CT扫描中管电压对辐射剂量和CT值及灌注结果的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一低剂量CT扫描中管电压和管电流对辐射剂量及CT值的影响目的:通过对不同浓度的含碘溶液样本的CT扫描,探讨管电流和管电压对CT值的影响,及降低管电压和管电流对降低辐射剂量和图像质量的影响程度。材料和方法:在1000ml生理盐水中逐次注入对比剂(优维显,Ultravist,370mgI/ml,拜耳先灵药业公司),每次4ml,每次注入后搅拌均匀,用5ml注射器抽取样本。每25个存有不同浓度对比剂的注射器为一组,将其固定于CT校准专用水模上(直径20cm),进行CT扫描。每组样本扫描模式均为轴扫,机架转速为1s/rot。根据管电压(120kV、100kV和80kV)及管电流(250mA、200mA、150mA、100mA和50mA)不同,共分为15种不同扫描条件。扫描过程中不采用任何其他X线辐射剂量调节技术。将样本的CT图像传至GE AW4.4工作站,进行图像分析和数据测量。在样本轴位图像上,勾画面积为10mm2的圆形感兴趣区(region of interest,ROI),测量每种不同浓度对比剂的样本在不同扫描条件下的CT值。首先测量120kV、250mA的标准条件组图像,选取CT值变化从OHU到450HU,差值不超过5HU的样本,剔除CT值不符合要求的样本,共获得符合要求的样本113个。分别测量和记录15种扫描条件下113个样本的CT值及标准差。将所有数据按管电压不同分为三组:120kV组、100kV组和80kV组,分析管电压固定时,改变管电流对CT值测量的影响;然后再按管电流不同分为五组:250mA组、200mA组、150mA组、100mA组和50mA组,分析管电流固定时,改变管电压对CT值测量的影响。并计算对应关系。每次扫描时由CT机自动生成CT容积剂量指数(CT dose index, CTDIvol,单位:mGy),以CTDI×L (length,扫描长度,本研究统一采用4cm)得出剂量长度乘积(dose length product,DLP,单位:mGy·cm),记录并计算15种扫描条件下的辐射剂量。结果:管电压固定的情况下,不同管电流间的样本CT值比较:120kV下,5种管电流样本CT值比较结果F=0.001,p=1.000;100kV下,5种管电流样本CT值比较结果F=0.008,p=1.000;80kV下,5种管电流样本CT值比较结果F=0.075,p=0.990;测量的差别均不具有统计学意义。管电流固定的条件下,不同管电压间的CT值比较:250mA下,3种管电压样本CT值比较结果H=17.906,p=0.000;200mA下,3种管电压样本CT值比较结果H=17.688,p=0.000;150mA下,3种管电压样本CT值比较结果H=13.527,p=0.000;100mA下,3种管电压样本CT值比较结果H=20.124,p=0.000;50mA下,3种管电压样本CT值比较结果H=23.563,p=0.000;差别均具有显著的统计学意义。计算不同管电压下同一样本CT值的对应关系为公式1和和公式2。利用样本扫描数据分析不同管电压下辐射剂量对图像噪声的影响程度,并确立相关方程。计算出关键点,证明在一般情况下,应用低管电压,高管电流可以降低辐射剂量。结论:管电流对CT值测量没有影响,管电压对CT值测量有直接影响;应用低管电压,高管电流可以在保证图像质量的情况下降低辐射剂量。
     目的:通过临床病例验证第一部分得出的含有不同碘浓度的物质在管电压改变时其CT值变化规律及对应关系,探讨低管电压CT灌注扫描的可行性。材料和
     方法:34例行灌注检查患者,排除体重大于75kg的患者12例,符合标准纳入本研究的患者共22例,男性15例,女性7例,年龄32-86岁,身高150-183cm,平均(168±7)cm,体重43-75kg,平均(63±11)kg。随机分成两组:低管电压组(80kV)和标准管电压组(120kV),每组11例。灌注CT检查采用GELightspeed VCT XT 64层螺旋CT机。扫描方式为轴扫描,摇篮式进床。低管电压组采用80kV,500-650 mA,标准管电压组采用120kv,200-280mA。其他扫描参数相同:转速为0.4s/rot,层厚5.0mm,矩阵512×512,FOV 30cm-35cm。扫描次数17次,每次16层图像,每次扫描时间间隔为2.8s,总扫描时间50s。采用高压注射器经前臂静脉以4 ml/s流率注射优维显(Ultravist 370)50ml,于开始注入对比剂后10-12s启动扫描。为确保扫描过程中腹部处于制动状态,除屏住呼吸外,并行腹部肝区绑带加压。将图像传至GE AW4.4工作站,运用CT灌注软件(perfusion 4)进行图像后处理,勾画面积为10mm2的圆形ROI,兴趣区包括腹主动脉、门静脉及正常肝组织,得出两组的CT值,每组正常肝组织各选择33个ROI,再利用公式2,依据低管电压组各兴趣区CT值计算出一组数据为校准后低管电压组。将三组CT值传至个人电脑,输入GE公司提供的专业灌注软件,计算灌注参数血流量(blood flow, BF)、血容量(blood volume, BV)、毛细血管表面通透性(capillary permeability surface area product, PS)及肝动脉灌注量(hepatic arterial perfusion,HAP),进行比较。扫描完成机器自动生成辐射剂量DLP (mGy·cm),再计算患者吸收剂量即有效剂量,进行比较。结果:校准前的低管电压组各参数与标准管电压组相比,BV(t=-2.295,P=0.028),BF(t=-2.784,P=0.009),PS(t=-3.439,P=0.002),HAF(t=-2.115,P=0.048),均具有统计学差异。校准后低管电压组各参数与标准管电压组相比,BV(t=-2.015,P=0.068),BF(t=-1.996,P=0.055),PS(t=-3.039,P=0.132),HAF(t=-1.139,P=0.052),均没有统计学差异。两组患者有效剂量有显著差异,t=-4.21,p=0.001;低管电压组有效剂量降低33%。结论:不同管电压下灌注参数结果存在差异,应用公式2对低管电压下扫描所得数据校正后,所得灌注值与标准管电压结果相一致,且辐射剂量大幅降低。
Objective:The purpose was to assess the influence of tube voltage and tube current on CT attenuation measurement, radiation dose, and image quality using serial solutions with different iodine concentrations. Materials and Methods:Infuse 4 ml contrast medium (Ultravist,370mgl/ml, Bayer) for each time into 1000 ml normal sodium, and draw 5ml solutions with a syringe after misce bene. Twenty-five syringes with different solutions were fixed on the CT calibration water phantom with the diameter of 20 cm. Fifteen protocols with different tube voltages (120kV,100kV, and 80kV) and tube currents (250mA,200mA,150mA,100mA, and 50mA) were scanned. The other scan parameters included axial scan mode and 1 s/rot for gantry rotation. No other technique for radiation dose adjustment was adopted. The CT data were transferred to Advantage Workstation 4.4 for GE. Region of interest (ROI) with 10mm2 were drown to measure the CT attenuations of serial solutions under different scan settings. Images with standard setting of 120kV and 250mA were measured first to select the serial solutions, CT attenuations of which were from 0HU to 450HU with increment of 5HU.113 solutions were brought into the study, and CT attenuation under other settings were measured and recorded. The changes of tube voltage and tube current influence on CT attenuation were analyzed, and the relationships were calculated. CT dose indexs (CTDIvol, mGy) were recorded and dose length product (DLP, mGy·cm) were calculated. Results:CT attenuations with fixed tube voltage and different tube current were not different (120kV, F=0.001, p=1.000;100kV, F=0.008,p=1.000;80kV, F=0.075,p=0.990). However, CT attenuations with fixed tube current and different voltage tube were different (250mA, H=17.906,p=0.000;200mA, H=17.688,p=0.000;150mA, H=13.527,p=0.000; 100mA, H=20.124,p=0.000; 50mA, H=23.5635,p=0.000).The relationship of CT attenuations for one solution with different tube voltages was calculated and equations were obtained. The relationship between radiation dose and image noise was also analyzed. The key point was obtained to prove that low tube voltage and high tube current can reduce radiation dose. Conclusions:Tube current had no significant effect on CT attenuation measurement, while tube voltage had effect on CT attenuation measurement. Low tube voltage and high tube current could reduce radiation dose while the image quality would be assuranced.
     Objective:The purpose was to verified the relationship between tube voltage and CT attenuation obtained in partⅠ, and assess the feasibility of CT perfusion with low tube voltage. Materials and Methods:There were 34 patients accepted CT perfusion examination for liver diseases in our deapartment, and 12 patients were excluded for body weight>75kg.22 patients were included in our study, and 7 were female,at age 32-86 years,at weight 43-75kg (averaged 63±11kg). All the patients were divided into two groups:low tube voltage group(80kV) and standard tube voltage group (120kV). There were 11 patients in each group. GE Lightspeed VCT XT 64-slice spiral CT was used. Low tube voltage group used 80kV and 500-650mA, standard tube voltage used 120kV and 200-280mA. The other parameters included axial scan mode, gantry rotation 0.4s/ro, slice thickness 5.0mm, matrix 512×512, FOV 30cm-35cm.17 scans were performed and 16 images were obtained for each time. The time interval was 2.8s and the total time for scan was 50s. Contrast medium was injected into ulnar vein with velocity of 4ml/s and volume of 50ml. Scan was started 10-12s after injection. The CT data were transferred to Advantage Workstation 4.4 for GE and tool of CT perfusion 4 was used for postprocession. ROI with 10mm2 were drown to measure the CT attenuations of aorta, portal vein, and normal liver for the two groups. According to the relationship of equation 2, the calibrated CT attenuation was calculated for low tube voltage group. CT attenuations of the three sets for two groups were transferred to personal computer to calculate and compare the perfusion parameters with special perfusion tool of GE. The perfusion parameters included blood flow (BF), blood volume (BV), capillary permeability surface area product (PS), and hepatic arterial perfusion (HAP). DLPs and effective radiations were calculated and compared. Results:To compare with standard group, perfusion parameters measured with low tube voltage were different:BV(t=-2.295,P=0.028), BF(t=-2.784,P=0.009), PS (t=-3.439,P= 0.002), HAF(t=-2.115,P=0.048). However, the perfusion parameters calibrated were not different:BV(t=-2.015, P=0.068), BF(t=-1.996, P=0.055), PS(t=-3.039, P=0.132), HAF(t=-1.139, P=0.052). The effective dose of two groups was different (t=-4.21,p=0.001). The effective dose of low tube voltage could be reduced by 33%. Conclusions:The perfusion parameters of different tube voltage were different. After calibration by equation 2, the parameters were according to standard result. Moreover, the radiation dose was reduced significantly.
引文
[1]Nickoloff EL,Alderson PO. Radiation exposures to patients from CT:reality, public perception and policy[J]. AJR 2001,177:285-287.
    [2]Shrimpton PC, Edyvean S.CT Scanner dosimetry[J]. BJR 1998,71:1-3.
    [3]郑钧正.研究电离辐射水平与效应的重要文献--UNSCEAR报告书.中华放射医学与防护杂志[J].2002,22:71-72.
    [4]郑钧正,岳保荣,李述唐,等.我国“九五期间X射线诊断的医疗照射频率水平.中华放射医学与防护杂志[J].2001,20:s14-s15.
    [5]Pierce DA,Preston DL.Radiotion-related cancer risks at low doses among atomic bomb survivors[J].Radiat Res,2000,154:178-186.
    [6]Bemington DC,Gonzulez A,Darby S.Risk of cancer from diagnostic X-rays: estimates for the UK and 14 orther countries[J]. Lancet,2004,363:345-351.
    [7]David JE,Carl DE,Erie JH,et al.Estimated risks of radiation induced fatal cancer from pediatric CT[J].AJR,2001,176:289-296.
    [8]Eric J.Lessons we have learned from our children:cancer risks from diagnostic radiology[J].Pediatr Radol,2002,32:700-706.
    [9]刘昌盛,魏文洲,郑晓华,等.低剂量CT扫描对婴幼儿颅脑病变检查的防护价值[J].中华放射医学与防护杂志.2004,24:270-271.
    [10]翟森,于朝阳,张本超.16层螺旋CT低剂量肺普查的临床应用价值[J].医学影像学杂志,2006,16:697-700.
    [11]张巍,郭玉林.低剂量螺旋CT扫描技术的临床应用[J].医学影像学杂志.2006,16:697-700.
    [12]宋少娟,王巍,刘传亚.多层CT螺距与辐射剂量的关系探讨[J].中华放射医学与防护杂志.2006,26:526-528.
    [13]安瑞金,黄岗.CT图像质量和辐射剂量的影响因素研究.生物医学工程与临床.2009,13:92-95.
    [14]Dill T,Deetjen A,Ekinci O,et al. Radiation dose exposure in multislice computed tomography of the coronaries in comparison with conventional coronary angiography[J].Int J Cardiol,2008,124:307-311.
    [15]Coles DR, Smail MA, Negus IS,et a. Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography[J].J Am Coll Cardiol,2006,47:1840-1845.
    [16]Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated wit h radiation exposure from 64 slice computed tomography coronary angiography[J].JAMA,2007,298:317-323.
    [17]Brenner DJ,Hall EJ. Computed tomography—an increasing source of radiation exposure[J]. N Engl J Med,2007,357:2277-2284.
    [18]Conway BJ,McCroban JL,Antonsen RG,et al.Average radiation dose in standard CT examinations of the head:results of the 1990 NEXT survey [J]. Radiology,1992,184:135-140.
    [19]Parry RA,Glaze SA,Archer BR.Typial patient radiation does in diagnostic radiology[J].Radiographics,1999,19:1289-1302.
    [20]Szucs-Farkas Z,Kurmann L,Strautz T,et al. Patient exposure and image quality of low-dose pulmonary computed tomography angiography:comparison of 100-and 80-kVp Protocols[J]. Invest Radiol,2008,43:871-876.
    [21]Silverman SG,Tuncali K,Adams DF,et al. CT Fluoroscopy guided abdominal interventions:techniques,results and radiation exposure[J]. Radiology,1999, 212:673-681.
    [22]Huda W,Scalzetti EM,Roskopf ML. Effective does to patients undergoing thoracic computed tomography examinations[J]. Med Phys,2000,27:838-844.
    [23]Huda W. Radiation dosimetry in diagnostic radiology[J]. AJR,1997, 169:1487-1488.
    [24]Shrimpton PC,Edyvean S. CT Scanner dosimetry[J]. Br J Radiol,1998,71:1-3
    [25]郑钧正,贺青华,李述唐,等.我国电离辐射医学应用的基本现状[J].中华放射医学与防护杂志.2000,20:s7-s8.
    [26]Committee on the Biological Effects of Ionizing Radiation. Health effects of exposure to low levels of ionizing radiation,BEIR V[M]. Washington, DC National Academy Press,1990:161-188,242-278,352-364.
    [27]Remy Jardin M,Remry J. Spiral CT angiography of the pulmonary circulation[J]. Radiology,1999,212:615-636.
    [28]Haaga JR.Radiation dose management:weighing risk versus benefit[J].AJR, 2001,177:289-291.
    [29]Felmlee JP, Gray JE, Leetzow ML, et al. Estimated fetal radiation dose from multislice CT studies[J]. AJR,1990,154:185-190.
    [30]Ravenel J G,Scalazetti EM, Huda W,et al. Radiation exposure and image quality chest CT examinations[J].AJR,2001,177:279-284.
    [31]Hall EJ. Raidology for the radiologists,4th ed. Philadephia:Lippincott, 1995:448-454.
    [32]Vade A,Demos TC,Olson,et al. Evaluation of image quality using 1:1 pitch and 1.5:1 pitch helical CT in children:a comparative sdudy[J]. Pedi atr Radol,1996, 26:891-893.
    [33]Anne B,Sigal-Cinquabre et al. Low-Kilovoltage multi-detector row chest CT in adults:feasibility and effect on image quality and iodine dose[J]. Rdiology,2004, 231:169-174.
    [34]James D. Eastwood, MD Michael H. Lev, MD.et al. CT Perfusion Scanning with Deconvolution Analysis:Pilot Study in Patients with Acute Middle Cerebral Artery Strokel[J]. Radiology 2002; 222:227-236.
    [35]A.B. Smith,W.P. Dillon,R. Gould M, Wintermark. Radiation Dose-Reduction Strategies for Neuroradiology CT Protocols[J]. AJNR,2007;28:1628-1632.
    [36]Max Wintermark, Philippe Maeder et al. Using 80 kVp versus 120 kVp in Perfusion CT Measurement of Regional Cerebral Blood Flow[J]. AJNR,2000,21:1881-1884.
    [37]Konstas A, Goldmakher GV, Lee TY, et al. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1:Theoretic basis[J]. AJNR Am J Neuroradiol 2009;30:662-682.
    [38]Nabavi DG, Cenic A, Craen RA, et al. CT assessment of cerebral perfusion: experimental validation and initial clinical experience[J].Radiology 1999;213:141-149.
    [39]Hindmarsh T. Elimination of water-solube contrast media from the subarachnoid space. Investigation with computed tomography[J]. Acta Radiol,1975,346:45-50.
    [40]Blomley MJ, Coulden R, Bufkin C. Contrast bolus dynamic compoted tomography for the measurement of solid organ perfusion[J]. Invest Radiol,1993, 28:S72-77.
    [41]Axel L. Cerebral blood flow determination by rapid-sequence computed tomography:theoretical analysis[J]. Radiology,1980,137:679-686.
    [42 Eastwood JD,Lev MH,Azhari T,et al.CT perfusion scanning with deconvolution analysis:pilot study in patients with acute middle cerebral artery stoke[J].Radiology,2002;222:227-232.
    [43]Cenic A,Nabavi DG,Graen RA,etal.Dynamic CT measurement of cerebral blood flow:A validationstudy[J]. AJNR,1999,20:63-73.
    [44]Van BE, Leconte I, Roland M, etal. Hepatic perfusion parameters in chronic liver disease:dynamic CT measurements correlated with disease severity[J]. AJR, 2001;176:667-673.
    [45]Cuenod CA,Leconte I,Siauve N,et al.Deconvolution technique for measuring tissue perfusion by dynamic CT:application to normal and metastatic liver[J].Acad Radiol,2002;9:S205-211.
    [46]Materne J, Van BE, Smith AM, etal. Noninvasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model[J].Clin Sci,2000;99:517-525.
    [47]赵光明,韩丹综述,宋光义审校.CT灌注成像原理与技术[J].中国医学影像技术,2003,19:636-638.
    [48]Eastwood JD, Provenzale JM, Hurwitz LM, et al. Practical injection-rate CT perfusion in a case of stroke[J]. Neuroradiology,2001,43:223-226.
    [49]Mayer TE,Hamann GF,Baranczyk J. Dynamic CT perfusion imaging of acute stroke[J].AJNR 2002; 21:1441-1449.
    [50]Klotz E and Konig M. Perfusion measurements of the brain:using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke[J]. Eur J Radiol,1999,30:170-184.
    [51]Eastwood JD,Provenzale JM, Hurwitz LM, et al. Practical injection-rate CT perfusion in a case of stroke[J]. Neuroradiology,2001,43:223-226.
    [52]Dugdale PE,Miles KA,Bunce I.CT Measurement of perfusion and permeability within lymphoma masses and its ability to assess grade,activity,and chemotherapeutic response[J]. J Computer Assisted Tomography,1999,23: 540-547.
    [53]Hermans R,Lambin P. Non-invasive tumour perfusion measurement by dynamic CT:Preliminary results[J]. Radiother Oncol.1997,44:159-168.
    [54]Purdie TG,Henderson E,Lee TY. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour[J]. Phys Med Biol.2001,46:3161-3175.
    [55]Vicky Goh,Jonathan Liawl et al. Effect of Temporal Interval Between Scan Acquisitions on Quantitative Vascular Parameters in Colorectal Cancer: Implications for Helical Volumetric Perfusion CT Techniques[J].AJR,2009,191: 288-292.
    [56]Szucs-Farkas Z, Kurmann L, Strautz T,et al. Patient exposure and image quality of low-dose pulmonary computed tomography angiography:comparison of 100-and 80-kVp Protocols[J]. Invest Radiol,2008,43:871-876. 射线辐射和对比剂副作用问题。因此该项技术今后需要深入研究的方向有两个,一是低辐射条件下CT扫描如何保证灌注结果的准确性及可比性;二是新型对比剂的研究。总之,随着CT扫描设备的不断发展,CT灌注技术和计算方法的不断完善,随着CT灌注成像技术应用的经验不断积累,这项技术的临床应用的领域将不断的扩展,其应用价值将更好的体现。
    [1]Nickoloff EL, Alderson PO. Radiation exposures to patients from CT: reality, public perception and policy[J]. AJR 2001,177:285-287.
    [2]Dill T, Deetjen A, Ekinci 0, et al. Radiation dose exposure in multislice computed tomography of the coronaries in comparison with conventional coronary angiography[J]. Int J Cardiol,2008,124:307-311.
    [3]Coles DR, Smail MA, Negus IS, et al. Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography [J]. J Am Coll Cardiol,2006,47:1840-1845.
    [4]Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography[J]. JAMA,2007,298:317-323.
    [5]Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure[J].N Engl J Med,2007,357 (22):2277-2284.
    [6]Con way BJ, McCroban JL, Antonsen RG, et al. Average radiation dose in standard CT examinations of the head:results of the 1990 NEXT survey[J]. Radiology, 1992,184:135-140.
    [7]Parry RA, Glaze SA, Archer BR.Typial patient radiation does in diagnostic radiology. Radiographics,1999,19:1289-1302.
    [8]Huda, W, Atherton JV, Ware DE, et al. An approach for the estimation of effective radiation dose at CT in pediatric patients[J]. Radiology,1997, 203:417-422.
    [9]Silverman SG, Tuncali K, Adams DF, et al. CT Fluoroscopy guided abdominal interventions:techniques, results and radiation exposure[J].Radiology,1999, 212:673-681.
    [10]Huda W, Scalzetti EM, Roskopf ML. Effective does to patients undergoing thoracic computed tomography examinations[J]. Med Phys,2000,27:838-844.
    [11]Huda W. Radiation dosimetry in diagnostic radiology[J]. AJR,1997, 169:1487-1488.
    [12]Shrimpton PC, Edyvean S. CT Scanner dosimetry[J]. Br J Radiol,1998,71:1-3
    [13]郑钧正,贺青华,李述唐,等.我国电离辐射医学应用的基本现状[J].中华放射医学与防护杂志.2000,20:s7-s8.
    [14]郑钧正,岳保荣,李述唐,等.我国“九五期间X射线诊断的医疗照射频率水平[J].中华放射医学与防护杂志.2000,20:s14-s15.
    [15]郑钧正.研究电离辐射水平与效应的重要文献--UNSCEAR报告书[J].中华放射医学与防护杂志.2002,22:71-72.
    [16]Committee on the Biological Effects of Ionizing Radiation. Health effects of exposure to low levels of ionizing radiation, BEIR V[M]. Washington, DC National Academy Press,1990:161-188,242-278,352-364.
    [17]Remy Jardin M, Remry J. Spiral CT angiography of the pulmonary circulation[J]. Radiology,1999,212:615-636.
    [18]Haaga J R.Radiation dose management:weighing risk versus benefit[J].AJR, 2001,177:289-291.
    [19]Felmlee JP, Gray JE, Leetzow ML, et al. Estimated fetal radiation dose from multislice CT studies[J]. AJR,1990,154:185-190.
    [20]Szucs-Farkas Z, Kurmann L, Strautz T, et al. Patient exposure and image quality of low-dose pulmonary computed tomography angiography:comparison of 100-and 80-kVp Protocols[J]. Invest Radiol,2008,43:871-876.
    [20]Ravenel JG, Scalazetti EM, Huda W, et al. Radiation exposure and image quality chest CT examinations[J].AJR,2001,177:279-284.
    [21]Hall EJ. Raidology for the radiologists,4th ed[J]. Philadephia:Lippincott, 1995:448-452.
    [22]Brenner DJ, Elliston CD, Berdon WE. Estimated risk of radiation induced fatal cancer from pediatric CT[J]. AJR,2001,176:289-296.
    [23]Golding SJ,Shrimpton PC.Radiation dose in CT:are we meeting the challenge[J].BJR,2002,75:1-4.
    [24]Vade A, Demos TC, Olson, et al.Evaluation of image quality using 1:1 pitch and 1.5:1 pitch helical CT in children:a comparative sdudy[J]. Pedi atr Radol, 1996,26:891-893.
    [25]Miles KA.Measurement of tissue perfusion by dynamic computed tomography[J].The British Journal of Radiology,1991,64:409-412.
    [26]Miles KA, Hayball M, Dixon AK.Colour perfusion imaging:a new application of computed tomography[J]. Lancet,1991,337:643-645.
    [27]Kenneth AMiles,Michael P Hayball,Adrian K Dixon.Functional images hepatic perfusion obtained with dynamic CT[J].Radiology,1993,188:405-411
    [28]Meier P, Zierler KL.On the theory of the indicator dilution method for measurement of blood flow and volume[J]. Appl Physiol,1994,6:731-742.
    [29]Hindmarsh T.Elimination of water-solube contrast media from the subarachnoid space.Investigation with computed tomography [J]. Acta Radiol,1995,346:45-50.
    [30]Blomley MJ, Coulden R, Bufkin C.Contrast bolus dynamic compoted tomography for the measurement of solid organ perfusion[J]. Invest Radiol, 1993,28:S72-77.
    [31]Axel L. Cerebral blood flow determination by rapid-sequence computed tomography:theoretical analysis[J]. Radiology,1999,137:679-686.
    [32]Eastwood JD,Lev MH,Azhari T,et al.CT perfusion scanning with deconvolution analysis:pilot study in patients with acute middle cerebral artery stoke[J].Radiology,2002,152:222-227.
    [33]Cenic A,Nabavi DG,Graen RA,et al.Dynamic CT measurement of cerebral blood flow:A validation study[J]. AJNR,1999,20:63-73.
    [34]Van BE,Leconte I,Roland M,etal.Hepatic perfusion parameters in chronic liver disease:dynamic CT measurements correlated with disease severity[J].AJR, 2001,176:667-673.
    [35]Cuenod CA,Leconte I,Siauve N,et al.Deconvolution technique for measuring tissue perfusion by dynamic CT:application to normal and metastatic liver[J].Acad Radiol,2002;9:S205-211
    [36]Materne J, Van BE, Smith AM, etal. Noninvasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model[J].Clin Sci,2000;99:517-525
    [37]赵光明,韩丹综述,宋光义审校.CT灌注成像原理与技术[J].中国医学影像技术,2003,19:636-638.
    [38]Eastwood JD, Provenzale JM, Hurwitz LM, et al. Practical injection rate CT perfusion in a case of stroke[J]. Neuroradiology,2001,43:223-226.
    [39]Axel. Cerebral blood flow determination by rapid sequence computed tomography:theretical analysis[J]. Radiology,1980,137:679-686.
    [40]Miles KA, Griffiths MR. Perfusion CT:a worthwhile enhancement?[J]. Br J Radiol,2003,76:220-231.
    [41]Roberts HC, Roberts TPL, Smit WS, et al. Multisection dynamic CT perfusion for acute cerebra ischemia:the "toggle-table" technique[J].AJNR,2001, 22:1077-1080.
    [42]Mayer TE, Hamann GF, Baranczyk J. Dynamic CT perfusion imaging of acute strok[J]e.AJNR,2000,21:1441-1449.
    [43]Koenig M, Klotz E, Luka B. Perfusion CT of the brain:diagnostic approach for early detection of ischemia stroke[J]. Radiology,1998,209:85-93.
    [44]Gillard JH, Bearcroft PW, Miles KA. Evaluation of quantitative cerebral CT perfusion with positron emission tomography:preliminary results[J].Radiology, 1997,205:185-198.
    [45]Reichenbach JR, Rother J, Herzau M. Acute stroke evaluated by time-to-peak mapping during initial and early follow-up perfusion CT studies[J].AJNR,1999, 20:1842-1850.
    [46]Klotz E, Konig M.Perfusion measurements of the brain:using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke[J]. Eur J Radiol, 1999,30:170-184.
    [47]Miles KA. Tumor angiogenesis and its relation to contrast enhancement on computed tomography:a review[J]. European J Radiology,1999,30:198-205.
    [48]Dugdale PE, Miles KA, Bunce I.CT Measurement of perfusion and permeability within lymphoma masses and its ability to assess grade, activity, and chemotherapeutic response[J]. Computer Assisted Tomography,1999,23:540-547.
    [49]Gunnar B, Bahner ML, Hoffmann U. Regional blood flow, capillary permeability, and compartmental volumes:measurement with dynamic CT-initial experience[J]. Radiology,1999,210:269-276.
    [50]Cenic A, Nabavi DG, Craen RA. A CT method to measure hemodynamics in brain tumors:validation and application of cerebral blood flow maps[J]. AJNR,2000,21:462-470.
    [51]Purdie TG, Henderson E, Lee TY. Functional CT imaging of angiogenesis in rabbit VX2 soft-tissue tumour[J]. Phys Med Biol.2001,46:3161-3175.
    [52]Hermans R, Lambin P. Non-invasive tumour perfusion measurement by dynamic CT:Preliminary results[J]. Radiother & Oncol.1997,44:159-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700