.2010.11 Suppl 1:181-6.
    [11]Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol.2004.43 Suppl 1: S16-21.
    [12]Wong SH, Gibson WP, Sanli H. Use of transtympanic round window electrocochleography for threshold estimations in children. Am J Otol.1997. 18(5):632-6.
    [13]Gibson WP, Sanli H. Auditory neuropathy:an update. Ear Hear.2007.28(2 Suppl):102S-106S.
    [14]Pau H, Gibson WP, Sanli H. Trans-tympanic electric auditory brainstem response (TT-EABR):the importance of the positioning of the stimulating electrode. Cochlear Implants Int.2006.7(4):183-7.
    [15]Nikolopoulos TP, Mason SM, Gibbin KP, O'Donoghue GM. The prognostic value of promontory electric auditory brain stem response in pediatric cochlear implantation. Ear Hear.2000.21(3):236-41.
    [16]程靖宁,曹克利,魏朝刚等.人工耳蜗植入术中EABR监测的应用.中国 听力语言康复科学杂志.2008. (1):18-21.
    [17]Khan AM, Levine SR, Nadol JB Jr. The widely patent cochleovestibular communication of Edward Cock is a distinct inner ear malformation: implications for cochlear implantation. Ann Otol Rhinol Laryngol.2006. 115(8):595-606.
    [18]Graham JM, Phelps PD, Michaels L. Congenital malformations of the ear and cochlear implantation in children:review and temporal bone report of common cavity. J Laryngol Otol Suppl.2000.25:1-14.
    [19]赵啸天,韩德民,李永新等.内耳畸形患者的人工耳蜗植入术.中华医学杂志.2003.83(2):103-105.
    [20]Maxwell AP, Mason SM, O'Donoghue GM. Cochlear nerve aplasia:its importance in cochlear implantation. Am J Otol.1999.20(3):335-7.
    [21]Sakina MS, Goh BS, Abdullah A, Zulfiqar MA, Saim L. Internal auditory canal stenosis in congenital sensorineural hearing loss. Int J Pediatr Otorhinolaryngol.2006.70(12):2093-7.
    [22]Guirado CR. Malformations of the inner auditory canal. Rev Laryngol Otol Rhinol (Bord).1992.113(5):419-21.
    [1]Nikolopoulos TP, Mason SM, Gibbin KP, O'Donoghue GM. The prognostic value of promontory electric auditory brain stem response in pediatric cochlear implantation. Ear Hear.2000.21(3):236-41.
    [2]Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol.2004.43 Suppl 1: S16-21.
    [3]Kubo T, Yamamoto K, Iwaki T, Matsukawa M, Doi K, Tamura M. Significance of auditory evoked responses (EABR and P300) in cochlear implantsubjects. Acta Otolaryngol.2001.121(2):257-61.
    [4]程靖宁,曹克利,魏朝刚等.人工耳蜗植入术中EABR监测的应用.中国听力语言康复科学杂志.2008.(1):18-21.
    [5]Tavartkiladze GA, Potalova LA, Kruglov AV, Belov A. Effect of stimulation parameters on electrically evoked auditory brainstemresponses. Acta Otolaryngol.2000.120(2):214-7.
    [6]Davids T, Valero J, Papsin BC, Harrison RV, Gordon KA. Effects of stimulus manipulation on electrophysiological responses of pediatriccochlear implant users. Part II:rate effects. Hear Res.2008.244(1-2):15-24.
    [7]潘映辐.临床诱发电位学.北京:人民卫生出版社.2000:317-352.
    [8]Gordon KA, Papsin BC, Harrison RV. Activity-dependent developmental plasticity of the auditory brain stem inchildren who use cochlear implants. Ear Hear.2003.24(6):485-500.
    [9]Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol.2004.43 Suppl 1: S16-21.
    [10]张道行,张岩昆,田昊,王亮.人工耳蜗植入者EABR, NRT与ESR检测.听力学及言语疾病杂志.2005.13(5):310-313.
    [11]Kong WJ, Cheng HM, Wang YJ, et al. Integrated profile to assess auditory nerve-auditory pathway integrity. ORL J Otorhinolaryngol Relat Spec, 2009,71:196-208.
    12] Starr A, Brackmann DE. Brain stem potentials evoked by electrical stimulation of the cochlea in human subjects. Ann Otol Rhinol Laryngol.1979.88(4 Pt 1): 550-6.
    [1]Kong WJ, Cheng HM, Wang YJ, et al. Integrated profile to assess auditory nerve-auditory pathway integrity. ORL J Otorhinolaryngol Relat Spec.2009. 71(4):196-208.
    [2]Bettman R, Beek E, Van Olphen A, Zonneveld F, Huizing E. MRI versus CT in assessment of cochlear patency in cochlear implant candidates. Acta Otolaryngol.2004.124(5):577-81.
    [3]Joshi VM, Navlekar SK, Kishore GR, Reddy KJ, Kumar EC. CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics.2012.32(3):683-98.
    [4]Ellul S, Shelton C, Davidson HC, Harnsberger HR. Preoperative cochlear implant imaging:is magnetic resonance imaging enough. Am J Otol.2000. 21(4):528-33.
    [5]Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope.2002.112(12):2230-41.
    [6]Molter DW, Pate BR Jr, McElveen JT Jr. Cochlear implantation in the congenitally malformed ear. Otolaryngol Head Neck Surg,1993,108:174-7.
    [7]Maxwell AP, Mason SM, O'Donoghue GM. Cochlear nerve aplasia:its importance in cochlear implantation. Am J Otol,1999,20:335-7.
    [8]程靖宁,曹克利,魏朝刚,等.人工耳蜗植入术中EABR监测的应用.中国听力语言康复科学杂志,2008:18-21.
    [9]Gibson WP, Sanli H, Psarros C. The use of intra-operative electrical auditory brainstem responses to predict the speech perception outcome after cochlear implantation. Cochlear Implants Int,2009,10 Suppl 1:53-7.
    [10]冀飞,郗听,洪梦迪,等.语前聋人工耳蜗植入患者听觉和言语康复效果的问卷分级评估.中华耳鼻咽喉科杂志,2004,39:584-588.
    [11]Jackler RK, Luxford WM, House WF. Sound detection with the cochlear implant in five ears of four children with congenital malformations of the cochlea. Laryngoscope.1987.97(3 Pt 2 Suppl 40):15-7.
    [12]Sakina MS, Goh BS, Abdullah A, et al. Internal auditory canal stenosis in congenital sensorineural hearing loss. Int J Pediatr Otorhinolaryngol, 2006,70:2093-7.
    [13]Guirado CR. Malformations of the inner auditory canal. Rev Laryngol Otol Rhinol (Bord),1992,113:419-21.
    [14]孔维佳,乐建新,熊新高,等.听神经-听觉通路完整性综合评估法.临床耳鼻咽喉科杂志,2003,17:705-708.
    [15]Adunka OF, Roush PA, Teagle HF, et al. Internal auditory canal morphology in children with cochlear nerve deficiency. Otol Neurotol,2006,27:793-801.
    [16]Bamiou DE, Worth S, Phelps P, et al. Eighth nerve aplasia and hypoplasia in cochlear implant candidates:the clinical perspective. Otol Neurotol, 2001,22:492-6.
    [17]Kileny PR, Zwolan TA, Zimmerman-Phillips S, et al. A comparison of round-window and transtympanic promontory electric stimulation incochlear implant candidates. Ear Hear,1992,13:294-9.
    [1]Zeng FG, Rebscher S, Harrison W, et al. Cochlear implants:system design, integration, and evaluation. IEEE Rev Biomed Eng,2008,1:115-42.
    [2]Kong WJ, Cheng HM, Wang YJ, et al. Integrated profile to assess auditory nerve-auditory pathway integrity. ORL J Otorhinolaryngol Relat Spec, 2009,71:196-208.
    [3]Bettman R, Beek E, Van Olphen A, et al. MRI versus CT in assessment of cochlear patency in cochlear implant candidates. Acta Otolaryngol, 2004,124:577-81.
    [4]Westerhof JP, Rademaker J, Weber BP, et al. Congenital malformations of the inner ear and the vestibulocochlear nerve in children with sensorineural hearing loss:evaluation with CT and MRI. J Comput Assist Tomogr, 2001,25:719-26.
    [5]Joshi VM, Navlekar SK, Kishore GR, et al. CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics,2012,32:683-98.
    [6]Sennaroglu L, Saatci I, Aralasmak A, et al. Magnetic resonance imaging versus computed tomography in pre-operative evaluation of cochlear implant candidates with congenital hearing loss. J Laryngol Otol,2002,116:804-10.
    [7]Ellul S, Shelton C, Davidson HC, et al. Preoperative cochlear implant imaging: is magnetic resonance imaging enough. Am J Otol,2000,21:528-33.
    [8]Yan F, Li J, Xian J, et al. The cochlear nerve canal and internal auditory canal in children with normal cochlea but cochlear nerve deficiency. Acta Radiol, 2013,54:292-8.
    [9]潘映辐.临床诱发电位学.北京:人民卫生出版社,2000:317-352.
    [10]Djourno A, Eyries C. Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling. Presse Med, 1957,65:1417.
    [11]Gordon KA, Papsin BC, Harrison RV. Activity-dependent developmental plasticity of the auditory brain stem inchildren who use cochlear implants. Ear Hear,2003,24:485-500.
    [12]Maxwell AP, Mason SM, O'Donoghue GM. Cochlear nerve aplasia:its importance in cochlear implantation. Am J Otol,1999,20:335-7.
    [13]Starr A, Brackmann DE. Brain stem potentials evoked by electrical stimulation of the cochlea in human subjects. Ann Otol Rhinol Laryngol,1979,88:550-6.
    [14]Chouard CH, Meyer B, Donadieu F. Auditory brainstem potentials in man evoked by electrical stimulation of the round window. Acta Otolaryngol, 1979,87:287-93.
    [15]Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol,2004,43 Suppl 1:S16-21.
    [16]Wong SH, Gibson WP, Sanli H. Use of transtympanic round window electrocochleography for threshold estimations in children. Am J Otol, 1997,18:632-6.
    [17]Wong SH, Gibson WP, Sanli H. Use of transtympanic round window electrocochleography for threshold estimations in children. Am J Otol, 1997,18:632-6.
    [18]Gibson WP, Sanli H. Auditory neuropathy:an update. Ear Hear, 2007,28:102S-106S.
    [19]Pau H, Gibson WP, Sanli H. Trans-tympanic electric auditory brainstem response (TT-EABR):the importance of the positioning of the stimulating electrode. Cochlear Implants Int,2006,7:183-7.
    [20]Kileny PR, Kim AH, Wiet RM, et al. The predictive value of transtympanic promontory EABR in congenital temporal bonemalformations. Cochlear Implants Int,2010,11 Suppl 1:181-6.
    [21]Kileny PR, Zwolan TA, Zimmerman-Phillips S, et al. A comparison of round-window and transtympanic promontory electric stimulation incochlear implant candidates. Ear Hear,1992,13:294-9.
    [22]程靖宁,曹克利,魏朝刚,等.术中经蜗窗龛电刺激记录听性脑干反应方法的建立及初步应用.中华耳鼻咽喉头颈外科杂志,2008,43:653-659.
    [23]程靖宁,曹克利,李原,等.人工耳蜗植入前电诱发听性脑干反应测试的 临床应用.听力学及言语疾病杂志,2008,16:193-196.
    [24]Aubert LR, Clarke GP. Reliability and predictive value of the electrically evoked auditory brainstem response. Br J Audiol,1994,28:121-4.
    [25]Kubo T, Yamamoto K, Iwaki T, et al. Significance of auditory evoked responses (EABR and P300) in cochlear implantsubjects. Acta Otolaryngol, 2001,121:257-61.
    [26]Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol,2004,43 Suppl 1:S16-21.
    [27]张道行,张岩昆,田昊,王亮.人工耳蜗植入者EABR、NRT与ESR检测.听力学及言语疾病杂志,2005,13:310-313.
    [28]程靖宁,曹克利,魏朝刚,等.人工耳蜗植入术中EABR监测的应用.中国听力语言康复科学杂志,2008:18-21.
    [29]Truy E, Gallego S, Chanal JM, et al. Correlation between electrical auditory brainstem response and perceptual thresholds in Digisonic cochlear implant users. Laryngoscope,1998,108:554-9.
    [30]Gallego S, Frachet B, Micheyl C, et al. Cochlear implant performance and electrically-evoked auditory brain-stem responsecharacteristics. Electroencephalogr Clin Neurophysiol,1998,108:521-5.
    [31]Firszt JB, Chambers RD, Kraus AN, et al. Neurophysiology of cochlear implant users Ⅰ:effects of stimulus current level and electrode site on the electrical ABR, MLR, and N1-P2 response. Ear Hear,2002,23:502-15.
    [32]Gordon KA, Papsin BC, Harrison RV. An evoked potential study of the developmental time course of the auditory nerve and brainstem in children using cochlear implants. Audiol Neurootol,2006,11:7-23.
    [33]Smith L, Simmons FB. Estimating eighth nerve survival by electrical stimulation. Ann Otol Rhinol Laryngol,1983,92:19-23.
    [34]Hall RD. Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hear Res,1990,49:155-68.
    [35]Walsh SM, Leake-Jones PA. Chronic electrical stimulation of auditory nerve in cat:Physiological and histological results. Hear Res,1982,7:281-304.
    [36]Kileny PR, Zwolan TA. Pre-perioperative, transtympanic electrically evoked auditory brainstem response in children. Int J Audiol,2004,43 Suppl 1:S 16-21.
    [37]Kileny PR, Miller JM, Kemink JL, et al. Prediction of auditory nerve survival in humans using the electrical auditorybrainstem response. Am J Otol, 1992,13:381-2.
    [38]Kileny PR, Zwolan TA, Zimmerman-Phillips S, et al. Electrically evoked auditory brain-stem response in pediatric patients withcochlear implants. Arch Otolaryngol Head Neck Surg,1994,120:1083-90.
    [39]Kileny PR. Evoked potentials in the management of patients with cochlear implants:research and clinical applications. Ear Hear,2007,28:124S-127S.
    [40]Nikolopoulos TP, Mason SM, O'Donoghue GM, et al. Integrity of the auditory pathway in young children with congenital and postmeningitic deafness. Ann Otol Rhinol Laryngol,1999,108:327-30.
    [41]Nikolopoulos TP, Mason SM, Gibbin KP, et al. The prognostic value of promontory electric auditory brain stem response in pediatric cochlear implantation. Ear Hear,2000,21:236-41.
    [42]Runge-Samuelson CL, Drake S, Wackym PA. Quantitative analysis of electrically evoked auditory brainstem responses inimplanted children with auditory neuropathy/dyssynchrony. Otol Neurotol,2008,29:174-8.
    [43]Runge-Samuelson C, Firszt JB, Gaggl W, et al. Electrically evoked auditory brainstem responses in adults and children:effects of lateral to medial placement of the nucleus 24 contour electrode array. Otol Neurotol, 2009,30:464-70.
    [44]Cords SM, Reuter G, Issing PR, et al. A silastic positioner for a modiolus-hugging position of intracochlearelectrodes:electrophysiologic effects. Am J Otol,2000,21:212-7.
    [45]Pasanisi E, Vincenti V, Bacciu A, et al. The nucleus contour electrode array:an electrophysiological study. Laryngoscope,2002,112:1653-6.
    [46]Wackym PA, Firszt JB, Gaggl W, et al. Electrophysiologic effects of placing cochlear implant electrodes in aperimodiolar position in young children. Laryngoscope,2004,114:71-6.
    [47]Brown CJ, Hughes ML, Lopez SM, et al. Relationship between EABR thresholds and levels used to program the CLARION speech processor. Ann Otol Rhinol Laryngol Suppl,1999,177:50-7.
    [48]Brown CJ, Abbas PJ, Fryauf-Bertschy H, et al. Intraoperative and postoperative electrically evoked auditory brain stemresponses in nucleus cochlear implant users:implications for the fittingprocess. Ear Hear, 1994,15:168-76.
    [49]Gallego S, Frachet B, Micheyl C, et al. Cochlear implant performance and electrically-evoked auditory brain-stem response characteristics. Electroencephalogr Clin Neurophysiol,1998,108:521-5.
    [50]Gallego S, Gamier S, Micheyl C, et al. Loudness growth functions and EABR characteristics in Digisonic cochlear implantees. Acta Otolaryngol, 1999,119:234-8.
    [51]Shallop JK, VanDyke L, Goin DW, et al. Prediction of behavioral threshold and comfort values for Nucleus 22-channelimplant patients from electrical auditory brain stem response test results. Ann Otol Rhinol Laryngol, 1991,100:896-8.
    [52]Mason SM, Sheppard S, Garnham CW, et al. Application of intraoperative recordings of electrically evoked ABRs in a paediatric cochlear implant programme. Nottingham Paediatric Cochlear Implant Group. Adv Otorhinolaryngol,1993,48:136-41.
    [53]Gallego S, Truy E, Morgon A, et al. EABRs and surface potentials with a transcutaneous multielectrode cochlear implant. Acta Otolaryngol, 1997,117:164-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700