家蚕(Bombyx mori)性别决定网络及其关键基因BmSxl的cDNA克隆和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕性别决定研究既具有模式研究的科学意义,又具有重要的产业价值,因而一直是蚕业科学的一个重大课题。经典遗传学研究推测家蚕W染色体上Fem基因为家蚕性别决定初级信号,最近家蚕性别决定的下游调控基因Bmdsx也已鉴定。然而,对于从上游的初级信号Fem到下游Bmdsx之间的调控网络,尤其是Bmdsx的上游调控基因,仍然知之甚少。本研究在家蚕全基因组框架图的基础上,应用生物信息学、EST、全基因组芯片分析研究雌雄的差异选择性剪接和雌雄的差异表达,追寻性别决定关键基因,探讨家蚕性别决定分子机制。获得的主要结果如下:
     1.家蚕基因组中性别决定同源基因的鉴定
     将果蝇所有性别决定基因在家蚕基因组中进行同源性分析,以鉴定家蚕性别决定基因。结果显示,22个性别决定基因在家蚕基因组中具有同源体,并且除Sxl外,其它同源基因都有EST表达证据。此乃首次从家蚕基因组水平大尺度鉴定家蚕性别决定同源基因。
     比较分析家蚕与果蝇性别决定调控网络,在性别决定初级信号的基因中,da、emc、gro、sisB、run和dpn在家蚕中具有同源体,而her、sisA和sisC在家蚕中没有同源体,这也许反映了家蚕没有使用X:A作为性别决定初级信号,与经典遗传学研究认为家蚕性别决定初级信号为单一的Fem基因的结果相一致;在剂量补偿途径中,3个基因msl3、mle和mof在家蚕中具有同源体,msl1和msl2基因在家蚕没有同源体,这进一步证明了家蚕缺乏剂量补偿机制;在体细胞性别决定途径中,9个基因Sxl、tra2、dsx、ix、Rbp1、doa、snf、vir和fl(2)d在家蚕中均有同源体,仅tra基因在家蚕中没有同源体,这反映了体细胞性别决定在家蚕中可能较为保守,但个别基因及其调控已发生变化;在求偶行为和种系性别分化途径中,4个基因fru、dsf、ovo和otu在家蚕中都有同源体,表明这两条途径在家蚕中可能很保守。综上述,在性别决定网络中,下游基因大部分在家蚕中存在同源基因,较为保守,而上游基因只有部分基因在家蚕中存在同源基因,变化较大。这从一个方面也证实了Wilkins所提出的性别决定遗传网络由底部向顶部进化的趋势。
     2.家蚕性别决定同源基因Bmtar2和Bmix的选择性剪接分析
     通过EST与基因组序列比对分析,鉴定了家蚕235个基因的277个选择性剪接体,分析结果表明,选择性剪接在家蚕基因组中广泛地调控生物学功能。在这些基因中,家蚕性别决定重要基因Bmtra2和Bmix也被鉴定具有选择性剪接。
     对于Bmtra2基因,鉴定了其的三种mRNA形式,分别命名为Bmtra2-PA、Bmtra2-PB和Bmtra2-PC。Bmtra2-PA编码蛋白与果蝇TRA2有61%的一致性,具有类似的1个RRM结构域和4个RS结构域。基因的外显子与内含子边界位点在物种间也相当保守。Bmtta2-PB与Bmtra2-PA相比,在第2内含子发生了一个可变3’位点类型的选择性剪接,从而Bmtra2-PB编码蛋白比Bmtra2-PA多11个氨基酸残基,这11个氨基酸残基紧邻于第3个RS结构域,这
Study on sex determination in Bombyx mori was carried out for understanding the mechanism of sex determination and applying it in sericulture to bring some economic benefit. So study on silkworm sex determination has drawn attention in sericulture all the time. Classical genetics suggested that gene Fem on the w chromosome should be the primary signal in sex determination in Bombyx mori. Recently downstream regulatory gene Bmdsx has been identified. But gene network between genes Fem and Bmdsx is still unknown, especially genes regulating directly Bmdsx. With the finished draft sequence of silkworm genome, mechanism of sex determination in Bombyx mori was explored in our work after we studied different alternative splicing and different expression between male and female silkworm, and found the key genes by analysis of bioinformation, EST and the whole genome microarray. The main results present as follow. 1. Identification of homologs of sex-determining genes in silkworm genome
    Homology analysis between the silkworm genome and all the known genes of Drosophila sex determination showed that homologs of 22 genes were found in silkworm. Moreover, their corresponding EST sequences were found except for gene Sxl. Homologs of sex determination were reported firstly after the draft sequence of silkworm genome came out.
    Analysis on the regulatory network of sex determination between silkworm and Drosophila indicated that, for the primary signal of sex determination, Homologs of genes da, emc, gro, sisB, run and dpn were found in silkworm while no one of genes her, sisA and sisC were found. This suggested that the ratio of X : A was not the primary signal of sex determination in silkworm but the single gene Fem, which was accorded with the point of classical genetics. In the dosage compensation pathway, no homolog of genes msl1 and msl2 were found while the one of the rest three genes msl3, mle and mof were found, which was confirmed that mechanism of dosage compensation is lacking in silkworm. In the pathway of sex determination of somatic cell, homologs of genes Sxl、 tra2、 dsx、 ix、 Rbp1、 doa、 snf、 vir and fl(2)d were found except for tra, which demonstrated that sex determination in somatic cell should be conserved in silkworm though individual gene and its regulation may has changed. In the pathways of sexual behavior and sex determination in the germline, homologs of all the genes fru、 dsf、ovo and otu found. This showed that both of pathways should be conserved in silkworm. In a word, in the regulatory network of silkworm sex determination homologs of most of downstream genes still work and were conserved. Homologs of only part of upstream genes work and something has changed. All this confirmed the idea that sex determination involved from the bottom of the regulatory network to the top proposed by Wilkins.
引文
[1] Henking H. (1891) Untersuchungen (?)ber die ersten Entwicklungsvorgange in den Eiern der Insekten. Zeit. wiss. Zool. 51:685-736.
    
    [2] McClung CE. (1901) Notes on the accessory chromosome. Anat. Anz. 20: 220-226.
    
    [3] McClung CE. (1902) The accessory chromosome-Sex determinant? Biological Bulletin 3:43-84.
    
    [4] Wilson EB. (1906) Studies on chromosomes. V. The chromosomes of Metapodius. A contribution to the hypothesis of the genetic continuity of chromosomes. J Exp Zool 6:147-205.
    [5] Stevens NM. (1905) Studies in spermatogenesis with especial reference to the "accessory chromosome.". Carnegie Inst. Washington Publ. 36:33.
    [6] Bickmore WA, Cooke HJ. (1987) Evolution of homologous sequences on the human X and Y chromosomes, outside of the meiotic pairing segment. Nucl Acids Res 15:6261-6271
    [7] Sinclair AH, Berta P, Palmer MS, et al. (1990) A gene from the human sex determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240-244.
    [8] Goodwin EB, Ellis RE. (2002) The nematode Caenorhabditis elegans has two sexes: males and hermaphrodites. Current Biology 12:R111-R120.
    [9] Black DL. (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291-336.
    [10] Swain A, Narvaez V, Burgoyne P, et al. (1998) Dax1 antagonizes Sry action in mammalian sex determination. Nature 391:761-767
    
    [11] Parker KL, Schimmer BP. (2002) Genes essential for early events in gonadal development. Ann Med. 34(3): 171-178.
    
    [12] Moore AW, McInnes L, Kreidberg J, et al. (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126(9):1845-1857.
    [13] Kreidberg JA, Sariola H, Loring JM, et al. (1993) WT-1 is required for early kidney development. Cell 74:679 691.
    [14] Foster JW, Dominguez-Steglich MA, Guioli S, et al. (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372(6506):525-530.
    [15] Behringer RR, Finegold MJ, Cate RL. (1994) Mullerian-inhibiting substance function during mammalian sexual development. Cell 79(3):415-425.
    [16] Raymond CS, Kettlewell JR, Hirsch B, et al. (1999) Expression of Dmrtl in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 215(2):208-220
    [17] Raymond CS, Shamu CE, Shen MM, et al. (1998) Evidence for evolutionary conservation of sex-determining genes. Nature 391(6668):691-695.
    [18] Hilfiker-Kleiner D, Dubendorfer A, Hilfiker A, et al. (1994) Genetic control of sex determination in the germ line and soma of the housefly, Musca domestica. Development 120(9):2531-2538
    [19] Willhoeft U, Franz G. (1996) Identification of the sex-determining region of the Ceratitis capitata Y chromosome by deletion mapping. Genetics 144(2):737-745.
    [20] Bedo DG (1982) Differential sex chromosome replication and dosage compensation in polytene trichogen cells of Lucilia cuprina (Diptera: Calliphoridae). Chromosoma 87(1):21-32.
    [21] Shearman DC, Frommer M. (1998) The Bactrocera tryoni homologue of the Drosophila melanogaster sex-determination gene doublesex. Insect Mol Biol 7(4):355-366.
    [22] Ullerich FH. (1975) Identification of the genetic sex chromosomes in the monogenic blowfly Chrysomya rufifacies (Calliphoridae, Diptera). Chromosoma 50:393-419.
    [23] Hashimoto H. (1933) The role of the W chromosome in the sex determination of Bombyx mori. Jpn J Genet 8:245-247.
    [24] Charlesworth B. (2003) Sex determination in the honeybee. Cell 114(4):397-398.
    [25] Schutt C, Nothiger R. (2000) Structure, function and evolution of sex-determining systems in Dipteran insects. Development 127(4):667-677.
    [26] Saccone G, Peluso I, Artiaco D, et al. (1998) The Ceratitis capitata homologue of the Drosophila sex-determining gene sex-lethal is structurally conserved, but not sex-specifically regulated. Development 125(8): 1495-1500.
    [27] Saccone G, Pane A, Testa G, et al. (2000). Sex determination in medfly: a molecular approach. Area-wide control of fruitflies and other pest insects (ed. K.-H. Tan), Penang: Penerbit USM. pp. 491-496.
    [28] Saccone G, Pane A, Polito LC. (2002) Sex determination in flies, fruitflies and butterflies. Genetica 116(1):15-23.
    [29] Pane A, Salvemini M, Delli Bovi P, et al. (2002) The transformer gene in Ceratitis capitata provides a genetic basis for selecting and remembering the sexual fate. Development 129(15):3715-3725.
    [30] Beye M, Hasselmann M, Fondrk M K, et al. (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114(4):419-429.
    [31] Wilkins AS. (1995) Moving up the hierarchy: A hypothesis on the evolution of a genetic sex determination pathway. BioEssays 17:71-77.
    [32] Muller-Holtkamp F. (1995) The Sex-lethal gene homologue in Chrysomya. rufifacies is highly conserved in sequence and exon-intron organization. J Mol Evol 41(4):467-477.
    [33] Sievert V, Kuhn S, Paululat A, et al. (2000) Sequence conservation and expression of the sex-lethalhomologue in the fly Megaselia scalaris. Genome 43(2):382-390.
    [34] Meise M, Hilfiker-Kleiner D, Dubendorfer A, et al. (1998) Sex-lethal, the master sex-determining gene in Drosophila, is not sex-specifically regulated in Musca domestica. Development 125(8): 1487-1494.
    [35] Kuhn S, Sievert V, Traut W. (2000) The sex-determining gene doublesex in the fly Megaselia scalaris: conserved structure and sex-specific splicing. Genome 43(6):1011-1020.
    [36] Hediger M, Burghardt G, Siegenthaler C, et al. (2004) Sex determination in Drosophila melanogaster and Musca domestica converges at the level of the terminal regulator doublesex. Dev Genes Evol 214(1):29-42.
    [37] Scali C, Catteruccia F, Li Q, et al. (2005) Identification of sex-specific transcripts of the Anopheles gambiae doublesex gene. J Exp Biol 208(Pt19):3701-3709.
    [38] Bridges CB. (1916) Non-disjunction as proof of the chromosome theory of heredity (part 1). Genetics 1:1-52.
    [39] Bridges CB. (1916) Non-disjunction as proof of the chromosome theory of heredity (part 2). Genetics 1:107-163.
    
    [40] Bridges CB. (1925) Sex in relation to chromosomes and genes. American Naturalist 59:127-137.
    [41]Maroni G, Plaut W. (1973) Dosage compensation in Drosophila melanogaster triploids I Autoradiographic study. Chromosoma 40(4):361 377.
    [42] Van Deusen EB. (1976) Sex determination in germ line chimeras of Drosophila melanogaster. J Embryol Exp Morphol 37:173 85.
    [43] Wieschaus E, Nothiger R (1982) The role of the transformer gene in the development of the genitalia and analia of Drosophila melanogaster. Dev Biol 90:320-334.
    [44] Belote JM, Baker BS. (1982) Sex determination in Drosophila melanogaster: Analysis of transformer-2, a sex-transforming locus. Proc Natl Acad Sci USA 79:1568-1572.
    [45] Maine EM, Salz HK, Cline TW, et al. (1985) The Sex-lethal gene of Drosophila: DNA alterations associated with sex-specific lethal mutations. Cell 43:521-529.
    [46] MCROBERT, S. P. and L. TOMPKINS, 1985 The effect of transformer, doublesex and intersex mutations on the sexual behavior of Drosophila melanogaster. Genetics 111:89-96.
    [47] Cline TW. (1993) The Drosophila sex determination signal: how do flies count to two?. Trends Genet 9:385-390.
    [48] Cline TW. (1988) Evidence that sisterless-a and sisterless-b are two of several discrete "numerator elements" of the X/A sex determination signal in Drosophila that switch Sxl between two alternative stable expression states. Genetics 119:829-862.
    [49] Duffy JB, Gergen JP. (1991) The Drosophila segmentation gene runt acts as a position-specificnumerator element necessary for the uniform expression of the sex-determining gene Sex-lethal. Genes Dev 5:2176-2187.
    [50] Erickson JW, Cline TW. (1993) A bZIP protein, sisterless-a, collaborates with bHLH transcription factors early in Drosophila development to determine sex. Genes Dev 7:1688-1702.
    [51] Deshpande G, Stukey J, Schedl P. (1995) scute (sis-b) function in Drosophila sex determination. Mol Cell Biol 15:4430-4440.
    [52] Barbash DA, Cline TW. (1995) Genetic and molecular analysis of the autosomal component of the primary sex determination signal of Drosophila melanogaster. Genetics 141(4): 1451-1471.
    [53] Cronmiller C, Schedl P, Cline TW. (1988) Molecular characterization of daughterless, a Drosophila sex determination gene with multiple roles in development. Genes Dev 2:1666-1676.
    [54] Pultz MA, Baker BS. (1995) The dual role of hermaphrodite in the Drosophila sex determination regulatory hierarchy. Development 121:99-111.
    [55] Younger-Shepherd S, Vaessin H, Bier E, et al. (1992). deadpan, an essential pan-neural gene encoding an HLH protein, acts as a denominator in Drosophila sex determination. Cell 70:911-922.
    [56] Paroush Z, Finley RL, Kidd T, et al. (1994) groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79:805-815.
    [57] Cabrera CV, Alonso MC. (1991) Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO J 10:2965-2973.
    [58] Parkhurst SM, Bopp D, Ish-Horowicz D. (1990) X:A ratio, the primary sex-determining signal in Drosophila, is transduced by helix-loophelix proteins. Cell 63:1179-1191.
    [59] Parkhurst SM, Ish-Horowicz D. (1992) Common denominators for sex. Curr Biol 2:629-631.
    [60] Estes PA, Keyes LN, Schedl P. (1995) Multiple response elements in the Sex-lethal early promoter ensure its female-specific expression pattern. Mol Cell Biol 15:904-917.
    [61] Keyes LN, Cline TW, Schedl P. (1992) The primary sex determination signal of Drosophila acts at the level of transcription. Cell 68:933-943.
    [62] Bell LR, Maine EM, Schedl P, et al. (1988) Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55:1037-1046.
    [63] Bell LR, Horabin JI, Schedl P, et al. (1991) Positive autoregulation of Sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell 65:229-239.
    [64] Horabin JI, Schedl P. (1993) Regulated splicing of the Drosophila Sex-lethal male exon involves a blockage mechanism. Mol Cell Biol 13:1408-1414.
    [65] Albrecht EB, Salz HK. (1993) The Drosophila sex determination gene snf is utilized for the
    establishment of the female-specific splicing pattern of Sex-lethal. Genetics 134:801-807.
    [66] Flickinger TW, Salz HK. (1994) The Drosophila sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A snRNP protein. Genes Dev 8:914-925.
    [67] Granadino B, Juan AS, Santamaria P, et al. (1992) Evidence of a dual function in fl(2)d, a gene needed for Sex-lethal expression in Drosophila melanogaster. Genetics 130:597-612.
    [68] Hilfiker A, Amrein H, Dubendorfer A, et al. (1995) The gene virilizer is required for female-specific splicing controlled by Sxl, the master gene for sexual development in Drosophila. Development 121:4017-4026.
    [69] Sosnowski BA, Belote JM, McKeown M. (1989) Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell 58:449-459.
    [70] Amrein H, Gorman M, Nothiger R. (1988) The sex-determining gene tra-2 of Drosophila encodes a putative RNA binding protein. Cell 55:1025-1035.
    [71] Hoshijima K, Inoue K, Higuchi I, et al. (1991) Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252:833-836.
    [72] Burtis KC, Baker BS. (1989) Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides. Cell 56:997-1010.
    [73] Pultz MA, Carson GS, Baker BS. (1994) A genetic analysis of hermaphrodite, a pleiotropic sex determination gene in Drosophila melanogaster. Genetics 136:195-207.
    [74] Chase BA, Baker BS. (1995) A genetic analysis of intersex, a gene regulating sexual differeniation in Drosophila melanogaster females. Genetics 139:1649-1661.
    [75] Taylor BJ, Villella A, Ryner LC, et al. (1994) Behavioral and neurobiological implications of sex-determining factors in Drosophila. Dev Genet 15:275-296.
    [76] Ryner LC, Goodwin SF, Castrillon DH, et al. (1996) Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87:1079-1089.
    [77] Finley KD, Taylor BJ, Milstein M, et al. (1997) dissatisfaction, a gene involved in sex-specific behavior and neural development of Drosophila. Genetics 94:913-918.
    [78] Demir E, Dickson BJ. (2005) fruitless splicing specifies male courtship behavior in Drosophila. Cell 121(5):785-794.
    [79] Belote JM, Handler AM, Wolfher MF, et al. (1985) Sex specific regulation of yolk protein gene expression in Drosophila. Cell 40:339-348.
    [80] Bownes, M, Steinmann-Zwicky, M. and Nothiger, R. (1990). Differential control of yolk protein gene expression in fat bodies and gonads by the sexdetermining gene tra-2 of Drosophila. EMBO J9:3975-3980.
    [81] Lucchesi JC. (1996) Dosage compensation in Drosophila and the 'complex' world of transcriptional regulation. BioEssays 18:541-547.
    [82] Meller VH, Wu KH, Roman G, et al. (1997) roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88(4):445-457.
    [83]Franke A, Baker BS. (1999) The roxl and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell 4(1): 117-122.
    [84] Jin Y, Wang Y, Johansen J, et al. (2000) JIL-1, a chromosomal kinase implicated in regulation of chromatin structure, associates with the male specific lethal (MSL) dosage compensation complex. J Cell Biol 149(5):1005-1010.
    [85] Kelley RL, Wang J, Bell L, et al. (1997) Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature 387:195-199.
    [86] Steinmann-Zwicky M, Schmid H, Nothiger R. (1989) Cellautonomous and inductive signals can determine the sex of the germ line of Drosophila by regulating the gene Sxl. Cell 57:157-166.
    [87] Bopp D, Horabin JI, Lersch RA, et al. (1993) Expression of the Sex-lethal gene is controlled at multiple levels during Drosophila oogenesis. Development 118:797-812.
    [88] Schüpbach T. (1985) Normal female germ cell differentiation requires the female X chromosome to autosome ratio and expression of Sex-lethal in Drosophila melanogaster. Genetics 109:529-548.
    [89] Steinmann-Zwicky M. (1993) Sex determination in Drosophila: sis-b, a major numerator element of the X:A ratio in the soma, does not contribute to the X:A ratio in the germ line. Development 117:763-767.
    [90] Steinmann-Zwicky M. (1994) Sxl in the germline of Drosophila: a target for somatic late induction. Dev Genet 15:265-274.
    [91] Hinson S, Nagoshi RN. (1999) Regulatory and functional interactions between the somatic sex regulatory gene transformer and the germline genes ovo and ovarian tumor. Development 126:861-871.
    [92] Salz HK. (1992) The genetic analysis of snf: a Drosophila sex determination gene required for activation of Sex-lethal in both the germline and the soma. Genetics 130:547-554.
    [93] Oliver B, Kim YJ, Baker BS. (1993) Sex-lethal, master and slave: a hierarchy of germ-line sex determination in Drosophila. Development 119:897-908.
    [94] Schütt C, Hilfiker A, Nothiger R. (1998) virilizer regulates Sex lethal in the germline of Drosophila melanogaster. Development 125:1501-1507.
    [95] Hager JH, Cline TW. (1997) Induction of female Sex-lethal RNA splicing in male germ cells: implications for Drosophila germline sex determination. Development 124:5033-5048.[96] Pauli D, Oliver B, Mahowald AP. (1993) The role of the ovarian tumor locus in Drosophila melanogaster germ line sex determination. Development 119:123-134.
    [97] Mevel-Ninio M, Terracol R, Kafatos FC. (1991) The ovo gene of Drosophila encodes a zinc finger protein required for female germ line development. EMBO J 10(8):2259-2266.
    [98] Chow, L. T., R. E. Gelinas, T. R. Broker and R. J. Roberts. 1977. An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA. Cell 12:1-8.
    [99] Berget SM, Moore C, Sharpe PA. (1977) Spliced segements at the 5'-terminus ofadenovirus 2 late mRNA. Proc Natl Acad Sci 74:3171-75.
    [100] Gilbert W. (1978) Why genes in pieces?. Nature 271(5645):501
    [101] Lopez AJ. (1998) Alternative splicing of pre-mRNA: Developmental consequences and mechanisms of regulation. Annu Rev Genet 32:279-305.
    [102] Deshpande G, Samuels ME, Schedl P. (1996) Sex-lethal interacts with splicing factors in vitro and in vivo. Mol Cell Biol 16:5036-5047.
    [103] Valcárcel J, Singh R, Zamore PD, et al. (1993) The protein Sex-lethal antagonizes the splicing factor U2AF to regulate alternative splicing of transformer pre-mRNA. Nature 362:171 175.
    [104] Bashaw GJ, Baker BS. (1995) The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex-specifically regulated by Sex-lethal. Development 121:3245-3258.
    [105] Sturtevant AH. (1915) No crossing over in the female of the silkworm moth. Am Naturalist 49:42 44.
    [106] Sahara K, Yoshido A, Kawamura N, et al. (2003) W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma 112:48 55.
    [107] Abe H, Ohbayashi F, Shimada T, et al. (1998) A complete full-length non-LTR retrotransposon, BMC1, on the W chromosome of the silkworm, Bombyx mori. Genes Goner Syst 73:353 358.
    [108] 向仲怀主编,黄君霆,夏建国,鲁成 副主编.蚕丝生物学.第一版.北京:中国林业出版社,2005.
    [109] Koike Y, Mita K, Suzuki MG, et al. (2003) Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog. Mol Gen Genomics 269:137 149.
    [110] Nagaraja GM, Mahesh G, Satish V, et al. (2005) Genetic mapping of Z chromosome and identification of W chromosome-specific markers in the silkworm, Bombyx mori. Heredity 95(2):148-157.
    [111] 向仲怀主编.家蚕遗传育种学.第二版.北京:中国农业出版社,1994.
    [112] 田岛弥太郎.(1914)蚕斑纹利用简易石雌雄鉴别法.日本蚕丝学杂志.??12(3):184-188.
    [113] Ohbayashi F, Suzuki MG, Mita K, et al. (2001) A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 128(1):145-158.
    [114] Suzuki MG, Ohbayashi F, Mita K, et al. (2001) The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori. Insect Biochem Mol Bio131(12):1201-1211.
    [115] Suzuki MG, Funaguma S, Kanda T, et al. (2003) Analysis of the biological functions of a doublesex homologue in Bombyx mori. Dev Genes Evol213(7):345-354.
    [116] Astaurov BL. (1936) Artificial parthenogenesis and androgenesis in silkworm. Byull vses Akad selskohoz Nauk 12:47-52.
    [117] Astaurov BL. (1968) Cytogenetics of the development of silk-worm and its experimental control. Moskva Nauka. 102.
    [118] Strunnikov V. (1975) Sex control in silkworms. Nature 255(5504):111-113.
    [119] 徐安英,方缓,黄君霆.(1998)家蚕染色体工程及其应用Ⅱ家蚕雄核发育的诱导.蚕业科学 14(2):93-96.
    [120] 徐安英.(1994)辐射诱发家蚕雄核发育的研究.核农学报.8(3):189-192.
    [121] Tazima Y.(1964)The Genetics of the Silkworm.London/Englewood Cliffs:Logos Press.253.
    [122] 潘庆中,陈业林,陈劲伟,等.(1992)利用催青温湿度敏感性状控制家蚕性别.科学通报 37(12):1133-1136.
    [123] 桥本春雄.(1948)蚕线突然变异限性虎蚕.日本蚕丝学杂志.16(3):60-64.
    [124] 田岛弥太郎,原田忠次,太田登.(1951)蚕卵色蚕雌雄蚕鉴别研究X线转座染色体形成.育种学杂志 1(1):17-50.
    [125] 木村敬助.(1971)蚕黄血遗传子w转座关研究.育种学杂志 21(3):199-203.
    [126] 黄君霆.(1984)家蚕染色体染色体工程及其应用研究Z和W染色体间易位系统的作成.蚕业科学 10(1):34-37.
    [127] Strunnikov VA.(1969) Obtaining Male Progeny in Silkworm. Dokl Akad Nauk SSSR. 188(5):1155 1158.
    [128] 徐安英,方缓,黄君霆.(1994)家蚕性连锁致死突变位点与ZW+Schr染色体易位片段关系的研究.蚕业科学 20(2):120-121.
    [129] 徐安英,李木旺,方缓,等.(1997)家蚕Z染色体上胚胎期隐性致死突变的诱发及其基因座位的研究.蚕业科学 23(2):124-125.
    [130] 祝新荣,何克荣,夏建国,等.(1997)性连锁平衡致死系S-8,S-14对桑蚕性别控制能力的测试分析.蚕桑通报 28(1):15-17.[131] Alphey L. (2002) Re-engineering the sterile insect technique. Insect Biochem Mol Biol. 32(10):1243-1247.
    [132] Gage LP. (1974) The Bombyx mori genome: analysis by DNA reassociation kinetics. Chromosoma 45:27 42.
    [133] Xia Q, Zhou Z, Lu C, et al. (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306(5703):1937-1940.
    [134] Cummings CA, Cronmiller C. (1994) The daughterless gene functions together with Notch and Delta in the control of ovarian follicle development in Drosophila. Development 120(2):381-394.
    [135] Castanon I, Von Stetina S, Kass J, et al. (2001) Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development 128:3145-3159.
    [136] Bier E, Vaessin H, Younger-Shepherd S, et al. (1992) daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Genes Dev 6:2137-2151.
    [137] Ellis HM, Spann DR, Posakony JW. (1990) extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. Cell 61(1):27-38.
    [138] Jimenez G, Paroush Z, Ish-Horowicz D. (1997) Groucho acts as a corepressor for a subset of negative regulators, including hairy and engrailed. Genes Dev 11(22):3072-3082.
    [139] Martinez C, Modolell J. (1991) Cross-regulatory interactions between the proneural achaete and scute genes of Drosophila. Science 251:1485-1487.
    [140] Hartmann C, Taubert H, Jackle H, et al. (1994) A two-step mode of stripe formation in the Drosophila blastoderm requires interactions among primary pair rule genes. Mech Dev 45(1):3-13.
    [141] Wallace, K., Liu, T. H. and Vaessin, H. (2000). The pan-neural bHLH proteins DEADPAN and ASENSE regulate mitotic activity and cdk inhibitor dacapo expression in the Drosophila larval optic lobes. Genesis 26(1):77-85.
    [142] Suzuki MG, Shimada T, Kobayashi M. (1999) Bm kettin, homologue of the Drosophila kettin gene, is located on the Z chromosome in Bombyx mori and is not dosage compensated. Heredity 82:170-179.
    [143] Marin I. (2003) Evolution of chromatin-remodeling complexes: comparative genomics reveals the ancient origin of"novel" compensasome genes. J Mol Evol 56:527-539.
    [144] Bopp D, Schütt C, Puro J, et al. (1999) Recombination and disjunction in female germ cells of Drosophila depend on the germline activity of the gene Sex-lethal. Development 126:5785-5794.
    [145] Burghardt G, Hediger M, Siegenthaler C, et al. (2005) The transformer2 gene in Musca domestica??is required for selecting and maintaining the female pathway of development. Dev Genes Evol. 2005 Apr;215(4): 165-176.
    [146] Shiraishi E, Imazato H, Yamamoto T, et al. (2004) Identification of two teleost homologs of the Drosophila sex determination factor, transformer-2 in medaka (Oryzias latipes). Mech Dev 121(7-8):991-996.
    [147] Dauwalder B, Amaya-Manzanares F, Mattox W. (1996) A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proc Natl Acad Sci U S A 93(17):9004-9009.
    [148] Smith CA, McClive PJ, Western PS, et al. (1999) Conservation of a sex-determining gene. Nature 402(6762):601-602.
    [149] Modrek B, Resch A, Grasso C, et al. (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29:2850-2859.
    [150] Modrek B, Lee C. (2002) A genomic view of alternative splicing. Nat Genet 30:13-19.
    [151] Norvell A, Kelley RL, Wehr K, et al. (1999) Specific isoforms of squid, a Drosophila hnRNP, perform distinct roles in Gurken localization during oogenesis. Genes Dev 13:864-876.
    [152] Ota A, Kusakabe T, Sugimoto Y, et al. (2002) Cloning and characterization of testis-specific tektin in Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 133(3):371-382.
    [153] Mita K, Nenoi M, Morimyo M, et al. (1995) Expression of the Bombyx mori beta-tubulin-encoding gene in testis. Gene 162(2):329-330.
    [154] Kawasaki H, Sugaya K, Quan GX, et al. (2003) Analysis of alpha-and beta-tubulin genes of Bombyx mori using an EST database. Insect Biochem Mol Biol 33(1):131-137.
    [155] Miyagawa Y, Lee JM, Maeda T, et al. (2005) Differential expression of a Bombyx mori AHA1 homologue during spermatogenesis. Insect Mol Biol 14(3):245-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700