64排螺旋CT血管造影颈脑血管成像扫描技术优化及临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:64排螺旋CT血管造影颈脑血管成像扫描延迟时间的研究
     目的:探讨预测64排螺旋CT血管造影颈脑血管成像扫描延迟时间的最佳扫描技术。
     材料与方法:将129例患者分为A、B、C三组,每组43例。基于同一对比剂浓度、用量、注射速度,分别采用经验预测扫描延迟时间技术(A组)、CTP-CTA(computed tomography perfusion-computed tomography angiography)联合扫描技术(B组)、Test-bolus扫描技术(C组)来预测颈脑血管CTA检查扫描延迟时间。A组以经验估计设定扫描延迟时间,一般为15-20s;B组根据灌注峰值时间来确定扫描延迟时间;C组根据测试峰值时间来确定扫描延迟时间。由1位高年资放射科医生测量并比较三组颈脑血管CTA中C4椎体水平左侧颈总动脉、左侧颈内静脉CT值及其两者CT差值,鞍上池层面左侧大脑中动脉M1段近端、上矢状窦CT值及其两者CT差值,同时记录并比较B组和C组扫描时自动生存的剂量长度乘积(dose length product,DLP)。由2位高年资放射科医生采用双盲法比较三组颈脑血管图像质量。
     结果:A组扫描延迟时间为(17.12±1.52)s,B组扫描延迟时间为(20.65±3.09)s,C组扫描延迟时间为(18.33±5.34)s。经单因素方差分析两两比较,B组与A、C两组扫描延迟时间差异均有统计学意义(p<0.05),A组与C组差异无统计学意义(p>0.05),B组扫描延迟时间较A、C两组长。A组与B、C两组C4椎体水平左侧颈总动脉CT值及其与同层左侧颈内静脉的CT差值、鞍上池层面左侧大脑中动脉M1段近端CT值及其与同层上矢状窦CT差值差异均有统计学意义(p<0.05),B组与C组差异均无统计学意义(p>0.05),B、C两组颈脑动脉强化值均高于A组,B、C两组同层动静脉对比度均较A组清晰。B组和C组扫描时的DLP平均值分别为2031.24mGy.cm、80.13 mGy.cm,B组扫描时的辐射剂量明显大于C组。2位高年资放射科医师在颈动脉、颅底动脉环及静脉伪影显示上的Kappa值分别为0.889、0.872、0.882。三组患者在颈动脉、颅底动脉环及静脉伪影显示上的图像质量评分经非参数Mann-Whitney U检验,A组与B、C两组在颈动脉、颅底动脉环及静脉伪影显示上评分差异均有统计学意义(p<0.05),B组与C组差异均无统计学意义(p>0.05),B、C两组图像质量均优于A组。
     结论:Test-bolus技术是预测64排螺旋CT血管造影颈脑血管成像扫描延迟时间的最佳扫描技术,充分体现了个体化、最优化的原则,大大增加了多排螺旋CTA的扫描成功率,有效提高了三维血管重建图像的质量。
     第二部分: 64排螺旋CT血管造影数字减影技术在颈脑血管成像中的临床应用研究
     目的:应用64排螺旋CT血管造影数字减影技术进行颈脑血管成像,引进东软医疗公司研发的Bone-Subtraction CT Angiography Tool软件进行三维减影,以探讨新的减影软件的可行性及临床应用价值。
     材料和方法:对71例患者进行颈脑血管数字减影CTA检查,先行Test-bolus扫描,确定最佳扫描延迟时间;然后将平扫及增强同步进行扫描,两者扫描参数及扫描位置完全一致,球管重复曝光间隔时间为球管旋转时间0.5s的偶整数倍,得到平扫和常规CTA图像。首先利用工作站自带的Add/Sub软件进行二维减影得到二维减影CTA图像;然后采用东软医疗公司研发的Bone-Subtraction CT Angiography Tool软件进行三维减影,得到三维减影CTA图像。由1位高年资放射科医师记录并比较常规CTA、二维减影CTA、三维减影CTA三种技术进行VR及MIP后处理的时间,同时由2位高年资放射科医师采用双盲法比较三种CTA技术重建所得颈脑血管图像质量。其中49例与DSA作比较观察,采用配对设计χ2检验评价三种CTA技术与DSA在诊断颈脑血管病变上有无差异,同时分别统计三种CTA技术诊断颈脑血管病变的敏感性、特异性、阳性预测值、阴性预测值和正确率。
     结果:经单因素方差分析两两比较,常规CTA、二维减影CTA、三维减影CTA三种技术进行VR及MIP后处理时间两两之间差异均有显著统计学意义(p<0.05),三维减影CTA后处理时间最短,二维减影CTA次之,常规CTA最长。2位高年资放射科医师在三种CTA技术重建所得颈脑血管显示上的Kappa值为0.845。三种CTA技术进行三维重建所得颈脑血管图像评分经过非参数Mann-Whitney U检验,两两之间差异均有显著统计学意义(p<0.05),三维减影CTA图像质量优于二维减影CTA和常规CTA,二维减影CTA图像质量优于常规CTA。经配对设计χ2检验,三种CTA技术在诊断49例颈脑血管病变上与DSA差异无统计学意义(p>0.05)。以DSA为参考标准,常规CTA诊断49例颈脑血管病变的敏感性、特异性、阳性预测值、阴性预测值和正确率分别为92.86%、71.43%、95.12%、62.50%、89.80%,二维及三维减影CTA诊断49例颈脑血管病变的敏感性、特异性、阳性预测值、阴性预测值和正确率均一致且均高于常规CTA,分别为95.24%、85.71%、97.56%、75.00%、93.88%。
     结论:64排螺旋CT血管造影数字减影技术明显缩短了图像后处理时间,而且图像质量明显提高,在颈脑血管病变诊断上基本可以取代DSA;尤其是东软医疗公司研发的三维减影软件的临床应用是切实可行的,其作为一种新的减影软件有着广阔的应用前景。
Part one: A study on the scan-delay-time after contrast medium administration in cervical and cerebral vascularities imaging with 64-detector spiral CT angiography.
     Purpose: To discuss the optimal scanning technology in predicting the scan-delay-time after contrast medium administration in cervical and cerebral vascularities imaging with 64-detector spiral CT angiography.
     Materials and Methods: 129 patients were divided into three groups, who had examined cervical and cerebral CT angiography based on the same iodine concentration、volume、injection rate of contrast medium. Group A: 43 cases were performed by the method of experience of 15 to 20 seconds as the scan-delay-time. Group B: 43 cases were performed by the time to peak in CT perfusion as the scan-delay-time during the combination scanning technology of CTP-CTA. Group C: 43 cases were performed by the time to peak in a test bolus injection as the scan-delay-time. One experienced radiologist measured and compared the enhancement value of CT in the left common carotid artery and left internal jugular vein adjacent to the fourth cervical vertebrace、the proximal M1 segment of left middle cerebral artery and superior sagittal sinus adjacent to suprasellar cistern, and then compared the differences between the arteries and the veins in the same layer of the three groups; meanwhile, recorded and compared the dose length product generated automatically during the scanning between group B and group C. The image quality of the three groups was separately compared by two experienced radiologists in a blind way.
     Results: The scan-dealy-time of group A、B、C was (17.12±1.52) seconds、(20.65±3.09) seconds、(18.33±5.34) seconds, respectively. By one-way analysis of variance (ANOVA), there were statistically significant difference of the scan-dealy-time between group B and group A、group B and group C(p<0.05) except between group A and group C ( p>0.05) , the scan-dealy-time of group B was longer than group A and group C. There were statistically significant difference of the enhancement value of CT in the left common carotid artery adjacent to the fourth cervical vertebrace、the proximal M1 segment of left middle cerebral artery adjacent to suprasellar cistern, and the differences between the arteries and the veins in the same layer between group A and group B、group A and group C(p<0.05) except between group B and group C ( p>0.05), the enhancement value of CT in the cervical and cerebral arteries and the resolving power between the arteries and the veins in the same layer of group B and group C were higher than those of group A. The average of the dose length product with group B and group C during the scanning was 2031.24mGy.cm、80.13 mGy.cm, respectively; the radiation exposure of group B was obviously higher than group C during the scanning. For the two experienced radiologists on the manifestation of cervical and cerebral arteries、the venous artifact, the Kappa value was respectively 0.889、0.872、0.882. By Mann-Whitney U-test, the grading score on the manifestation of cervical and cerebral arteries、the venous artifact between group A and group B、group A and group C had statistically significant difference( p<0.05)except between group B and group C ( p>0.05). The image quality of group B and group C were superior to group A.
     Conclusion: Test-bolus technique is the optimal scanning technology in predicting the scan-delay-time after contrast medium administration in cervical and cerebral vascularities imaging with 64-detector spiral CT angiography, it fully embodies the individualized and optimal principle, greatly increases the scanning successful ratio of multi-detector spiral CT angiography, and efficiently improves the image quality of three-dimensional reconstrcution of vascularities.
     Part two: Research on clinical applications of digital subtraction technique of 64-detector spiral CT angiography in cervical and cerebral vascularities imaging.
     Purpose: To apply the digital subtraction technique of 64-detector spiral CT angiography in cervical and cerebral vascularities imaging and introduce the Bone-Subtraction CT Angiography Tool software exploited by the medical company of neusoft for three-dimensional subtraction, so as to explore the feasibility of the new subtraction software and clinical applicative value.
     Materials and Methods: 71 patients were performed digital subtraction CT angiography in cervical and cerebral vascularities. Optimal scan-delay-time was determined by using the test-bolus technique, the pre-contrast and post-contrast scanning were executed in the same series , the scanning parameters and positions were all the same and the tube repetition exposure interval time was integrally divided by the rotation speed of 0.5×2 second. First, the Add/Sub software of workstation was used for two-dimensional subtraction, and then the Bone-Subtraction CT Angiography Tool software exploited by the medical company of neusoft was used for three-dimensional subtraction. One experienced radiologist recorded and compared the post-processing time of VR and MIP among conventional CT angiography、two-dimensional subtraction CT angiography、three-dimensional subtraction CT angiography; meanwhile, the image quality of cervical and cerebral arteries reconstructed from the raw CT data set of the three kinds of CT angiography techniques were separately compared by two experienced radiologists in a blind way. The three kinds of CT angiography techniques images of 49 patients were compared with those of the digital subtraction angiography (DSA). Paired designχ2-test was used for evaluating whether there were differences between the three kinds of CT angiography techniques and DSA for diagnosis of cervical and cerebral vascular diseases; meanwhile, the sensitivity、specificity、positive predictive value、negative predictive value and accurate ratio of the three kinds of CT angiography techniques for diagnosis of cervical and cerebral vascular diseases were analyzed.
     Results: By one-way analysis of variance (ANOVA), there were statistically significant difference of the post-processing time of VR and MIP among conventional CT angiography technique、two-dimensional subtraction CT angiography technique、three-dimensional subtraction CT angiography technique(p<0.05), the post-processing time of the three-dimensional subtraction CT angiography technique was shorter than the other two CT angiography techniques, and the conventional CT angiography technique was the longest one of the three. For the two experienced radiologists on the manifestation of cervical and cerebral arteries reconstructed from the raw CT data set of the three kinds of CT angiography techniques, the Kappa value was 0.845. By Mann-Whitney U-test, the grading score on the manifestation of cervical and cerebral arteries among the three kinds of CT angiography techniques had statistically significant difference (p<0.05), the image quality of the three-dimensional subtraction CT angiography technique were superior to the other two CT angiography techniques, and the conventional CT angiography technique was the poorest one of the three. By paired designχ2-test, there was no statistically significant difference between the three kinds of CT angiography techniques and DSA for diagnosis of cervical and cerebral vascular diseases in 49 cases ( p>0.05). The sensitivity、specificity、positive predictive value、negative predictive value and accurate ratio of conventional CT angiography was respectively 92.86%、71.43%、95.12%、62.50%、89.80% for diagnosis of cervical and cerebral vascular diseases in 49 cases with DSA as the reference standard. The sensitivity、specificity、positive predictive value、negative predictive value and accurate ratio of two-dimensional subtraction CT angiography and three-dimensional subtraction CT angiography were all the same and higher than those of conventional CT angiography for diagnosis of cervical and cerebral vascular diseases in 49 cases with DSA as the reference standard, they were respectively 92.86%、71.43%、95.12%、62.50%、89.80%.
     Conclusion: Digital subtraction technique of 64-detector spiral CT angiography obviously shortens the post-processing time and improves the image quality;it may displace DSA for diagnosis of cervical and cerebral vascular diseases. Especially, the clinical application of Bone-Subtraction CT Angiography Tool software exploited by the medical company of neusoft for three-dimensional subtraction is feasible;it has a wide application prospect as a new subtraction software.
引文
1.张茁.缺血性脑卒中的预防.中华老年心脑血管病杂志, 2006,8:145 -147.
    2.马长生.预防脑卒中-心内科医生责无旁贷.中国实用内科杂志,2006,26:1229- 1230.
    3.刘柳,何远宏,周英.青中年脑梗死与颈动脉粥样硬化的关系.中国实用神经杂志, 2007,10:57
    4.王文化,赵冬,吴桂贤,等.北京市1984~1999年人群脑卒中发病率变化趋势分析.中华流行病学杂志, 2001,22:269-272.
    5.吴兆苏,姚崇华,赵冬,等.我国人群脑卒中发病率、死亡率的流行病学研究.中华流行病学杂志, 2003,24:236-239.
    6. Thom T, Haase N, Rosamond W, et al. Heart Disease and Stroke Statistics-2006 Update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2006,113:85-151.
    7. Forsting M. CTA of the ICA bifurcation and intracranial vessels. Eur Radiol,2005,15: D25-D27.
    8. Delgado Almandoz JE, Schaefer PW, Forero NP, et al. Diagnostic accuracy and yield of multi-detector CT angiography in the evaluation of spontaneous intraparenchymal cerebral hemorrhage. AJNR, 2009,30:1213-1221.
    9. Okuyama T, Saito K, Hirano A, et a1. Improvement of MRA and 3D-CTA does away with the need for cerebral angiography in many cerebral aneurysm operations. No Shinkei Geka, 1998, 26: 607 -612.
    10. Hoh BL, Cheung AC, Rabinov JD, et a1. Results of a prospective protocol of computed tomographic angiography in place of catheter angiography as the only diagnostic and pretreatment planning study for cerebral aneurysms by a combined neurovascular team. Neurosurgery, 2004,54:1329-1342.
    11.梁长虹,黄飚.多层CT技术飞速发展,临床应用不断创新.中华放射学杂志,2006,40:901.
    12.姜保东,冯晓源,柳澄,等.颅颈联合多层螺旋CT血管造影扫描技术探讨.中华放射学杂志,2006,40:970-973.
    13. Karamessini MT, Kagadis GC, Petsas T, et al. CT angiography with three-dimensional techniques for the early diagnosis of intracranial aneurysms. Comparison with intra-arterial DSA and the surgical findings. Eur J Radiol, 2004,49:212-223.
    14. Koelemay MJ, Nederkoom PJ, Reitsma JB, et al. Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke, 2004,35:2306-2312.
    15. Chen CJ, Lee TH, Hsu HL, et al. Multislice CT angiography in diagnosing total versus near occlusions of the internal carotid artery: comparison with catheter angiography. Stroke, 2004, 35:83-85.
    16.邵康为,龚承友,刘伟,等.对比剂密度监控智能扫描技术在椎动脉及颈动脉CT血管成像中的应用.中华放射学杂志, 2007,41:753-756.
    17. Yoon DY, Lim KJ, Choi CS, et al. Detection and characterization of intracranial aneurysms with 16-channel multidetector row CT angiography: a prospective comparison of volume-rendered images and digital subtraction angiography. AJNR,2007,28:60-67.
    18. Li Q, Lv FJ, Li YM, et al. Subtraction CT angiography for evaluation of intracranial aneurysms: comparison with conventional CT angiography. Eur Radiol,2009,19:2261 -2267.
    19. Dimmick SJ, Faulder KC. Normal variants of the cerebral circulation at multidetector CT angiography. Radiographics, 2009, 29:1027-1043.
    20.曹丽珍,李坤成,杜祥颖,等.低剂量对比剂联合生理盐水在64层螺旋CT头颈血管成像中的应用.中华放射学杂志, 2007,41:821-824.
    21. Chen WH, Yang Y, Xing W, et al. Sixteen-row multislice computed tomography angiography in the diagnosis and characterization of intracranial aneurysms: comparison with conventional angiography and intraoperative findings. J Neurosurg,2008,108:1184-1191.
    22. McKinney AM, Palmer CS, Truwit CL, et al. Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. AJNR, 2008,29:594-602.
    23. Lubicz B, Levivier M, Francois O, et al. Sixty-four-row multisection CT angiography for detection and evaluation of ruptured intracranial aneurysms: interobserver and intertechnique reproducibility. AJNR , 2007,28:1949-1955.
    24. Li Q, Lv FJ, Li YM, et al. Evaluation of 64-section CT angiography for detection and treatment planning of intracranial aneurysms by using DSA and surgical findings. Radiology, 2009, 252: 808–815.
    25.高艳,李坤成,杜祥颖,等. 64层CT血管造影诊断颈内动脉狭窄及内膜切除术或支架置入术后随访的价值.中华放射学杂志,2006,40:948-952.
    26.杨运俊,陈伟建,程敬亮,等.多层螺旋CT血管成像在椎基底动脉延长扩张症中的诊断价值.中华放射学杂志, 2009,43:50-53.
    27. Passero SG, Calchetti B, Bartalini S. Intracranial bleeding in patients with vertebrobasilar dolichoectasia. Stroke, 2005,36:1421-1425.
    28. Hollingworth W, Nathens AB, Kanne JP, et al. The diagnostic accuracy of computed tomography for traumatic or atherosclerotic lesions of the carotid and vertebral arteries: a systematic review. Eur J Radiol. 2003,48:88-102.
    29.高艳,李坤成,杜祥颖,等. 64层螺旋CT脑灌注成像和头颈部CT血管成像在颈内动脉和大脑中动脉狭窄和闭塞中的应用研究.中华放射学杂志,2007,41:1049- 1053.
    30. Flelischmann D, Rubin GD, Bankier AA, et al. Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology, 2000,214:363-371.
    31. Bader TR, Prokesch RW, Crabenwoger F. Timing of the hepatic arterial phase during contrast-enhanced computed tomograhpy of the liver: assessment of normal values in25 volunteers. Invest Radiol, 2000, 35:486-491.
    32. Van Hoe L, Marchal G, Baert AL, et al. Determination of scan delay time in spiral CT-angiography: utility of a test bolus injection. J Comput Assist Tomogr, 1995,19:216-220.
    33. Macari M, Israel GM, Berman P, et al. Infrarenal abdominal aortic aneurysms at multi-detector row CT angiography: intravascular enhancement without a timing acquisition. Radiology , 2001, 220:519-523.
    34. Cademartiri F, Nieman K, van der Lugt A, et al. Intravenous Contrast material administration at 16-detector row helical CT coronary angiography: test-bolus versus bolus-tracking techniques. Radiology, 2004,233:817-823.
    35. Bae KT. Test-bolus versus bolus-tracking techniques for CT angiographic timing. Radiology,2005, 236:369-370.
    36. Gorzer H, Heimberger K, Schindler E. Spiral CT angiography with digital subtraction of extra-and intracranial vessels. J Comput Assist Tomogr, 1994,18:839-841.
    37.方红,宋云龙,张挽时,等.多层螺旋CT不同延迟技术的血管成像的比较.中国医学影像学杂志, 2008,16:259-262.
    38. Imakita S, Onishi Y, Hashimoto T, et al. Subtraction CT angiography with controlled- orbit helical scanning for detection of intracranial aneurysms. AJNR,1998,19:291-295.
    39. Jayakrishnan VK, White PM, Aitken D, et al. Subtraction helical CT angiography of intra and extracranial vessels: technical considerations and preliminary experience. AJNR, 2003,24:451- 455.
    40. Venema HW, Hulsmans FJ, den Heeten GJ. CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched mask bone elimination feasibility study. Radiology, 2001, 218 :893-898.
    41. Tomandl BF, Hammen T, Klotz E, et al. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. AJNR, 2006, 27:55-59.
    42.张志伟,吕发金,曾勇明,等.数字减影CT血管造影术在颅内动脉瘤中的临床应用.中国医学影像技术,2007,23:450-452.
    43.柴学,张龙江,卢光明,等.双能量CT头颅血管成像的影像质量、辐射剂量及初步临床应用.中华放射学杂志, 2009,43:725-729.
    44. Lell M, Anders K, Klotz E, et al. Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging. Eur Radiol, 2006,16:889-897.
    45. Yoon DY, Chang SK, Choi CS, et al. Multidetector row CT angiography in spontaneous lobar intracerebral hemorrhage: a prospective comparison with conventional angiography. AJNR, 2009, 30:962-967.
    46.曾勇明,张志伟,李越. 64层螺旋CT与数字减影血管造影对颅内动脉瘤诊断的比较.中华放射医学与防护杂志, 2008,28:83-85.
    1.姜保东,冯晓源,柳澄,等.颅颈联合多层螺旋CT血管造影扫描技术探讨.中华放射学杂志, 2006, 40 :970-973.
    2. Van Hoe L, Marchal G, Baert AL, et al. Determination of scan delay time in spiral CT- angiography: utility of a test bolus injection. J Comput Assist Tomogr,1995,19:216- 220.
    3. Macari M, Israel GM, Berman P, et al. Infrarenal abdominal aortic aneurysms at multi-detector row CT angiography: intravascular enhancement without a timing acquisition. Radiology, 2001, 220:519-523.
    4.邵康为,龚承友,刘伟,等.对比剂密度监控智能扫描技术在椎动脉及颈动脉CT血管成像中的应用.中华放射学杂志, 2007,41:753-756.
    5. Cademartiri F, Nieman K, van der Lugt A, et al. Intravenous Contrast material administration at 16-detector row helical CT coronary angiography: test-bolus versus bolus-tracking techniques. Radiology, 2004,233:817-823.
    6. Bae KT. Test-bolus versus bolus-tracking techniques for CT angiographic timing. Radiology, 2005, 236:369-370.
    7.方红,宋云龙,张挽时,等.多层螺旋CT不同延迟技术的血管成像的比较.中国医学影像学杂志, 2008,16:259-262.
    8.曹丽珍,李坤成,杜祥颖,等.低剂量对比剂联合生理盐水在64层螺旋CT头颈血管成像中的应用.中华放射学杂志, 2007,41:821-824.
    9. Flelischmann D, Rubin GD, Bankier AA, et al. Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology, 2000,214:363-371.
    10. Bader TR, Prokesch RW, Crabenwoger F. Timing of the hepatic arterial phase during contrast-enhanced computed tomograhpy of the liver: assessment of normal values in 25 volunteers. Invest Radiol, 2000, 35:486-491.
    11.梁琰,卢宁,关战献,等.以脑CT灌注的峰值时间作为脑CTA扫描延时的应用.实用放射学杂志, 2007,23:540-541.
    12.于明川,张滨,刘辉,等.多排螺旋CT头颈联合CTA扫描技术优化.中国医学影像技术, 2007,23:1389-1391.
    13. Charmbers TP, Baron RL, Lush RM. Hepatic CT enhancement PartⅡ. Alterations in contrast material volume and rate of injection within the same patient. Radiology, 1994,193:518-522.
    14.刘军,沈树斌,肖恩华,等.螺旋CT脑血管造影造影剂注射速度与延迟时间参数研究.实用放射学杂志, 2003,19:587-590.
    1. Drisis S, Srivastava S, Seghers D, et a1. Subtraction CT angiography using non-rigid registration: the impact of similarity measure and image pre-processing. Int Congress Series,2005,1281: 328-333.
    2. Kwon SM, Kim YS,Kim T, et al. Digital subtraction CT angiography based on efficient 3D registration and refinement. Comput Med Imaging Graphics, 2004, 28: 391-400.
    3. Schwartz RB, Tice HM, Hooten SM, et al. Evaluation of cerebral aneurysms with helical CT: correlation with conventional angiography and MR angiography. Radiology, 1994,192:17–722.
    4. Imakita S, Onishi Y, Hashimoto T, et al. Subtraction CT angiography with controlled-orbit helical scanning for detection of intracranial aneurysms. AJNR , 1998, 19:291-295.
    5. Jayakrishnan VK, White PM, Aitken D, et al. Subtraction helical CT angiography of intra and extracranial vessels: technical considerations and preliminary experience. AJNR,2003,24: 451-455.
    6. Venema HW, Hulsmans FJ, den Heeten GJ. CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched mask bone elimination feasibility study. Radiology,2001,218:893-898.
    7. Tomandl BF, Hammen T, Klotz E, et al. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. AJNR,2006,27:55-59.
    8.张志伟,吕发金,曾勇明,等.数字减影CT血管造影术在颅内动脉瘤中的临床应用.中国医学影像技术, 2007,23:450-452.
    9.吕发金,谢鹏,罗天友,等.数字减影CT血管成像在蛛网膜下腔出血诊断中的价值.中国医学影像技术, 2007, 23:45-48.
    10. Chang JB, Stein TA, Hajee M, et al. Computed tomography in the decision for carotid endarterectomy. Int J Angiol, 2002,11:203-206.
    11. Fazio A, Subramanyan K, Lin Z, et a1. Evaluation of neuro bone removal algorithms for CT angiography. Int Congress Series, 2004,1268:37-42.
    12. McKinney AM, Casey SO, Teksam M, et al. Carotid bifurcation calcium and correlation with percent stenosis of the internal carotid artery on CT angiography. Neuroradiology, 2005,47:1-9.
    13. Zhang Z, Berg M, Ikoncn A, et al. Carotid stenosis degree in CT angiography assessment based on luminal area versus luminal diameter measurements. Eur Radiol, 2005,15:2359-2365.
    14. Lell M, Anders K, Klotz E, et al. Clinical evaluation of bone-subtraction CT angiography (BSCTA) in head and neck imaging. Eur Radiol, 2006,16:889-897.
    15. Lell MM, Ruehm SG, Kramer M, et al. Cranial computed tomography angiography with automated bone subtraction: a feasibility study. Invest Radiol, 2009,44:38-43.
    16. Morhard D, Fink C, Becker C, et al. Value of automatic bone subtraction in cranial CT angiography: comparison of bone-subtracted vs. standard CT angiography in 100 patients. Eur Radiol, 2008,18:974-982.
    17. Dimmick SJ, Faulder KC, et al. Normal variants of the cerebral circulation at multidetector CT angiography. Radiographics, 2009, 29:1027-1043.
    18. Koelemay MJ, Nederkoom PJ, Reitsma JB, et al. Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke, 2004, 35: 2306-2312.
    19.高艳,李坤成,杜祥颖,等. 64层CT血管造影诊断颈内动脉狭窄及内膜切除术或支架置入术后随访的价值.中华放射学杂志, 2006,40:948-952.
    20. Li Q, Lv FJ, Li YM, et al. Evaluation of 64-section CT angiography for detection and treatment planning of intracranial aneurysms by using DSA and surgical fingdings. Radiology, 2009, 252:808-815.
    21.杨运俊,陈伟建,诸葛启钏,等.多层螺旋CT三维血管成像在颅内动脉瘤夹闭术后随访中的初步应用.中华放射学杂志, 2008,42: 43-46.
    22. Coenen VA, Dammert S, Reinges MH, et a1. Image-guided microneurosurgical management of small cerebral arteriovenous malformations: the value of navigated computed tomographic angiography. Neuroradiology, 2005,47:66-72.
    23.盛复庚,段炼,乔鹏岗,等.多排螺旋CT对Moyamoya病诊断及术后评价的价值初探.实用放射学杂志,2009,25:609-612.
    24.杨运俊,陈伟建,程敬亮,等.多层螺旋CT血管成像在椎基底动脉延长扩张症中的诊断价值.中华放射学杂志, 2009,43:50-53.
    25. Li Q, Lv FJ, Li YM, et al. Subtraction CT angiography for evaluation of intracranial aneurysms: comparison with conventional CT angiography. Eur Radiol, 2009, 19:2261 -2267.
    1.张茁.缺血性脑卒中的预防.中华老年心脑血管病杂志,2006,8:145 -147.
    2.马长生.预防脑卒中-心内科医生责无旁贷.中国实用内科杂志,2006,26:1229- 1230.
    3.刘柳,何远宏,周英.青中年脑梗死与颈动脉粥样硬化的关系.中国实用神经杂志, 2007,10:57
    4.王文化,赵冬,吴桂贤,等.北京市1984~1999年人群脑卒中发病率变化趋势分析.中华流行病学杂志,2001,22:269-272.
    5. Thom T, Haase N, Rosamond W, et al. Heart Disease and Stroke Statistics-2006 Update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation,2006,113:85-151.
    6. Forsting M. CTA of the ICA bifurcation and intracranial vessels. Eur Radiol, 2005, 15: D25-D27.
    7. Delgado Almandoz JE, Schaefer PW, Forero NP, et al. Diagnostic accuracy and yield of multidetector CT angiography in the evaluation of spontaneous intraparenchymal cerebral hemorrhage. AJNR,2009,30:1213-1221.
    8.姜保东,冯晓源,柳澄,等.颅颈联合多层螺旋CT血管造影扫描技术探讨.中华放射学杂志,2006, 40 :970-973.
    9. Flelischmann D, Rubin GD, Bankier AA, et al. Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology,2000,214:363-371.
    10. Bader TR, Prokesch RW, Crabenwoger F. Timing of the hepatic arterial phase during contrast-enhanced computed tomograhpy of the liver:assessment of normal values in 25 volunteers. Invest Radiol, 2000, 35:486-491.
    11.邵康为,龚承友,刘伟,等.对比剂密度监控智能扫描技术在椎动脉及颈动脉CT血管成像中的应用.中华放射学杂志,2007,41:753-756.
    12. Macari M, Israel GM, Berman P, et al. Infrarenal abdominal aortic aneurysms atmulti-detector row CT angiography: intravascular enhancement without a timing acquisition. Radiology,2001, 220:519-523.
    13.于明川,张滨,刘辉,等.多排螺旋CT头颈联合CTA扫描技术优化.中国医学影像技术,2007,23:1389-1391.
    14.梁琰,卢宁,关战献,等.以脑CT灌注的峰值时间作为脑CTA扫描延时的应用.实用放射学杂志,2007,23:540-541.
    15. Cademartiri F, Nieman K, van der Lugt A, et al. Intravenous Contrast material administration at 16-detector row helical CT coronary angiography: test-bolus versus bolus-tracking techniques. Radiology,2004,233:817-823.
    16. Bae KT. Test-bolus versus bolus-tracking techniques for CT angiographic timing. Radiology, 2005, 236:369-370.
    17.方红,宋云龙,张挽时,等.多层螺旋CT不同延迟技术的血管成像的比较.中国医学影像学杂志,2008,16:259-262.
    18. Karamessini MT, Kagadis GC, Petsas T, et al. CT angiography with three-dimensional techniques for the early diagnosis of intracranial aneurysms. Comparison with intra- arterial DSA and the surgical findings. Eur J Radiol,2004,49:212-223.
    19. Li Q, Lv FJ, Li YM, et al. Subtraction CT angiography for evaluation of intracranial aneurysms: comparison with conventional CT angiography. Eur Radiol,2009,19:2261 -2267.
    20. Gorzer H, Heimberger K, Schindler E. Spiral CT angiography with digital subtraction of extra-and intracranial vessels. J Comput Assist Tomogr,1994,18:839-841.
    21. Imakita S, Onishi Y, Hashimoto T, et al. Subtraction CT angiography with controlled- orbit helical scanning for detection of intracranial aneurysms. AJNR,1998,19:291-295.
    22. Jayakrishnan VK, White PM, Aitken D, et al. Subtraction helical CT angiography of intra and extracranial vessels: technical considerations and preliminary experience. AJNR,2003,24:451-455.
    23. Venema HW, Hulsmans FJ, den Heeten GJ. CT angiography of the circle of Willis and intracranial internal carotid arteries: maximum intensity projection with matched maskbone elimination feasibility study. Radiology, 2001, 218 :893-898.
    24. Tomandl BF, Hammen T, Klotz E, et al. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. AJNR, 2006, 27:55-59.
    25.张志伟,吕发金,曾勇明,等.数字减影CT血管造影术在颅内动脉瘤中的临床应用.中国医学影像技术,2007,23:450-452.
    26.柴学,张龙江,卢光明,等.双能量CT头颅血管成像的影像质量、辐射剂量及初步临床应用.中华放射学杂志,2009,43:725-729.
    27.华锐,刘筠,钟进,等.先天性椎动脉变异多层螺旋CTA解剖分型及应用研究.实用放射学杂志,2009,25:392-395.
    28. Dimmick SJ, Faulder KC ,et al. Normal variants of the cerebral circulation at multidetector CT angiography. Radiographics, 2009, 29:1027-1043.
    29. Horikoshi T, Akiyama I, Yamagata Z, et al. Magnetic resonance angiographic evidence of sex-linked variations in the circle of Willis and the occurrence of cerebral aneurysms. J Neurosurg, 2002, 96: 697-703.
    30.房文皓,吕发金,张丽娟,等. Willis环解剖变异的64层容积CT数字减影血管造影研究.第三军医大学学报,2009,31:1384-1387.
    31. Verro P, Tanenbaum LN, Borden NM, et al. CT angiography in acute ischemic stroke: preliminary results. Strkoe,2002,33:276-277.
    32. Koelemay MJ, Nederkoom PJ, Reitsma JB, et al. Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke,2004,35: 2306-2312.
    33.高艳,李坤成,杜祥颖,等. 64层CT血管造影诊断颈内动脉狭窄及内膜切除术或支架置入术后随访的价值.中华放射学杂志,2006,40:948-952.
    34.高源统,罗敏,李阳,等.脑动脉狭窄的CTA和MRA及DSA对照分析.放射学实践,2009,24:255-259.
    35.高艳,李坤成,杜祥颖,等. 64层螺旋CT脑灌注成像和头颈部CT血管成像在颈内动脉和大脑中动脉狭窄和闭塞中的应用研究.中华放射学杂志,2007,41:1049-1053.
    36. Jayaraman MV, Mayo Smith WW, Tung GA, et a1. Detection of intracranial aneurysms:multi-detector row CT angiography compared with DSA. Radiology,2004,230:510- 518.
    37. Chen WH, Yang Y, Xing W, et al. Sixteen-row multislice computed tomography angiography in the diagnosis and characterization of intracranial aneurysms: comparison with conventional angiography and intraoperative findings. J Neurosurg, 2008,108:1184-1191.
    38. Li Q, Lv FJ, Li YM, et al. Evaluation of 64-section CT angiography for detection and treatment planning of intracranial aneurysms by using DSA and surgical fingdings. Radiology,2009, 252:808-815.
    39.洪汝建,陈爽,冯晓源. 16层CT血管造影在颅内动脉瘤诊断及术后评价中的应用.临床放射学杂志,2005,24:310-313.
    40.曾勇明,张志伟,李越. 64层螺旋CT与数字减影血管造影对颅内动脉瘤诊断的比较.中华放射医学与防护杂志,2008,28:83-85.
    41.杨运俊,陈伟建,诸葛启钏,等.多层螺旋CT三维血管成像在颅内动脉瘤夹闭术后随访中的初步应用.中华放射学杂志,2008,42: 43-46.
    42. Lee JH, Kim SJ, Cha J, et a1. Postoperative multidetector computed tomography angiography after aneurysm clipping: comparison with digital subtraction angiography. J Comput Assist Tomogr, 2005,29:20-25.
    43. Wu JS, Chen XC, Shi YQ, et al. Noninvasive three-dimensional computed tomographic angiography in preoperative detection of intracranial arteriovenous malformations. Chin Med J, 2000, 113: 915- 920.
    44.陈旭,胡海菁,刘成辉,等.三维CT血管成像在颅内动静脉畸形诊治中的价值.中国脑血管病杂志,2009,6:198-202.
    45. Coenen VA, Dammert S, Reinges MH, et a1. Image-guided microneurosurgical management of small cerebral arteriovenous malformations: the value of navigated computed tomographic angiography. Neuroradiology,2005,47:66-72.
    46.马树华,王丹,徐克,等.烟雾病的MR成像及MR血管造影表现.中国医学影像技术,2004,20:1205-1207.
    47.盛复庚,段炼,乔鹏岗,等.多排螺旋CT对Moyamoya病诊断及术后评价的价值初探.实用放射学杂志,2009,25:609-612.
    48.李小虎,王万勤,钱银锋,等. 64层螺旋CT数字减影脑血管成像在烟雾病诊断中的价值.中华放射学杂志,2009,43:1239-1242.
    49.范晓颖,唐光健,蒋学祥.头颅CT平扫诊断椎基底动脉延长扩张症.中国医学影像技术,2002,18:512-514.
    50.杨运俊,陈伟建,程敬亮,等.多层螺旋CT血管成像在椎基底动脉延长扩张症中的诊断价值.中华放射学杂志,2009,43:50-53.
    51.葛英辉,吕传剑,万晓 ,等.多层螺旋CT血管成像诊断颈内动脉海绵窦瘘的临床价值.临床放射学杂志,2005,24:1055-1058.
    52.陈锦,曹代荣,李银官,等. MSCT双期血管成像对颈内动脉海绵窦瘘的临床诊断价值.放射学实践,2009,24:1195-1198.
    53. Majoie CB, van Straten M, Venema HW, et al. Multisection CT venography of the dural sinuses and cerebral veins by using matched mask bone elimination. AJNR,2004, 25: 787-791.
    54.李祥,于如同,虞正权,等.多排三维螺旋CT血管造影在脑膜瘤手术前评估中的应用.中华神经外科杂志,2007,23:201-203.
    55.邱丽芹,王岩,黄越,等. MSCT血管成像对颈部包块的应用价值.放射学实践,2007,22:1276-1278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700