类球红细菌中辅酶Q_(10)的代谢工程研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辅酶Q10是参与细胞有氧呼吸作用的重要电子传递体,可以为机体提供能量物质ATP。并且其抗氧化作用可以保护细胞避免氧化剂的损伤,辅酶Q10还被证明对治疗心脑血管疾病具有良好效果,因此目前被广泛地应用于身体保健及疾病预防。为了提高辅酶Q10的产量,对辅酶Q10生产菌的育种一直以来都是研究的热点。本文通过代谢工程的手段对产辅酶Q10的细菌—类球红细菌进行遗传改造,提高其辅酶Q10的产量。
     为了对类球红细菌进行代谢改造,首先构建了该菌的一个表达载体,该载体包含广宿主载体骨架和一个可以组成型表达的启动子。通过实时定量PCR验证,该表达载体可以在葡萄糖存在的情况下实现组成型表达,以UbiG基因作为表征,其在该表达载体的控制下表达量可以达到野生型的133倍左右。本研究在该表达载体的基础上通过引入不同的代谢调控策略有效地提高了类球红细菌中辅酶Q10的产量,同时比较了不同的策略对不同的研究对象产生的效果。
     在代谢工程改造过程中需要注意对整个代谢网络的平衡控制,本文以MEP途径代谢调控为例,构建了一个自反馈调控系统。该系统是基于lacO操纵子工作原理,利用核糖体结合位点(RBS)作为调节工具,对操纵子中的基因表达进行优化调节,使之既能提高目标产物的产量又能满足代谢网络平衡的要求。本研究通过在自反馈调控系统中引入5个不同强度的RBS序列对MEP途径进行优化调控后,得到了一株辅酶Q10产量提高了87%的重组菌株。同时,通过引入新的外界干扰,证明了该系统在代谢调控中是比较稳定和灵活的。
     醌环修饰途径也是辅酶Q10生物合成途径中的一个重要环节,虽然不为辅酶Q1o提供前体物质,但是可以提高辅酶Q10前体物质到辅酶Q10的转化率。通过不同的表达筛选,确定了类球红细菌辅酶Q10合成途径中的关键酶UbiE、UbiH和UbiG。通过不同的表达策略,确定了将UbiE和UbiG融合到膜结合蛋白pufX上,可以将醌环修饰途径的通量最大化。接着本文对辅酶Q10进行了系统化的调控,通过系统性地对整个代谢网络进行调控可以实现不同的代谢优化结果的整合,使代谢改造的效果更加明显。本研究即在MEP调控及醌环修饰途径代谢优化的基础上,将两者通过自反馈调控系统进行整合来提高辅酶Q10的产量。
     本研究通过代谢工程手段,构建了类球红细菌的表达载体以及自反馈调控体系,对类球红细菌的辅酶Q10生物合成途径进行了系统地代谢调控,有效地提高了类球红细菌中辅酶Q10的产量,使之达到原来的3倍左右。
Coenzyme Q10(CoQ10) is an essential electron carrier in the aerobic respiratory electron transfer system. It generates ATP for the body and has been proven effective in treating cardiovascular disease and hypertension. Also, CoQ10is an important antioxidant. Currently, CoQ10is widely used in health care and disease prevention. For improving the production of CoQ10, metabolic engineering of CoQ10producers has widely drawn the attention from the researchers. In this study, Rhodobacter sphaeroides, a natural CoQ10producer, was metabolically engineered to improve its production of CoQ10.
     For metabolic engineering of Rhodobacter sphaeroides, a constitutive expression plasmid was constructed. This plasmid harbors a broad-host-range plasmid backbone and a constitutive promoter. Real-time PCR verified that the plasmid could constitutively express the gene cloned in the plasmid in the presence of glucose. Taking UbiG as an example, the expression level of UbiG in the recombinant with UbiG cloned in the plasmid was133-times as high as that in the wild type. In this study, different strategies were developed based on this plasmid to improve the production of CoQ10.
     Metabolic balance is a key issue in metabolic engineering. In this study, we tried to improve the CoQ10production by enhancing the flux of the MEP pathway with a self-regulation system. This system was constructed based on the mechanism of Lac operator and ribosomal binding site regulation. By introducing5different ribosomal binding sites, a pathway-balanced mutant with87%CoQ10production higher than the wildtype was obtained. Also, this system was corfirmed to be robust and flexible in tuning metabolic balance.
     The quinone modification pathway directly influences the CoQ10production by transfor ming the precursors to CoQ10. We screened the key enzymes in the pathway and idenfied UbiE, UbiH and UbiG as the candidates. To expand the ubiquninoe modification pathway, different coexpression strategies were developed. It was found that by fusing UbiG and UbiE to the pufX peptide, which dereases the loss of intermediates diffusion, the flux of the pathway could be maximized and the production of CoQ10could be subsequently improved.
     Systematic engineering of the metabolic pathway is a highlight in metabolic engineering. It can integrate the positive results of the sectional pathway optimizations. In this study, the optimized MEP pathway and ubiquinone modification pathway were intergrated. As a result, a higher level of CoQ10production was achieved.
     In this study, we systematically engineered the CoQ10pathway in Rhodobacter sphaeroides and successfully improved the production of CoQ10by about3times.
引文
[1]CRANE F L, HATEFI Y, LESTER R L, et al. Isolation of a quinone from beef heart mitochondria[J]. Biochim Biophys Acta,1957,25(1):220-221.
    [2]Cluis C P, Burja A M, Martin V J. Current prospects for the production of coenzyme Q10 in microbes[J]. Trends Biotechnol,2007,25(11):514-521.
    [3]Mortensen S A. Endomyocardial biopsy. Technical aspects and indications[J]. Dan Med Bull, 1989,36(6):507-532.
    [4]Overvad K, Diamant B, Holm L, et al. Coenzyme Q10 in health and disease[J]. Eur J Clin Nutr,1999,53(10):764-770.
    [5]Singh R B, Wander G S, Rastogi A, et al. Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infarction[J]. Cardiovasc Drugs Ther, 1998,12(4):347-353.
    [6]Hodgson J M, Watts G F, Playford D A, et al. Coenzyme Q10 improves blood pressure and glycaemic control:a controlled trial in subjects with type 2 diabetes[J]. Eur J Clin Nutr, 2002,56(11):1137-1142.
    [7]Cordero M D, Cotan D, Del-Pozo-Martin Y, et al. Oral coenzyme Q10 supplementation improves clinical symptoms and recovers pathologic alterations in blood mononuclear cells in a fibromyalgia patient[J]. Nutrition,2012,28(11-12):1200-1203.
    [8]Folkers K, Langsjoen P, Willis R, et al. Lovastatin decreases coenzyme Q levels in humans[J]. Proc Natl Acad Sci USA,1990,87(22):8931-8934.
    [9]Mortensen S A, Leth A, Agner E, et al. Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors[J]. Mol Aspects Med,1997,18 Suppl:S137-S144.
    [10]Schaars C F, Stalenhoef A F. Effects of ubiquinone (coenzyme Q10) on myopathy in statin users[J]. Curr Opin Lipidol,2008,19(6):553-557.
    [11]王少颖,杨占敏,张秀娟,等.辅酶Q10治疗帕金森病临床观察[J].河北中医,2014(1):151-153,154.
    [12]Shults C W, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline[J]. Arch Neurol,2002,59(10):1541-1550.
    [13]Beal M F. Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q10 as a potential treatment[J]. J Bioenerg Biomembr, 2004,36(4):381-386.
    [14]Dhanasekaran M, Ren J. The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus[J]. Curr Neurovasc Res,2005,2(5):447-459.
    [15]潘春梅,堵国成,陈坚.辅酶Q10高产菌Rhizobium radiobacter的选育及发酵条件优化[J].过程工程学报,2004,4(5):451-456.
    [16]Yang X, Dai G, Li G, et al. Coenzyme Q10 reduces beta-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer's disease[J]. J Mol Neurosci,2010,41 (1):110-113.
    [17]王佳平,彭金乱.辅酶Q10在化妆品中的应用:第十一届全国日用化工学术研讨会,北京,2008[C].
    [18]陶志杰,王改玲,李妍.辅酶Q10的制备及应用新进展[J].畜牧与饲料科学,2010,31(9):9-11.
    [19]叶青,张宾红,等.辅酶Q10的性质及其在化妆品中的应用[J].香料香精化妆品, 1999(3):32-34.
    [20]邵庆伟,柯崇榕,杨威,等.辅酶Q10的微生物合成[J].生命的化学,2013(2):91-95.
    [21]马菊,石宁.食品中应用辅酶Q10的研究进展[J].食品科技,2009(02):18-21.
    [22]Negishi E, Liou S Y, Xu C, et al. A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme Q(10)[J]. Org Lett, 2002,4(2):261-264.
    [23]Lipshutz B H, Lower A, Berl V, et al. An improved synthesis of the "miracle nutrient" coenzyme Q10[J]. Org Lett,2005,7(19):4095-4097.
    [24]张双奇,昝林森,田万强,等.牛心肌中辅酶Q10的提取及测定[J].中国农学通报,2007,23(4):16-18.
    [25]胡莉娟,郝乾坤,莫非.猪心中提取辅酶Q10的研究[J].陕西农业科学,2010,56(1):14-15,61.
    [26]吕春茂,孙忠思,杨国放,等.几个烟草品种辅酶Q10含量的比较[J].安徽农业科学,2007,35(1):129-130.
    [27]陈星,刘蕾,吴琼.分子蒸馏法从大豆油脚中提取辅酶Q10的研究[J].中国油脂,2011,36(10):73-76.
    [28]陈田,杨运泉,刘文英,等.辅酶Q10化学合成方法与工艺研究进展评述[J].精细化工中间体,2007,37(1):9-14.
    [29]Yanagisawa A, Nomura N, Noritake Y, et al. Highly SN2'-, (E), and Antiselective Alkylation of Allylic Phosphates. Facile Synthesis of Coenzyme Q10[J]. Synthesis, 1991,1991(12):1130-1136.
    [30]Keinan E, Eren D. Total synthesis of linear polyprenoids.3. Syntheses of ubiquinones via palladium-catalyzed oligomerization of monoterpene monomers[J]. J. Amer. Chem. Soc, 1988,13(110):4356-4362.
    [31]Lipshutz B H, Bulow G, Fernandez-Lazaro F, et al. A Convergent Approach to Coenzyme Q[J]. J. Amer. Chem. Soc.,1999,121(50):11664-11673.
    [32]Naruta Y. Regio-and stereoselective synthesis of coenzymes Qn (n= 2-10), vitamin K, and related polyprenylquinones[J]. J. Org. Chem.,1980,45(21):4097-4104.
    [33]王超杰,陈炳志,宋金勇,等.癸异戊二烯醇的合成研究[J].精细化工,2000,17(9):549-551.
    [34]Lipshutz B H, Mollard P, Pfeiffer S S, et al. A Short, Highly Efficient Synthesis of Coenzyme Q10[J]. J. Amer. Chem. Soc.,2002,124(48):14282-14283.
    [35]Min J, Lee J, Yang J, et al. The Friedel-Crafts Allylation of a Prenyl Group Stabilized by a Sulfone Moiety:Expeditious Syntheses of Ubiquinones and Menaquinones[J]. J. Org. Chem., 2003,68(20):7925-7927.
    [36]West D D. Synthesis of coenzyme Q10 ubiquinone[Z]. Google Patents,2003.
    [37]董敏宁,胡艾希,贺丽敏,等.辅酶Q10的化学合成进展[J].香料香精化妆品,2007(5):33-40.
    [38]Yoshida H, Kotani Y, Ochiai K, et al. Production of ubiquinone-10 using bacteria[J]. J Gen Appl Microbiol,1998,44(1):19-26.
    [39]Dixson D D, Boddy C N, Doyle R P. Reinvestigation of coenzyme Q10 isolation from Sporidiobolus johnsonii[J]. Chem Biodivers,2011,8(6):1033-1051.
    [40]Yen H W, Shih T Y. Coenzyme Q10 production by Rhodobacter sphaeroides in stirred tank and in airlift bioreactor[J]. Bioprocess Biosyst Eng,2009,32(6):711-716.
    [41]Ha S J, Kim S Y, Seo J H, et al. Ca2+increases the specific coenzyme Q10 content in Agrobacterium tumefaciens[J]. Bioprocess Biosyst Eng,2009,32(5):697-700.
    [42]郑君,管斌,孔青,等.高产辅酶Q10光合细菌的选育[J].中国酿造,2008(5):83-86.
    [43]刘克杉,吴文芳,韩斯琴,等.辅酶Q10高产菌株的选育[J].沈阳农业大学学报,2005,36(1):89-92.
    [44]党磊,田菁,印红,等.利用空间诱变选育辅酶Q10高产菌[J].科技导报,2010,28(14):40-43.
    [45]蒋昵真,吕炜锋,高向东,等.用紫外诱变和离子束注入筛选辅酶Q10高产菌[J].药物生物技术,2006,13(3):207-210.
    [46]李继扬,丁妍,周佩.通过耐受前体或结构类似物筛选提高辅酶Q10产量[J].复旦学报(医学版),2008,35(3):393-395,400.
    [47]戚薇,李静,李剑,等.高产辅酶Q10结构类似物抗性突变株的选育[J].工业微生物,2007,37(6):12-15.
    [48]赵学明,白冬梅等译,Stephanopoulos N Gregory等著.代谢工程原理与方法[M].北京市:化学工业出版社,2003.
    [49]Aristidou A A, Nielsen J H, Stephanopoulos G. Metabolic engineering principles and methodologies[M]. San Diego:Academic Press,1998.
    [50]Colon G E, Jetten M S, Nguyen T T, et al. Effect of inducible thrB expression on amino acid production in Corynebacterium lactofermentum ATCC 21799[J]. Appl Environ Microbiol, 1995,61(1):74-78.
    [51]Zelcbuch L, Antonovsky N, Bar-Even A, et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics[J]. Nucleic Acids Res,2013,41(9):e98.
    [52]Alper H, Fischer C, Nevoigt E, et al. Tuning genetic control through promoter engineering[J]. Proc Natl Acad Sci USA,2005,102(36):12678-12683.
    [53]Ajikumar P K, Xiao W H, Tyo K E, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science,2010,330(6000):70-74.
    [54]Pfleger B F, Pitera D J, Smolke C D, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nat Biotechnol,2006,24(8):1027-1032.
    [55]张学礼.代谢工程发展20年[J].生物工程学报,2009,25(9):1285-1295.
    [56]Alper H, Jin Y S, Moxley J F, et al. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli[J]. Metab Eng,2005,7(3):155-164.
    [57]Park J H, Lee K H, Kim T Y, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation[J]. Proc Natl Acad Sci USA,2007,104(19):7797-7802.
    [58]Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nat Biotechnol,2009,27(8):753-759.
    [59]Alper H, Stephanopoulos G. Global transcription machinery engineering:a new approach for improving cellular phenotype[J]. Metab Eng,2007,9(3):258-267.
    [60]Chong H, Geng H, Zhang H, et al. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP)[J]. Biotechnol Bioeng, 2013.
    [61]Lee J Y, Sung B H, Yu B J, et al. Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli[J]. Nucleic Acids Res, 2008,36(16):e102.
    [62]Klein-Marcuschamer D, Stephanopoulos G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains[J]. Proc Natl Acad Sci USA, 2008,105(7):2319-2324.
    [63]Tyo K E, Alper H S, Stephanopoulos G N. Expanding the metabolic engineering toolbox: more options to engineer cells[J]. Trends Biotechnol.,2007,25(3):132-137.
    [64]王俊姝,祁庆生.合成生物学与代谢工程[J].生物工程学报,2009,25(9):1296-1302.
    [65]Voigt C A. Genetic parts to program bacteria[J]. Curr Opin Biotechnol,2006,17(5):548-557.
    [66]Cluis C P, Pinel D, Martin V J. The production of coenzyme Q10 in microorganisms[J]. Subcell Biochem,2012,64:303-326.
    [67]Zhou K, Zou R, Stephanopoulos G, et al. Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production[J]. PLoS One, 2012,7(11):e47513.
    [68]Lee J K, Oh D K, Kim S Y. Cloning and characterization of the dxs gene, encoding 1-deoxy-d-xylulose 5-phosphate synthase from Agrobacterium tumefaciens, and its overexpression in Agrobacterium tumefaciens [J]. J Biotechnol,2007,128(3):555-566.
    [69]Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli[J]. Appl. Microbiol. Biotechnol., 2013,97(6):2357-2365.
    [70]Zahiri H S, Yoon S H, Keasling J D, et al. Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway [J]. Metab Eng,2006,8(5):406-416.
    [71]Okada K, Suzuki K, Kamiya Y, et al. Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone[J]. Biochim Biophys Acta,1996,1302(3):217-223.
    [72]Addlesee H A, Fiedor L, Hunter C N. Physical mapping of bchG, orf427, and orf177 in the photosynthesis gene cluster of Rhodobacter sphaeroides:functional assignment of the bacteriochlorophyll synthetase gene[J]. J Bacteriol,2000,182(11):3175-3182.
    [73]Oster U, Bauer C E, Rudiger W. Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli[J]. J Biol Chem, 1997,272(15):9671-9676.
    [74]Zhang D, Shrestha B, Li Z, et al. Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system[J]. Mol Biotechnol, 2007,35(1):1-14.
    [75]Esterhazy D, King M S, Yakovlev G, et al. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria[J]. Biochemistry,2008,47(12):3964-3971.
    [76]Poon W W, Barkovich R J, Hsu A Y, et al. Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis[J]. J Biol Chem, 1999,274(31):21665-21672.
    [77]Young I G, Stroobant P, Macdonald C G, et al. Pathway for ubiquinone biosynthesis in Escherichia coli K-12:gene-enzyme relationships and intermediates[J]. J Bacteriol, 1973,114(1):42-52.
    [78]Poon W W, Davis D E, Ha H T, et al. Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis[J]. J Bacteriol, 2000,182(18):5139-5146.
    [79]Zhu X, Yuasa M, Okada K, et al. Production of ubiquinone in Escherichia coli by expression of various genes responsible for ubiquinone biosynthesis[J]. J. Ferment. Bioeng., 1995,79(5):493-495.
    [80]Lee J K, Her G, Kim S Y, et al. Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens[J]. Biotechnol Prog, 2004,20(1):51-56.
    [81]Park Y C, Kim S J, Choi J H, et al. Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans[J]. Appl Microbiol Biotechnol,2005,67(2):192-196.
    [82]Zahiri H S, Noghabi K A, Shin Y C. Biochemical characterization of the decaprenyl diphosphate synthase of Rhodobacter sphaeroides for coenzyme Q10 production[J]. Appl Microbiol Biotechnol,2006,73(4):796-806.
    [83]Takahashi S, Nishino T, Koyama T. Isolation and expression of Paracoccus denitrificans decaprenyl diphosphate synthase gene for production of ubiquinone-10 in Escherichia coli[J]. Biochem. Eng. J.,2003,16(2):183-190.
    [84]Choi J H, Ryu Y W, Park Y C, et al. Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q(10) production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene[J]. J Biotechnol,2009,144(1):64-69.
    [85]Cluis C P, Ekins A, Narcross L, et al. Identification of bottlenecks in Escherichia coli engineered for the production of CoQ10[J]. Metab. Eng.,2011,13(6):733-744.
    [86]Seo M J, Im E M, Nam J Y, et al. Increase of CoQ10 production level by the coexpression of decaprenyl Diphosphate synthase and 1-deoxy-D-xylulose 5-phosphate synthase isolated from Rhizobium radiobacter ATCC 4718 in recombinant Escherichia coli[J]. J Microbiol Biotechnol, 2007,17(6):1045-1048.
    [87]Okada K, Kainou T, Tanaka K, et al. Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans[J]. Eur J Biochem,1998,255(1):52-59.
    [88]Kim S J, Kim M D, Choi J H, et al. Amplification of 1-deoxy-D-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q10 production in recombinant Escherichia coli[J]. Appl Microbiol Biotechnol,2006,72(5):982-985.
    [89]Koo B S, Gong Y J, Kim S Y, et al. Improvement of coenzyme Q(10) production by increasing the NADH/NAD(+) ratio in Agrobacterium tumefaciens[J]. Biosci Biotechnol Biochem,2010,74(4):895-898.
    [90]Martinez I, Zhu J, Lin H, et al. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways[J]. Metab Eng,2008,10(6):352-359.
    [91]黄明涛,王玥,刘建忠,等.多策略代谢工程大肠杆菌高效生产辅酶Q10[J].中国化学工程学报(英文版),2011,19(2):316-326.
    [92]Ermler U, Fritzsch G, Buchanan S K, et al. Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 a resolution:cofactors and protein-cofactor interactions[J]. Structure,1994,2(10):925-936.
    [93]Chang C H, El-Kabbani O, Tiede D, et al. Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides[J].Biochemistry, 1991,30(22):5352-5360.
    [94]Kiley P J, Kaplan S. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides.[J]. Microbiological reviews,1988,52(1):50.
    [95]Tucker J D, Siebert C A, Escalante M, et al. Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles[J]. Mol Microbiol,2010,76(4):833-847.
    [96]Niederman R A. Structure, function and formation of bacterial intracytoplasmic membranes[M]//Complex Intracellular Structures in Prokaryotes. Springer,2006:193-227.
    [97]Roy A, Shukla A K, Haase W, et al. Employing Rhodobacter sphaeroides to functionally express and purify human G protein-coupled receptors [J]. Biol Chem,2008,389(1):69-78.
    [98]Choi J H, Ryu Y W, Seo J H. Biotechnological production and applications of coenzyme Qio[J]. Appl Microbiol Biotechnol,2005,68(1):9-15.
    [99]Mackenzie C, Eraso J M, Choudhary M, et al. Postgenomic adventures with Rhodobacter sphaeroides*[J]. Annu. Rev. Microbiol.,2007,61:283-307.
    [100]Koku H, Eroglu I, Gundiiz U, et al. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides[J]. Int. J. Hydrogen Energy,2002,27(11):1315-1329.
    [101]Kobayashi J, Hasegawa S, Itou K, et al. Expression of aldehyde dehydrogenase gene increases hydrogen production from low concentration of acetate by Rhodobacter sphaeroides [J]. Int. J. Hydrogen Energy,2012,37(12):9602-9609.
    [102]Ryu M, Hull N C, Gomelsky M. Metabolic engineering of Rhodobacter sphaeroides for improved hydrogen production [J]. Int. J. Hydrogen Energy,2014,39(12):6384-6390.
    [103]赵凯,于影,姜丹,等.1株类球红细菌及其降解敌敌畏的特性[J].环境科学,2009,30(4):1199-1204.
    [104]白红娟,张肇铭,杨官娥,等.球形红细菌转化去除重金属镉及其机理研究[J].环境科学学报,2006,26(11):1809-1814.
    [105]白红娟,肖根林,贾万利.光合细菌对土壤中呋喃丹的生物降解[J].工业安全与环保,2013,39(4):66-69.
    [106]Kovach M E, Elzer P H, Hill D S, et al. Four new derivatives of the broad-host-range cloning vector pBBRlMCS, carrying different antibiotic-resistance cassettes[J]. Gene, 1995,166(1):175-176.
    [107]Ind A C, Porter S L, Brown M T, et al. Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans[J]. Appl Environ Microbiol,2009,75(20):6613-6615.
    [108]Hunter C N, Hundle B S, Hearst J E, et al. Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides[J]. J Bacteriol,1994,176(12):3692-3697.
    [109]Pasternak C, Haberzettl K, Klug G. Thioredoxin is involved in oxygen-regulated formation of the photosynthetic apparatus of Rhodobacter sphaeroides[J].J Bacteriol,1999,181 (1):100-106.
    [110]赵志平,聂鑫,胡宗利,等.光合细菌Rhodobacier sphaeroides新型表达系统研究进展[J].生物技术通报,2012(7):27-31.
    [111]Simon R, Priefer U, Puhler A. A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in gram negative bacteria[J]. Nat. Biotechnol., 1983,1(9):784-791.
    [112]Yoon S H, Lee Y M, Kim J E, et al. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate[J]. Biotechnol Bioeng,2006,94(6):1025-1032.
    [113]Yen H W, Chiu C H. The influences of aerobic-dark and anaerobic-light cultivation on CoQ(10) production by Rhodobacter sphaeroides in the submerged fermenter[J]. enzyme Microb. Technol.,2007,41:600-604.
    [114]Tucker J D, Siebert C A, Escalante M, et al. Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles[J]. Mol Microbiol,2010,76(4):833-847.
    [115]Wang C, Yoon S H, Jang H J, et al. Metabolic engineering of Escherichia coli for alpha-farnesene production[J]. Metab Eng,2011,13(6):648-655.
    [116]Matthews P D, Wurtzel E T. Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase[J]. Appl Microbiol Biotechnol,2000,53(4):396-400.
    [117]Kim S W, Keasling J D. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production [J]. Biotechnol Bioeng,2001,72(4):408-415.
    [118]Martin V J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nat Biotechnol,2003,21(7):796-802.
    [119]Zheng Y, Liu Q, Li L, et al. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels[J]. Biotechnol Biofuels, 2013,6(1):57.
    [120]Lim H N, Lee Y, Hussein R. Fundamental relationship between operon organization and gene expression[J]. Proc NatI Acad Sci U S A,2011,108(26):10626-10631.
    [121]Withers S T, Gottlieb S S, Lieu B, et al. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity[J]. Appl Environ Microbiol,2007,73(19):6277-6283.
    [122]Rodriguez-Villalon A, Perez-Gil J, Rodriguez-Concepcion M. Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways[J]. J Biotechnol,2008,135(1):78-84.
    [123]Makrides S C. Strategies for achieving high-level expression of genes in Escherichia coli[J]. Microbiol Rev,1996,60(3):512-538.
    [124]Carrier T A, Keasling J D. Library of synthetic 5'secondary structures to manipulate mRNA stability in Escherichia coli[J]. Biotechnol Prog,1999,15(1):58-64.
    [125]de Boer H A, Hui A S. Sequences within ribosome binding site affecting messenger RNA translatability and method to direct ribosomes to single messenger RNA species[J]. Methods Enzymol,1990,185:103-114.
    [126]Barrick D, Villanueba K, Childs J, et al. Quantitative analysis of ribosome binding sites in E. coli[J]. Nucleic Acids Res,1994,22(7):1287-1295.
    [127]de Smit M H, van Duin J Secondary structure of the ribosome binding site determines translational efficiency:a quantitative analysis[J]. Proc Natl Acad Sci USA, 1990,87(19):7668-7672.
    [128]Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sites to control protein expression[J]. Nat Biotechnol,2009,27(10):946-950.
    [129]Huo J. Design of a BioBrickTM Compatible Gene Expression System for Rhodobacter sphaeroides[D]. Utah USA, Utah State University,2011:83-86.
    [130]Yan P, Jing X, Yasushi K, et al. Characterization of'Pinky'Strain Grown in Culture of Rhodobacter sphaeroides R26.1[J]. 高等学校化学研究(英文版),2013,29(3):506-511.
    [131]Zhenxin G, Deming C, Yongbin H, et al. Optimization of carotenoids extraction from Rhodobacter sphaeroides[J]. LWT-Food Science and Technology,2008,41(6):1082-1088.
    [132]Chen D, Han Y, Gu Z. Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides[J]. Process Biochem.,2006,41(8):1773-1778.
    [133]Naylor G W, Addlesee H A, Gibson L C D, et al. The photosynthesis gene cluster of Rhodobacter sphaeroides[J]]. Photosynthesis research,1999,62(2):121-139.
    [134]Armstrong G A, Alberti M, Leach F, et al. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus[i]. Molecular and General Genetics MGG,1989,216(2-3):254-268.
    [135]Coomber S A, Chaudhri M, Connor A, et al. Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides[J]. Mol. Microbiol.,1990,4(6):977-989.
    [136]Glaeser J, Klug G. Photo-oxidative stress in Rhodobacter sphaeroides:protective role of carotenoids and expression of selected genes[J]. Microbiology,2005,151(Pt 6):1927-1938.
    [137]Trinh R, Gurbaxani B, Morrison S L, et al. Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression[J]. Molecular Immunology, 2004,40(10):717-722.
    [138]Wang C, Zhou J, Jang H, et al. Engineered heterologous FPP synthases-mediated Z, E-FPP synthesis in E. coli[J]. Metab. Eng.,2013,18:53-59.
    [139]Aklujkar M, Beatty J T. Investigation of Rhodobacter capsulatus PufX interactions in the core complex of the photosynthetic apparatus[J]. Photosynth Res,2006,88(2):159-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700