刺芹侧耳木质素降解酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刺芹侧耳(Pleurotus eryngii)隶属于真菌门、真担子菌纲、伞菌目、侧耳科,侧耳属,是一种具有较强木质素降解能力的白腐真菌,极具工业应用价值。木质素降解酶是参与木质素生物降解过程中的酶类,具有高氧化降解能力和多底物性,能够降解木质素、多环芳烃类化合物、杂环类化合物和合成染料等多种难降解有机物。本研究以刺芹侧耳GIM5.280为研究对象,进行了能以2,2’-连氮基-双-(3-乙基苯并二氢噻唑啉-6-磺酸)二铵盐(ABTS)和愈创木酚为底物的高产胞外木质素降解酶的菌种选育和表达条件优化,并对发酵液中的木质素降解酶分离纯化路线、酶学性质、染料和木质素磺酸钠降解效果开展系统研究,为今后将其应用于环境保护、生物漂白与制浆、食品工业等领域提供理论和实践依据。
     为了选育高产木质素降解酶的刺芹侧耳菌株,系统研究了刺芹侧耳原生质体制备及再生体系。采用0.6mol/L(M)甘露醇为酶解渗透压稳定剂,在30℃、pH 5.5下,以4%蜗牛酶和2%溶壁酶的复合酶酶解3天菌龄的刺芹侧耳菌丝体3h,可获得最大原生质体得率,酶解液中原生质体数目可达1.82×108个/mL。所得原生质体经0.6M的蔗糖(再生渗透压稳定剂)配制的SYM培养基再生培养,上层琼脂浓度设定为0.7%,原生质体再生率最高,可达0.35%。
     通过紫外和60Coγ的二次复合诱变及继代培养筛选获得一株摇瓶酶活达110U/mL,较出发菌株酶活提高54.3%的稳定诱变株,命名为P. eryngiiCo007,用于后续发酵及分离纯化试验。通过单因素试验和中心组合响应面优化分析考察了影响P. eryngiiCo007菌株产木质素降解酶的因素,得到液态发酵产木质素降解酶的最适培养基组成和发酵参数。然后在发酵罐中进行了产酶扩大试验,在搅拌速度250rpm/min、通风量0.6vvm条件下,按最适培养基(3%葡萄糖,0.05%硫酸镁,0.4%磷酸二氢钾,0.2%酵母粉,0.2%胰蛋白胨,秸杆110%, Cu2+ 4.01mmol/L,吐温800.84g/L)和最适发酵参数(初始pH 5.63,发酵温度26℃,接种量15%)进行发酵,木质素降解酶酶活最高值出现在第10天,达到了324.72U/mL。
     建立了一条从P. eryngii Co007发酵液中快速分离纯化木质素降解酶的技术路线。通过35%硫酸铵饱和度初沉和75%硫酸铵饱和度二沉,可从P. eryngii Co007发酵液中去除掉大部分杂蛋白和获得绝大部分的目标蛋白沉淀。经DEAE-SepharoseTM FastFlow (DEAE FF)离子交换三步层析,可较好地纯化目标酶。该路线总纯化因子达10.3,回收率76.2%。经SDS-PAGE和Native-PAGE电泳分析,收集到的洗脱液中含有三种木质素降解酶,都具有活性。按其分子量大小,将其命名为Peco60-7-1dⅠ、Peco60-7-1dⅡ、Peco60-7-1dⅢ。采用肽指纹图谱分析方法和N末端测序法对分离纯化的三种单一组分进行鉴定,所得结果证实Peco60-7-1dⅠ是芳基乙醇酶,Peco60-7-1dⅡ是漆酶,Peco60-7-1dⅢ是多功能过氧化物酶,分别命名为AAO-Peco60-7 , Lac-peco60-7和VP-Peco60-7。AAO-Peco60-7酶是发酵液经硫酸铵盐沉、DEAE FF层析、SephacrylTM S-200 High Resolution层析和SourceTM 15Q层析后获得,该过程的纯化倍数为38.2,得率为25.5%。AAO-Peco60-7分子量约70kDa,等电点为4.2。以ABTS为底物,AAO-Peco60-7酶学性质如下:AAO-Peco60-7最适催化pH为3.0,pH为3.6时该酶稳定性最好,24h后残余酶活高达88%。AAO-Peco60-7最适催化温度为70℃,在4℃到60℃的温度范围内,酶较稳定,60℃保温50mmin后AAO-Peco60-7残余酶活还有80%左右,表现出较好的耐热性。氧化ABTS的动力学参数Vmax和Km分别为102.04U/mmg和214.96μmol。测试金属离子没有促进作用,其中的Fe3+、Fe2+、Ag+和Ca2+有明显抑制作用。Lac-Peco60-7酶是发酵液经过硫酸铵盐沉、DEAE FF层析和割胶纯化后获得,其分子量约62kDa,等电点为4.5。以ABTS为底物,Lac-Peco60-7酶学性质如下:Lac-Peco60-7最适催化pH为4.0,pH为4.6时该酶稳定性最好,24h后残余酶活约85%。最适催化温度为60℃,50℃以下稳定性较好,50℃保温40mmin后残余酶活还有40%左右,当温度超过50℃时,酶活损失加剧。氧化ABTS的动力学参数Vmax和Km分别为227.27U/mg和252.33μmol。金属离子中Zn2+和Cu2+对Lac-Peco60-7有明显促进作用,Ag+、Fe2+和Mn2+有明显的抑制作用。VP-Peco60-7酶是发酵液经硫酸铵盐沉、DEAE FF层析和SephacrylTM S-200 High Resolution凝胶层析后获得,其纯化倍数为27.0,得率为19.1%。VP-Peco60-7分子量约40kDa,等电点为4.1。以ABTS为底物,VP-Peco60-7酶学性质如下:VP-Peco60-7最适催化反应pH为3.0,pH为4.0时该酶稳定性最好,24h后残余酶活约50%。最适催化温度为50℃,VP-Peco60-7热稳定性差,30℃保温60min后其残余酶活力只有52%左右,当温度超过50℃时,酶活损失严重。氧化ABTS的动力学参数Vmax和Km分别为1 88.68U/mg和203.09μmol。金属离子中Zn2+和Cu2+对VP-Peco60-7有明显促进作用,而Fe3+、Fe2+和Mn2+有明显的抑制作用。
     采用经DEAE纯化的P. eryngiiCo60-7混合酶液对不同染料进行脱色试验,结果表明混合酶液对三苯甲烷类染料溴酚蓝降解效果最好,24h染液脱色率近99.3%。双偶氮类染料刚果红降解效果次之,24h染液脱色率达53.7%。杂环类染料亚甲基兰降解效果最差,24h染料脱色率只有11.5%。对脱色影响因素进行研究,以2h溴酚蓝脱色体系为例,在脱色温度30℃、pH4.0、H2O2 5μM、混合酶液浓度20U/mL、染料浓度25μM的条件下,脱色效率最高,达85.61%。小分子介体物质ABTS对溴酚蓝脱色体系脱色率无促进。采用经DEAE(?)屯化的P. eryngiiCo60-7(?)昆合酶液对木质素磺酸钠进行了降解试验,结果表明,降解体系中含有50mM pH 4.6乙酸钠-乙酸缓冲液,100mg/L木质素磺酸钠,1mM ABTS和20U/mL混合酶液,置40℃、150rpm下酶解反应8h,降解率可达82.13%。反应体系中添加小分子还原介体ABTS后,降解率明显提高。通过全波段光谱扫描对比分析发现降解后木质素磺酸钠278nm主吸收峰明显下降,显然ABTS可介导P. eryngiiCo60-7木质素降解酶氧化木质素磺酸钠,提高降解率。
Pleurotus eryngii (P. eryngii) is a fungus belonging to Eumycophyta, Eubasidiomycetes, Agaricales, Pleurotaceae, pleurotus. As a kind of white rot fungi, it has been reported to have the capability to degrade lignin, and is therefore considered a model organism having extensive biotechnological applications. With remarkably oxidizing ability, degradation capacity and substrate non-specificity; ligninolytic enzymes involved in lignin biodegradation can oxidize various substrates including aromatic pollutants, heterocycle compounds, synthetic dyes and so on. In this work, using P. eryngii GIM 5.280 as starting strain, the mutagenesis of protoplast were performed for the screening of high-yield strains of ligninolytic enzymes with 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and guaiacol as substrates. And then the production conditions in liquid submerged fermentation of ligninolytic enzymes of P. eryngii were optimized. Furthermore, the purification procedure of ligninolytic enzymes of P. eryngii was established, and purified enzymes were used to investigate their enzymatic properties, catalysis behaviors, dye decoloring ability, and lignin degradation ability. These studies will enhance our knowledge of the ligninolytic system of this edible mushroom. Furthermore, it will also clarify the potential applications of ligninolytic enzymes of P. eryngii in the environmental protection, paper pulp bleaching, processing of food and other industrial applications.
     In order to screen P. eryngii strains of high-yield ligninolytic enzymes, the preparation conditions of P. eryngii protoplasts were investigated in details. Results showed that the highest production rate of protoplast could be obtained by using 0.6 mol/L(M) mannitol,4% helicase,2% lywallzyme, and digesting for 3 hours at 30℃, pH 5.5. The protoplast numbers of P. eryngii reached to 1.82×108/mL. The optimal medium for protoplast regeneration of P. eryngii was SYM medium, using 0.6 mol/L sucrose as osmotic stabilizers, and 0.7% agar as upper-layer plate. The highest regeneration rate was 0.35%.
     The UV and 60Coγirradiation mutagenesis of P. eryngii protoplasts, and serial subcultivations were performed for screening high-yield strains of ligninolytic enzymes. The results indicated that the strain 007 (We named this strain as P. eryngiico007.) of P. eryngii exhibited outstanding genetic stability after four successive generations. Furthermore, the ligninolytic enzyme activity of this strain was up to 110U/mL, a 54.3% enhancement over that of the original strain. The optimum production conditions of ligninlytic enzymes of P. eryngiiCo007 in liquid culture was investigated through single factor experiment and response surface method, and the result were listed as follows: the compositions of optimal fermentation medium were glucose 30g/L, MgSO4·7H2O 0.5g/L, KH2PO4 4g/L, yeast extract 2g/L, tryptone 2g/L, straw 11g/L, CuSO4 4.01mmol/L, Tween 800.84g/L; The optimal cultivating conditions were 15%(v/v) inoculation volume,26℃and pH 5.63. The ligninolytic enzymes were prepared by cultivating P. eryngiiCo007 in a 3-liter fermentor under the conditions of 26℃,200 rpm, and aeration with 0.5 liter·min-1. Proteins with ligninolytic enzyme activity were purified from 10-day-old liquid cultures of P. eryngii, which exhibited maximal enzymatic activity (324.72 U/mL).
     The ligninolytic enzymes were separated and purified from the culture broth of Pleurotus eryngiiCo60-7 strain. An efficient purification procedure was establised, which was mainly composed of the precipitation of ammonium sulfate and ion exchange chromatography. In the precipitation of ammonium sulphate, two-stage precipitations were applied. In the first-stage precipitation,35% saturation of ammonium sulfate was used to remove the hybridproteins and in second-stage of precipitoation,75% saturation of ammonium sulfate was used to capture the ligninolytic enzymes. Next, the crude ligninllytic enzymes were purified by DEAE-SepharoseTM Fast Flow (DEAE FF) ion-exchange chromatography under three-step elution. Finally, a 76.2% activity yield was obtained with a purification factor of 10.3. The results of SDS PAGE and Native PAGE showed that three ligninolytic enzymes were present in the elution after DEAE FF ion-exchange chromatography, and these enzymes were named as Peco60-7-1dⅠ, Peco60-7-1dⅡ, and Peco60-7-1dⅢ, respectively. Using N-terminal sequence determination and peptide mapping analysis, Peco60-7-1dⅠ, Peco60-7-ldⅡ, and Peco60-7-1dⅢwere found to be similar to the aryl-alcohol oxidase, laccase and versatile peroxidase isoenzyme, respectively. Therefore, they were named as AAO-Peco60-7,Lac-Peco60-7 and VP-Peco60-7.
     AAO-Peco60-7 was purified to electrophoretic homogeneity by ammonium sulfate precipitation, DEAE FF chromatography, SephacrylTM S-200 High Resolution chromatography, and SourceTM 15Q chromatography with a activity yield of 25.5% and a purification factor of 38.2. The molecular mass of AAO-Peco60-7 was estimated to be 70kDa by SDS-PAGE and its isoelectric point was 4.2. The optimal pH and temperature for oxidizing ABTS was 3.0 and 70℃respectively. The Vmax and Km values of the enzyme for ABTS were 102.04 U/mg and 214.96μmol. The enzyme was relatively stable at pH3.6, and 88% enzymatic activity was remained after incubating for 24 h. And the enzyme was also stable from 4℃to 60℃, and the survival enzymatic activity was over 80% after incubating for 50 min.0.1 mM various metal ions had no pronounced effects on enzyme activity of AAO-Peco60-7, However, the activity of the enzyme was strongly inhibited by Fe3+, Fe2+, Ag+ and Ca2+.
     Lac-Peco60-7 was purified to electrophoretic homogeneity by ammonium sulfate precipitation, DEAE FF chromatography and the gel slice of Native-PAGE. The molecular mass of Lac-Peco60-7 was estimated to be 62kDa by SDS-PAGE and its isoelectric point was 4.5. The optimal pH and temperature for ABTS were 4.0 and 60℃, respectively. The Vmax and Km values of the enzyme for ABTS were 227.27U/mg and 252.33μmol. The enzyme was relatively stable at pH 4.6, and 85% enzymatic activity was remained after incubating for 24 h. And the enzyme was also stable at 50℃, and the survival enzymatic activity was over 40% after incubating for 40 min.0.1mM various metal ions had different effects on enzyme activity, the enzymatic activity of Lac-Peco60-7 was strongly promoted by Zn2+ and Cu2+, however, its activity was inhibited by Ag+ and Fe2+
     VP-Peco60-7 was purified by ammonium sulfate precipitation, DEAE FF chromatography and SephacrylTM S-200 High Resolution chromatography with a activity yield of 19.1% and a purification factor of 27.0. The molecular mass of VP-Peco60-7 was estimated to be 40 kDa by SDS-PAGE and its isoelectric point was 4.1. The optimal pH and temperature for ABTS were 3.0 and 50℃, respectively. The Vmax and Km values of the enzyme toward substrate ABTS were 188.68U/mg and 203.09μmol. The enzyme was relatively stable following with 50% survival activity after incubating for 24 h at pH 4.0 and over 52% survival activity after incubating for 60 min at 30℃.0.1 mM various metal ions had different effects on enzyme activity, the enzymatic activity of Lac-Peco60-7 was promoted by Zn2+ and Cu2+, however, its activity was strongly inhibited by Fe3+, Fe2+ and Mn2+
     Ligninolytic enzymes separated from DEAE FF were used to decolorize three dyes, including bromchlorphenol blue, methylene blue and Congo red, which could be classified as triphenylmethane, heterocyclic and disazo dyes. The results showed that the purified ligninolytic enzymes had the best decoloring effect for bromphenol blue, with a 99.3% decolorization rate after treating for 24 h. And the decolorization rate of Congo red and methylene blue were 53.7% and 11.5% after treated for 24 hours, respectively. The optimal decolorization conditions were as follows:decolorizing temperature was 30℃, decolorizing pH was 4.0, H2O2 concentration was 5μmol/L, concentration of ligninolytic enzyme was 20 U/mL, concentration of bromophenol blue is 25μmol/L. The decolorization rate of bromphenol blue reached up to 85.61% after treated for 2 hours. The adding of ABTS had no pronounced effect on decolorization rate of bromphenol blue.
     The study on sodium lignosulfonate biodegradation by ligninolytic enzymes purified from DEAE FF showed that about 82.13% of sodium lignosulfonate could be degraded in the system containing 100 mg/L sodium lignosulfonate,1 mmol/L ABTS,20 U/mL ligninolytic enzyme, and 50 mmol/L sodium acetate buffer (pH4.6) for 8 hours at 40℃. The absorption peak at the 273nm was obviously decreased by UV-VIS spectrogram (200-800nm), which was also demonstrated that the ABTS could clearly improve the biodegradation of sodium lignosulfonate.
引文
[1]Brian Van Driessel, Lew Christov. Decolorization of bleach plant effluent by mucoralean and white-rot fungi in a rotating biological contactor reactor [J]. Journal of Bioscience and Bioengineering,2001,92(3):271-276.
    [2]许云贺,张莉力,王凤娥,等.白腐真菌研究进展[J].畜牧兽医科技信息,2007(12):11-12.
    [3]王蔚,高培基.褐腐真菌木质纤维素降解机制的研究进展[J].微生物学通报,2002,29(3):90-93.
    [4]于淑玲.腐生真菌在有机质分解过程中的作用研究进展[J].河北师范大学学报-自然科学版,2003,27(5):519-522.
    [5]郭圣荣译.生物高分子(第1卷)-木质素、腐殖质和煤[M].北京:化学工业出版社,2004:141-225.
    [6]李慧蓉.白腐真菌生物学和生物技术[M].北京:化学工业出版社,2005:1-9.
    [7]Martinez A T. Molecular biology and structure-function of lignin-degrading heme peroxidases [J]. Enzyme and Microbial Technology,2002,30(4):425^444.
    [8]Edwards S L, Raag R, Wariishi H, et al. Crystal structure of lignin peroxidase [J]. Biochemistry,1993,90(2):750-754.
    [9]ilden K, Martinez A T, Hatakka A, et al. The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent [J]. Fungal Genetics and Biology,2005, 42(5):403-419.
    [10]Perezboada M P, Ruizduenas F J, Pogni R, et al. Versatile Peroxidase Oxidation of High Redox Potential Aromatic Compounds:Site-directed Mutagenesis, Spectroscopic and Crystallographic Investigation of Three Long-range Electron Transfer Pathways [J]. Mol. Biol.2005,354(2):385-402.
    [11]Claus H. Laccases:structure, reactions, distribution [J]. Micron,2004,35(2): 93-96.
    [12]卢蓉,夏黎明.漆酶氧化还原介质系统的作用机理及其应用[J].纤维素科学与技术.2004,12(1):37-44.
    [13]Varela E, Martinez M J, Martinez A T. Aryl-alcohol oxidase protein sequence:a comparison with glucose oxidase and other FAD oxidoreductases [J]. Biochimica et Biophysica Acta,2000,1481(1):202-208.
    [14]Ferreira P, Medina M, Guillen F, et al. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols[J]. Biochemical Society,2005,389(3):731-738.
    [15]Wong D.W.S. Structure and action mechanism of ligninolytic enzymes [J]. Appl Biochem Biotechnol,2009,157(2):174-209.
    [16]吴坤,张世敏,朱显峰.木质素生物降解研究进展[J].河南农业大学学报,2000,34(4):349-354.
    [17]S. G. Bharati, A. S. Salanki, T. C. Taranath, et al. Role of cyanobacteria in the removal of lignin from paper mill waste waters [J]. Bull. Environ. Contam. Toxicol. 1992,49:738-742.
    [18]Elena S, Bozena K. Modification of lignin by Geotrichum klebahnii [J]. World Journal of Microbiology & Biotechnology,2001,17(1):1-3.
    [19]M. A. Falcon, A. Rodriguez, A. Carnicero, et al. Isolation of microorganisms with lignin transformation potential from soil of Tenerife island [J]. Soil Biology and Biochemistry.1995,27(2):121-126.
    [20]Keyser P, Kirk T K, Zeikus J G. Ligninolytic enzyme system of Phanaerochaete chrysosporium:synthesized in the absence of lignin in response to nitrogen starvation[J]. J Bacteriol,1978,135(3):790-797.
    [21]Tien M, Kirt T K. Lignin-degrading enzyme from the hymenomycetes Phanerochaete chrysosporium burds. Science,1983,221:661-663.
    [22]Pease E A,& Tien M. Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium[J]. Journal of Bacteriology,1992,174: 3532-3540.
    [23]Bumpus J A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium[J]. Appl Environ Microbiol.1989,55(1):154-158
    [24]王呈玉,李玉.中国侧耳属[Pleurotus(Fr.)Kumm.]真菌系统分类学研究[D].吉林农业大学,硕士学位论文,2004.
    [25]Munoz C, Guillen F, Martinze A T, et al. Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation[J]. Applied and environmental microbiology,1997, 63(6):2166-2174.
    [26]Duenas F J R, Patricia F, Maria J M, et al. In vitro activation, purification, and characterization of Escherichia coli expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme [J]. Protein expression and purification,2006,45(1): 191-199.
    [27]Marzullo L, Cannio R, Giardina P, et al. Veratryl alcohol oxidase from pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates [J]. American Society for Microbiology,1995,270(8): 3823-3827.
    [28]Locci E, Laconi S, Pompei R, et al. Wheat bran biodegradation by Pleurotus ostreatus:A solid-state Carbon-13 NMR study [J]. Bioresource Technology,2008, 99(10):4279-4284.
    [29]Rodriguez E, Nuero O, Guillen F, et al. Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species:the role of laccase and versatile peroxidase [J]. Soil Biology and Biochemistry,2004,36(6):909-916.
    [30]Guillen F, Martinez M J, Munoz C, et al. Quinone Redox Cycling in the Ligninolytic Fungus Pleurotus eryngii Leading to Extracellular Production of Superoxide Anion Radical[J]. Archives of Biochemistry and Biophysics,1997, 339(1):190-199.
    [31]Camarero S, Garcia O, Vidal T, et al. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system [J]. Enzyme and Microbial Technology, 2004,35(2):113-120.
    [32]F. Guillen, C.S. Evans, Anisaldehyde and veratraldehyde acting as redox cycling agents for H2O2 production by Pleurotus eryngii [J]. Appl. Environ. Microbiol, 1994,60(8):2811-2817.
    [33]Martinez J, Martinez A T. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii[J]. Eur.J.Biochem,1996,287: 424-432.
    [34]Toribio V G, Martinez A T, Martinez M J, et al. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii[J]. Eur.J.Biochem.2001, 268(17):4787-4793.
    [35]Camarero S, Sarkar S, Ruiz-Duenas F J, Martinez M J, et al. Description of a versatile peroxidase involved in the natural degradation of lignin that has been manganese peroxidase and lignin peroxidase substrate interaction sites [J]. Journal of Biological Chemistry,1999,274:10324-10330.
    [36]R. Bourbonnais, M.G. Paice. Veratryl alcohol oxidases from the lignin degrading basidiomycete Pleurotus sajor-caju [J]. Biochem,1988,255(2):445-450.
    [37]Heinfing A, Ruizduenias F J, Martinez M J. A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta [J]. Federation of European Biochemical Societies,1998,428(3):141-146.
    [38]Li X, Wei Z Y, Zhang M, et al. Crystal structures of E. coli laccase CueO at different copper concentrations [J]. Biochemical and Biophysical Research Communications,2007,354:21-26.
    [39]Sundaramoorthy M, Kishi K, Gold MH, Poulos TL. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution[J]. J Biol Chem.1994,269:32759-32767.
    [40]Katia Ambert Balay, Mike Dougherty, Ming Tien. Reactivity of M anganese Peroxidase:Site directed mutagenesis of residues in proximity to the porphyrin ring [J]. Archives of Biochemistry and Biophysics.2000,328(1):89-94.
    [41]Camarero S, Sarkar.S, Ruiz-Duenas FJ, et al. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites [J]. J. Biol. Chem.,1999,274(15): 10324-10330.
    [42]Ruiz-Duenas FJ, Martinez MJ, Martinez AT. Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii[J]. Mol Microbiol,1999,31:223-36.
    [43]Moreira PR, Duez C, Dehareng D, et al. Molecular characterization of a versatile peroxidase from a Bjekandera strain[J]. J. Biotechnol,2005,118(4):339-352.
    [44]Palmieri G, Bianco C, Cennamo G, et al. Purification, Characterization, and Functional Role of a Novel Extracellular Protease from Pleurotus ostreatus[J]. American Society for Microbiology,2001,67(6):2754-2759.
    [45]余瑞元,袁明秀,陈丽蓉,等.生物化学实验原理和方法[M].北京大学出版社(第二版).
    [46]黄峙,杨芳,郑文杰,等.用液相等电聚焦电泳纯化藻蓝蛋白亚基[J].高等学校化学学报,2006,127:1051-1054.
    [47]陈亮明,张冬林,李志辉,等PAGE银染和条带回收方法的改进[J].中南林业科 技大学学报,2007,27(6):163-165.
    [48]Ikehata K, Buchanan I D, Smith D W. Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment[J]. Environ. Eng. Sci,2004,3:1-19.
    [49]Caramelo L, Martinez J.S, Martinez A T. A Search for Ligninolytic Peroxidases in the Fungus Pleurotus eryngii Involving a-Keto-g-Thiomethylbutyric Acid and Lignin Model Dimers [J]. American Society for Microbiology,1999,65(3): 916-922.
    [50]Duenas F J R, Martinez M J, Martinez A T. Heterologous expression of Pleurotus eryngii peroxidase confirms its ability to oxidize Mn2+ and different aromatic substrates [J]. American Society for Microbiology,1999,65(10):4705-4709.
    [51]Tien M, Kirk T K. Lignin-degrading enzyme from anerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase[J]. Proc. Natl. Acad. Sci. USA,1984,81:2280-2284.
    [52]Carmen R J, Cullen D, Lamar R T. Manganese peroxidases of the white rot fungus Phanerochaete sordida[J]. American society for microbiology,1994,60:599-605.
    [53]Martinez J, Martinez A T. Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii[J]. Eur.J.Biochem,1996,287: 424-432.
    [54]Arias M E, Aaenas M, Rodriguez J, et al. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335 [J]. American society for microbiology,2003,69:1953-1958.
    [55]丁少军,宋美静.云芝漆酶的培养和分离纯化的研究[J].纤维素科学与技术,1998,6:16-20.
    [56]Bach A N, Komarov V L. Laccase and Mn-Peroxidase Production by Coriolus hirsutus Strain 075 in a Jar fermentor[J]. Journal of bioscience and bioengineering, 2002,5:449-455.
    [57]吴坤,闵航,朱显峰,等.杂色云芝漆酶的分离、纯化和酶学特性研究[J].高校化学工程学报,2003,17(2):173-179
    [58]Podgornik H, Podgornik A. Separation of manganese peroxidase isoenzymes on strong anion-exchange monolithic column using pH -salt gradient [J]. Journal of Chromatography B,2004,799:343-347.
    [59]杨建强,刘刚,汤国营,等.改构的野生革耳漆酶基因在毕赤酵母中的表达和活性鉴定[J].生物技术通讯,2005,16(3):255-258.
    [60]杨金水,刘葳,倪晋仁.木质素降解菌的分离鉴定及木素过氧化物酶的纯化[J].环境科学,2006,27(5):981-985.
    [61]Litthauer D, Vuuren M J V, Tonder A V, et al. Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus[J].Enzyme and Microbial Technology,2007,40(4):563-568.
    [62]钱易,汤鸿霄,文湘华,等.水体颗料物和难降解有机物的特性与控制技术原理(下卷)难降解有机物[M].中国环境科学出版社,2000.
    [63]Cripps C, Bumpus J A, Steven D A. Biodegradation of Azo and Heterocyclic Dyes by Phanerochaete chrysosporium[J]. American Society for Microbiology,1990, 56(4):1114-1118
    [64]Michael M T, Georg M G, Astrid R. Degradation of azo dyes by oxidative processes-Laccase and ultrasound treatment[J]. Bioresource Technology.2008,99: 4213-1220.
    [65]J A Field, E D Jong, G Feijoo Costa, et al. Biodegradation of Polycyclic Aromatic Hydrocarbons by New Isolates of White Rot Fungi[J]. American Society for Microbiology,1992,58(7):2219-2226.
    [66]Yu B, Ma C Q, Zhou W J, et al. Simultaneous Biodetoxification of S, N, and O Pollutants by Engineering of a Carbazole-Degrading Gene Cassette in a Recombinant Biocatalyst[J]. American Society for Microbiology,2006,72(11): 7373-7376.
    [67]Valli K, Michael H G. Degradation of 2,4-Dichlorophenol by the Lignin-Degrading Fungus Phanerochaete chrysosporium[J].American Society for Microbiology,1991,173(1):345-352.
    [68]Dinesh K J, Michael H G. Degradation of 2,4,5-Trichlorophenol by the Lignin-Degrading Basidiomycete Phanerochaete chrysosponium[J].American Society for Microbiology,1993,59(6):1779-1785.
    [69]Abraham E N N E, Antonio C, Juan L R. Biological Degradation of 2,4,6-Trinitrotoluene[J]. American Society for Microbiology,2001,65(3):335-352.
    [70]蒋挺大.木质素[M].北京:化学工业出版社(第1版),2001:12-79.
    [71]Bumpus JA, Tien M, Wright D, et al. Oxidation of persistent environmental pollutants by a white rot fungus [J]. Science,1985,228(4706):1434-1436.
    [72]Bumpus J A, Brock B J. Biodegradation of Crystal Violet by the White Rot Fungus Phanerochaete chrysosporium[J].American Society for Microbiology, 1988,54(5):1143-1150.
    [73]Mileski G J, Bumpus J A, Jurek M A, et al. Biodegradation of Pentachlorophenol by the White Rot Fungus Phanerochaete chrysosporium[J].American Society for Microbiology,1988,54(12):885-2889.
    [74]Bumpus J A. Biotransformations:Microbial Degradation of Heath Risk Compounds[M]. Amsterdam:Elsevier Science,1995:157-176.
    [75]Yadav J S, Reddy C A. Degradation of Benzene, Toluene, Ethylbenzene, and Xylenes(BTEX) by the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium[J]. American Society for Microbiology,1993,59(3):756-762.
    [76]Reddy G. V B, Michael H G. Degradation of pentachlorophenol by Phanerochaete chrysosporium:intermediates and reactions involved[J]. Microbiology,2000,146: 405-413.
    [77]Baldrian P, Gabriel J. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil[J]. American Society for Microbiology,2000,66(6): 2471-2478.
    [78]Deguchi T, Kitaoka Y, Kakezawa M, et al. Purification and Characterization of a Nylon-Degrading Enzyme[J]. American Society for Microbiology,1998,64(4): 1366-1371
    [79]Sigoillot C, Camarerob S, Vidal T, et al. Comparison of different fungal enzymes for bleaching high-quality paper pulps[J]. Journal of biotechnology,2005,115(4): 333-343.
    [80]Tauber M M, Giibitz G M, Rehorek A. Degradation of azo dyes by oxidative processes-Laccase and ultrasound treatment[J]. Bioresource Technology,2008, 99(10):4213-4220.
    [81]Smolander M, Boer H, Valkiainen M et al. Development of a printable laccase based biocathode for fuel cell applications [J]. Enzyme and Microbial Technology, 2008,43(2):93-102.
    [82]杜红英.关于原生质和原生质体的定义[J].荆门职业技术学院学报,2003,18(3):70-71.
    [83]邱龙新.食用菌原生质体技术研究现状[J].龙岩师专学报,2002,20(6):49-52.
    [84]张欣.食用蕈菌生物学技术及应用[M].中国轻工业出版社,1995.
    [85]刘祖同,罗信昌.食用蕈菌生物技术及应用[M].清华大学出版社,2002:66.
    [86]薛知文,薛亮.食用菌与生物工程技术[J].陕西师范大学继续教育学报,2000,17(1):105-107.
    [87]王淑珍,高雁,白晨.松茸原生质体制备与再生的研究[J].食用菌,2002,24(3):6-8.
    [88]张志光,李东屏,邹寿长,方芳.丝状真菌原生质体技术的研究一渗透压稳定剂对原生质体的影响[J].湖南师范大学自然科学学报,1998,21(2):67-71.
    [89]Seh M L, Kenerley C M. Protoplats isolation and regeneration and nuclear staining of mycoparasitic Gliocladium species[J]. Journal of Mircobiological Methods,1988,8(3):121-130.
    [90]王敏,王春霞,路福平,等.蓝色犁头霉原生质体的制备与再生[J].工业微生物,2001,31(2):20-22.
    [91]沈萍,范秀容,李广武.微生物学实验[M],北京:高等教育出版社,1999,90-92.
    [92]李刚,李宝健.灵芝原生质体分离与再生研究[J].菌物系统,1999,18(1):79-88.
    [93]郭建春.侧耳属原生质体的释放与再生[J].长沙水电师院自然科学学报,1991,6(2):210-225.
    [94]孙剑秋,周东坡.微生物原生质体技术[J].生物学通报,2002,37(7):9-11.
    [95]虞磊,李蕤.食用菌原生质体融合育种技术及其进展[J].合肥联合大学学报,2000,10(4):97-100.
    [96]K S Kim, N Y Cho, H S Pal, et al. Mutagenesis of Micromonospora rosaria by using protoplasts and mycelial fragements[J]. Applied and Enviromental Microbiology,1983,46(3):689-693.
    [97]Lee jae-Sung, Yoshihiko luima, Hideyuki Kobayashi, et al. Release regeneration and mutant induction of Pleurotus comucopiae protoplasts[J]. Agri Biol Chem, 1988,52(7):1877-1878.
    [98]张渊,王谦,张筱梅,张焕英.白灵侧耳木质素酶、纤维素酶高活性菌株的诱变选育[J].河北大学学报,2005,25(6):654-658.
    [99]李刚,杨凡,李瑞雪,徐志祥,李宝健.原生质体紫外诱变选育灵芝新菌种的 研究[J].微生物学报,2001,(2):41.
    [100]夏志兰,艾辛,姜性坚.60Coγ射线对刺芹侧耳菌丝的诱变效应[J].激光生物学报,2004,13(4):298-301.
    [101]李刚,杨凡,李瑞雪,等.李宝健.原生质体紫外诱变选育灵芝新菌种的研究[J].微生物学报,2001,41(2):229-233.
    [102]张红梅,徐淑霞,吴坤.漆酶产生菌的原生质体诱变选育[J].郑州轻工业学院学报(自然科学版),2005,(2):14-16.
    [103]冀珍芳,石淑兰.木质素的微生物降解[J].广西轻工业,2002,15(1):4-5.
    [104]陈立祥,章怀云.木质素生物降解及应用研究进展[J].中南林学院学报,2003,23(1):79—-84.
    [105]王宜磊,刘兴坦.Corilus versicolor锰过氧化物酶的产生及活性研究[J].淄博学院学报,2000,2(4):83-85.
    [106]康从宝,赵建,李清心,等.层孔菌产漆酶的摇瓶最适培养条件研究[J].微生物学通报,2002,29(3):42-46.
    [107]肖亚中,张敏,吴娟,等.影响白腐真菌AH2822菌株漆酶合成的因子和发酵条件[J].生物工程学报,2001,17(5):579-583.
    [108]喻国策,文湘华,李东锋,等.黄孢原毛平革菌在多种氨氮浓度下木质素降解酶的产生[J].环境科学学报,2003,23(6):802-806.
    [109]Duenas F J R, Guillen F, Cumarero S. Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii[J]. American Society for Microbiology,1999,65(10):4458-4463.
    [110]赵华,齐刚,代彦.白腐菌液体深层培养条件的研究[J].生物技术.2003,13(6):21-24.
    [111]李越中,高培基,王祖农.黄孢原毛平革菌合成木素过氧化物酶的营养调控[J].微生物学报,1994,34(1):26-36.
    [112]Bazlev S. Kirk T. Effect of molocular oxygen on lignin degradation by Phanerochate chrysosporium[J]. Biochem Biophys Res commun,1981,99: 373-378.
    [113]Sumner J B. The Isolation and Crystallization of the Enzyme Urease [J]. J. Biol. Chem.1926,69,435-441
    [114]时永全,韩者艺,王新,等.利用聚丙烯酰胺凝胶电泳纯化的微量蛋白制备抗血清[J].细胞与分子免疫学杂志,2002,18(6):621-623.
    [115]康彬,童哲.一种利于蛋白质回收的快速SDS聚丙烯酰胺凝胶电泳染色脱色方法[J].生物化学与生物物理进展,2000,27(2):210-211.
    [116]王东辉,韩韬,龚化,等.一种利用普通垂直电泳槽回收PAGE胶蛋白条带的简便方法[J].植物生理学通讯,2004,40(1):75-77.
    [117]景巍,王转花.一种快速纯化蛋白的电洗脱方法[J].生物技术,2004,14(2):30-31.
    [118]胡洪波,姚善泾,朱自强.蛋白质在膨胀床吸附层析剂的静态和动态吸附性能[J].化学工程,2001,29(1):37-40
    [119]胡洪波,张雪洪,梅乐和,等.膨胀床离子交换吸附分离纳豆激酶[J].化学工程,2005,3(4):1-4.
    [120]黄俊,梅乐和,钟春龙,等.重组细胞色素P450 BM-3酶的表达条件及初步纯化研究[J].浙江大学学报(农业与生命科学版),2006,32(1):96-100.
    [121]陈亮明,张冬林,李志辉,等.PAGE银染和条带回收方法的改进[J].中南林业科技大学学报,2007,27(6):163-165.
    [122]Sambrook J, Russell D W.分子克隆实验指南(第三版)[M].科学出版社,2002.
    [123]Heinfling A, Martinez M J, Martinez A T, et al. Transformation of Industrial Dyes by Manganese Peroxidases from Bjerkandera adusta and Pleurotus eryngii in a Manganese-Independent Reaction[J]. American Society for Microbiology,1998, 64(8):2788-2793.
    [124]Toribio V G, Martinez A T, Martinez M J, et al. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii[J]. Eur.J.Biochem.2001, 268:4787-4793.
    [125]Hoshino F, Kajino T, Sugiyama H, et al. Thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) from Lenzites betulinus[J]. Federation of European Biochemical Societies,2002,530:249-252.
    [126]Litthauer D, Vuuren M J V, Tonder A V, et al. Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus[J]. Enzyme and Microbial Technology,2007,40(4):563-568.
    [127]许益.纺织染料的应用现状及趋势[J].纺织导报,2008,(4):29-40.
    [128]张淑芬,杨锦宗.活性染料的现状与展望[J].染料与染色,2008,45(1):1-7.
    [129]National Bureau of Statistics. Wastewater drainage and treatment of different industries [M]. Beijing:China Statistical Press,2005:11-13.
    [130]杨薇,杨新玮.国内外活性染料的进展[J].染料工业,2001,38(4):1-5.
    [131]Bumpus J. A, Brock B. J. Biodrgradation of crystal violet by the white rot fungus Phanerochaete chrysosporium[J]. Appl Environ Microbiol.1988,54(5): 1143-1150.
    [132]Ilgi K.K, Fikret K. Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor[J]. Enzyme & Microb Techno,2002,30:195-199.
    [133]Madhavi SR, Lele SS, Synthetic dye decolorization by white rot fungus, Ganoderma sp.WR-1[J]. Bioresour Technol,2007,98:775-780.
    [134]Kumarasamy M, Nam IH, Chang YS. Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture[J]. Enzyme & Microb Technol,2007,40:1662-1672.
    [135]侯红漫,周集体,王竞等.Study of decolorization of anthraquinone dye SN4R by laccase from white-rot fungi Pleurotus ostreatus[J]. J Dalia Univ Technol, 2004,44 (5):640-645
    [136]霍夫利特,斯泰因比谢尔,郭圣荣.等生物高分子木质素、腐殖质和煤[M].化学工业出版社,2004:141-225.
    [137]蒋挺大.木质素[M].化学工业出版社(第1版).2001,12-79.
    [138]Camarero S, Garcia O, Vidal T, et al. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system[J]. Enzyme and Microbial Technology,2004,35:113-120.
    [139]Sigoillot C, Camarerob S, Vidal T, et al. Comparison of different fungal enzymes for bleaching high-quality paper pulps [J]. Journal of biotechnology,2005, 115:333-343.
    [140]Katagiri N, Tsutsumi Y, Nishida T. Correlation of Brightening with Cumulative Enzyme Activity Related to Lignin Biodegradation during Biobleaching of Kraft Pulp by White Rot Fungi in the Solid-State Fermentation System [J]. American Society for Microbiology,1995,61(2):617-622.
    [141]http://www.aladdin-reagent.com/thir.asp?Rea_SubID=21934.
    [142]Camarero S, Galletti G C, Martinez A T. Preferential Degradation of Phenolic Lignin Units by Two White Rot Fungi [J]. American Society for Microbiology, 1994,60(12):4509-4516.
    [143]Mester T, Katia A B, Simone C B, et al. Oxidation of a Tetrameric Nonphenolic Lignin Model Compound by Lignin Peroxidase[J]. American Society for Biochemistry and Molecular Biology,2001,276(22):22985-22990.
    [144]王志新,施晓燕,蔡宇杰,等.白腐真菌SYBC2L2漆酶的分离纯化及其在毛纺染料脱色中的应用[J].生物技术通报,2008(8):156-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700