侵染蕌头的病毒种类鉴定及其部分病毒序列基因组特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藠头(Allium chinense G.Don)为百合科葱属多年生植物,其起源地为亚洲,是一种具有极高的经济价值的传统蔬菜作物。而藠头病毒病是致使藠头产量和品质大幅降低的主要因素。本文在田间病害调查的基础上,利用生物学、血清学以及病毒粒子形态和感病植物细胞病理特征观察,结合分子生物学方法,对来自武汉江夏区的藠头病毒样品进行了种类鉴定,并对所获病毒克隆基因组部分序列特性进行了分析,确定了该藠头产区侵染的病毒至少包括三个属4种病毒,主要研究结果如下:
     1.明确发生在江夏区藠头存在复合感染现象。通过在湖北省武汉市江夏区藠头田间病害调查,发现田间藠头植株表现为花叶、褪绿条纹、植株扭曲、黄化等症状;通过汁液摩擦接种到6种指示植物上,确定部分藠头病毒病的繁殖寄主为昆诺藜;利用4个不同感病样品的粗提液,经负染后电镜观察,发现有3种不同的病毒粒子形态,包括杆状、线型(歪曲和直线型);直接采取感病藠头叶片制作超薄切片,经电镜观察发现感病寄主细胞质内含有大量的马铃薯Y病毒属(Potyvirus)成员特异的风轮状(横切)或柱状(纵切)内含体。
     2.首次发现侵染我国藠头的马铃薯Y病毒属OYDV病毒分离物。利用马铃薯Y病毒属内成员基因组简并引物,结合通用引物M4,获得该属基因组3′端序列大小约1.7kb的扩增片段,对该片段进行了克隆和序列测定,其全长为1625个核甘酸,包括部分NIb(636bp)、全长CP基因(771bp)和3′端UTR序列。将所获克隆基因组3′端核甘酸序列在数据库比对分析,发现所获病毒克隆基因组3′端区域与洋葱黄矮病毒(Onion yellow dwarf virus,OYDV)相同区域的核甘酸同源性最近,最高达99%。外壳蛋白基因的核甘酸和推测氨基酸序列与已报道的OYDV分离物CP相应区域同源性分别为80%-99%和87%-99%;构建了CP基因核甘酸和编码外壳蛋白氨基酸序列进化树,结果显示,所获克隆基因组CP序列与来自大蒜上的OYDV云南分离物OYDV-YN2(GenBank登录序列号AJ409313)、两个江苏分离物OYDV-JS2(登录序列号AJ409310)、OYDV-JS1(登陆序列号AJ293278)及日本分离物OYDV-Gzm(登录序列号AB000840)相同区域同源性均很高(≥97%),聚成一簇。将该分离物暂命名为OYDV-WH,这是OYDV病毒侵染我国藠头的首次报道。
     3.首次发现侵染我国藠头的香石竹潜隐病毒属7个不同克隆。利用香石竹潜隐病毒属内成员基因组简并引物,结合引物M4,获得该属基因组3′端核甘酸序列,共9个克隆,大小为1808-1812个核甘酸,序列特性分析表明,其包含病毒RNA基因组全长的第3-6共4个阅读框(ORF)。序列比对显示,这些克隆与现有报道的大蒜潜隐病毒(Garlic latent virus,GLV)基因组3′端相同区域的核苷酸序列最为接近,同源性分别在75%-82%之间,9个克隆中有7个克隆在该区域的核苷酸差异比较大,同源性在77%-93%之间。CP序列比对分析表明,所获得克隆基因组CP序列与目前报道的GLV基因组CP核苷酸和氨基酸同源性分别在75%-87%和88%-97%之间,其中克隆P2和carl-5基因组序列结构最相似,与日本藠头上的分离物GLV-Rjpn(登录序列号AB004565)氨基酸同源性最接近,达97%。本研究获得的具有较大序列差异的7个克隆之间基因组CP核苷酸和氨基酸的同源性分别76%-89%和88%-100%。外壳蛋白核甘酸序列进化树分析表明,7个克隆分别与其他GLV分离物共形成4个不同进化族,其中P4克隆CP核甘酸进化树上形成独立一族,且其核甘酸数量也有较大差异,因此,推测该克隆很可能为香石竹潜隐病毒属的一个新种。将所获的克隆基因组序列第3个ORF(编码蛋白TGB2)、第4个ORF(编码蛋白TGB3)和第6个ORF(编码核酸结合蛋白NABP)分别与已知报道的GLV基因组对应区域序列进行比对分析表明,氨基酸序列同源性分别为71%-90%、59%-85%、82%-95%。ORF3、ORF4、ORF6基因变异比ORF5基因变异要大些,其中ORF4变异最大,而ORF5变异主要发生在其编码氨基酸的N末端。根据Carlavirus属分类标准-不同病毒CP氨基酸同源性小于68%,同一病毒不同株系间为75%-90%。因此推断本研究所获得的克隆是属于GLV不同的分离物。这是我国藠头上的首次发现侵染GLV病毒。
     利用所获病毒克隆基因组RNA3′端序列设计RNA基因组部分中间片段下游特异性简并引物pCarl-2dW(-)和上游简并引物pCare-2(+),RT-PCR扩增获得包含病毒GLV基因组的第2个ORF2及部分ORF1的片段。序列结构分析发现,ORF1和ORF2之间有30个核甘酸的非编码区。ORF2与ORF3有23个核苷酸重叠区域。ORF2共含有708个核苷酸,编码TGB1蛋白,将所获病毒克隆基因组ORF2区域序列片段与现有报道的相关病毒相同区域比对分析,结果显示该病毒基因组ORF2也存在较大的变异,核甘酸和氨基酸同源性分别在72%-78%和76%-83%。
     4.首次发现侵染我国藠头的利用葱X病毒属2个不同病毒。利用葱X病毒属内成员基因组简并引物,结合引物M4,获得该属基因组3′端序列约1.0kb扩增片段,共8个克隆。其中克隆pGTdw-8基因组3′端序列含有939个核甘酸,其它7个克隆均为949个核甘酸(代号为pGTdw-15),包括部分CP基因(441个核甘酸)、完整NABP全长基因381个核甘酸和3′端非编码区。经数据库Blast序列分析表明,克隆pGTdw-8基因组3′端序列与现有报道的葱X病毒属我国大蒜上发现的大蒜病毒E(GarV-E,AJ292230)分离物相同区域核甘酸序列最相似,同源性达94%。另一个克隆pGTdw-15与大蒜病毒X韩国分离物(GarV-X,U89243)相同区域核甘酸序列最相似,具有91%的同源性,序列系统进化树表明,本研究所获葱X病毒属相关病毒克隆基因组3′端的核甘酸进化树与完整的NABP核甘酸进化树存在较大的进化族相关性和一致性。同时,基因组3′端UTR非翻译区序列的比对结果显示,本研究所得克隆pGTdw-8基因组3′端UTR与分离物Garv-E相同区域同源性达94%,另一类病毒克隆pGTdw-15基因组3′端UTR与分离物Garv-X相同区域同源性高达98%,根据国际病毒分类委员会发表的Allexivirus属分类标准是CP氨基酸同源性小于90%,3′端UTR核甘酸同源性小于90%。因此,认为本研究获得的2种克隆pGTdw-8和pGTdw-15分别属于葱X病毒属两种病毒Garv-E和Garv-X的分离物,这是我国藠头上的首次发现这两种葱X病毒属病毒。
Allium chinense(G.Don),the genus Allium,family Liliaceae,is an economically important vegetable that has been considered to be of Asian origin.It can be usually used as edible bulb or medicinal herb.However,virus diseases of A.chinense are sever,causing the serious losses in bulbs production and poor quality.
     Some plants of cultivated A.chinense showing mosaic,chlorotic streak,twist,and crinkle on leaves were collected from fields at Jiangxia,a suburban district of Wuhan, Hubei Province,China,and transplanted into pots in a greenhouse.Crude sap from naturally infected plants were mechanically inoculated to six indicator plants.Results showed that the indicator chenopodium quinoa was the best host for virus propagation indoor.Three types of negatively stained virus particles from 4 infected sample leaves, including rod shape,lightly straight and curved filamentous shape,were observed under an electron microscope.Pinwheel or cylindrical inclusions,typical of a potyvirus infection,were also examined in the electron microscope by using ultrathin sections of diseased leaves.
     A potyvirus was detected in diseased A.chinense using degenerate primer sprimer and M4.The 3'-termined part(1625nts) of its genome was cloned and sequenced. Sequence analysis showed it contained the partial NIb gene(636 bp) and the complete coat protein(CP gene;771 bp),excluding its poly(A) tails.The 3'-termined part of obtained virus genome was closely similar to Onion yellow dwarf virus(OYDV)(highest identity 99%).The CP gene had 80%-99%identity at nucleotide level and 87%to 99% identity at the amino acid level with corresponding regions of known OYDV isolates from other hosts.Analysis of CP phylogenetic tree indicated the isolate,named tentatively OYDV-WH,showed high identity(no less than 97%) at nts level with Yunnan isolate (OYDV-YN2,GenBank accession number AJ409313),Jiangsu isolates(OYDV-JS1, OYDV-JS2,GenBank accession number AJ293278 & AJ409310,respectively) and Japan isolate(OYDV-Gzm,AB000840),and became closely the same group.It was first report of OYDV infecting A.chinense in China.
     Nine clones of carlavirus were obtained using carlavirus specific degenerate primer(pCar-1(|)) and p(?)imer M4,the 3'-terminal part(1808-1812 nts,respectively) of its genome RNA were amplified and sequenced,excluding its poly(A) tails.Sequences analysis showed that the partial genome contained ORF3-6 and 3'-UTR of the RNA genome of carlavirus genus.Sequence comparison indicated that the 3'-termined part of obtained virus clones were closely similar to Garlic latch t virus(GLV),showing 75%-82%identity to other known GLV.7 clones out of obtained clones were great variable in the 3'-termined same region of genome,showing 77%-93%identity at nucleotide level between themselves.The CP gene had 75%-87%identity at nucleotide level and 88%to 97%identity at the amino acid level with corresponding regions of known GLV isolates from other hosts,and had 76%-89%identity at nucleotide level and 88%to 100%identity at the amino acid level between the 7 clones from this paper.The isolates P2 and carl-5 had high identity(97%) at the amino acid level with the Japan isolate GLV-Rjpn(GenBank accession number AB004565) from the same host A. chinense.Analysis of CP phylogenetic tree suggested that the clone P4 was a distant group,and other clones were grouped respectively with other reported GLV isolates. More ORFs sequence comparison indicated that the ORF3,ORF4,ORF6 of its genome had 71%-90%,59%-85%and 82%-95%identity at the amino acid level between the clones and the reported GLV strains,respectively.Based on ORF3(TGB2),ORF4(TGB3) and ORF6(nucleic acid binding protein,NABP) amino acid sequences respectively,the ORF5(coat protein) gene was most conserved and the ORF4(TGB3 protein) gene was most great variable.The variable region of CP was mainly N-end of its amino acid sequences.According to the strains and species demarcation criteria for the genus carlavirus formulated by ICTV including CP amino acid identity(<65%for distinct species and 75%-90%for distinct strains),the clones from A.chinense,in this paper were different GLV strains.This was first report of GLV occurring in A.chinense in China.
     Based on the obtained sequences above,a specific virus downstream primer pCarl-2dw(-) with another upstream degenerate primer pCarl-2(+) were designed for PCR. the fragment including partial ORF1 and ORF2(708nts) of GLV genome was amplified and sequenced.There was a non-translated region(30nts) between ORF1 and ORF2,and a overlapping region(23nts) between ORF2 and ORF3.Comparing with other known isolates showed that the ORF2 gene was also variable,and had 72%-78%identity at nucleotide level and 76%-83%identity at the amino acid level.
     Two Allexivirus were detected from the infected leaves in A.chinense using the degenerate primer pGV-3t(+) and M4.The 3'-end of its clone pGTdw-8 RNA genome had 939nt long,including partial CP(441nts) and complete NABP gene(381nts) and 3'-UTR,excluding its poly(A) tails.The same region of another deputy clone pGTdw-15 RNA genome had 949nt long,also including partial CP(441nts) and complete NABP gene(381nts) and 3'-UTR,excluding its poly(A) tails.Sequence comparisons showed that the two clone from A.chinense in this paper had 94%and 91%respectively nucleotides identity with the published China isolate of GarV-E(AJ292230) in garlic and the Korean isolate of GarV-X(U89243) in garlic.Analysis of NABP and 3'-UTR gene phylogenetic tree suggested that the isolates in this paper had close relationship with the reported garlic China isolate(AJ292230) and Korean isolate(U89243),and closely grouped respectively.Moreover,their 3'-UTR gene had 94%identity to GarV-E and 98%identity to GarV-X.According to the species demarcation criteria for the genus Allexivirus formulated by ICTV including CP amino acid identity(<90%) and 3'-UTR nucleotide identity(<90%),the two clones pGTdw-8 and pGTdw-15 in this paper were different strains of GarV-E and GarV-X respectively.This was first report of Allexivirus occurring in A.chinense in China.
引文
1.柏建山,吴玉杰,莫湘涛,郑胜华,陈威,夏立秋.藠头中抗菌活性成分的气相色谱-质谱分析及其机理的研究,食品科学,2004,25(1):146-149
    2.陈剑平,陈炯,郑红英,林林,程晔,史雨红,鲁宇文.我国49种线状植物病毒分子鉴定及其基因组研究.植物保护,2007,33(5):33-40
    3.陈剑平,董玛佳,阮义理.大麦黄花叶病毒(BaYMV)的提纯.植物病理学报,1989,19(1):35-39
    4.陈静芬.薤.中国蔬菜,1989,4:47-49
    5.陈炯,陈剑平.植物病毒种类分子鉴定.北京:科学出版社,2003
    6.陈炯,陈剑平.马铃薯Y病毒属成员基因组全序列的简并引物PCR和RACE扩增方法.病毒学报,2002,18(4):371-374
    7.陈炯,陈剑平.Allexivirus属的一个新成员--大蒜病毒E的基因组全序列测定及系统树分析.科学通报 2001,46(17):1463-1468
    8.陈炯,郑红英,陈剑平,我国大蒜潜隐病毒的基因组结构及3′端序列的变异.中国科学(C辑).2002,32(3):225-231
    9.董神,徐启江.葱蒜类病毒的分子生物学鉴定研究进展.微生物学免疫学进展.2005,33(4):76-78
    10.傅德明,毛禄国.藠头优质高产栽培技术.长江蔬菜,2005,10:18-19
    11.何运智,冯健雄,熊慧薇.菖头的营养价值和生理活性.绿色大世界,2007,Z1:54-55
    12.洪健,周雪平.ICTV第八次报告的最新病毒分类系统.中国病毒学.2006,21(1):84-96
    13.黄波.武汉市种优势蔬菜的产业化示范与推广.[硕士学位论文].武汉:华中农业大学图书馆,2007
    14.黄钊,向长萍.藠头脱毒快繁技术研究初报.长江蔬菜,2006,2:40-41
    15.吉维,周向荣,苏东林、盛立新李楷明.蓖头素的浓缩条件、保鲜与风味增强效果的初探.现代食品科技,2008,24(7):698-700
    16.纪远中.薤白研究近况及开发前景.天津药学,2005,17(1):54-56
    17.李国平.藠头栽培技术.湖北农业科学,1992,(5):31-32
    18.李一平,周尚泉,刘晖,黄志农,张宗泽,范丙阳,石年珍,宋卫红.藠头主要病虫草害发生动态及生态调控技术.湖南农业科学 2003,(5):50-52
    19.刘建涛,王杉,张维民,苏伟,赵利.葱属植物生物活性物质的研究进展.食品科学,2007,28(4):348-350
    20.罗朝鹏,林林,陈炯,吴云锋,陈剑平.侵染陕西洋葱的胡葱黄条病毒基因组全序列分析.病毒学报,2007,23(2):157-160
    21.孟松,胡胜标,谢伟岸,丁学知,孙运军,夏立秋.藠头中活性物质对白色念珠菌的抑制作用及其机理研究.食品科学,2005,26(9):119-123
    22.史雨红,陈炯,陈剑平.薤花叶病毒外壳蛋白抗血清制备及其与相关病毒血清学关系.植物保护学报,2006,33(3):273-276
    23.史雨红,侵染中国天南星科药用植物马铃薯Y病毒属成员的分子生物学研究,[博士学位论文],浙江大学,2007
    24.苏丽梅,袁德俊,蒋红兰.薤白的药理研究进展.今日药学,2009,9(1):28-29
    25.孙启良.植物中前列腺素的研究Ⅰ;薤白中前列腺素A1和B1的分离和鉴定.中草药,1991,22(4):150-152
    26.孙运军,刘卓灵,丁学知,钱荣华,莫湘涛,夏立.藠头提取物对氟尿嘧啶的增效减毒作用的研究.食品科学,2007,28(12):462-465
    27.童贤明,王政逸.浙江省舟山市蓖头头炭疽病病原及其生物学特性研究.植物保护学报,1998,25(3)249-252
    28.汪冶,文惠玲.薤白的本草考证.中国中药杂志,1991,16(7):389-390
    29.王怀根,张建军,王作祥,叶国东.藠头无公害高产栽培技术.湖北植保,2003,4:20-21
    30.王建华,王运勤,吉训聪,刘志昕,郑服丛.植物病毒检测技术研究进展.热带农业科学,2005,25(3):71-75
    31.徐培文,孙慧生,孙瑞杰,杨元军.大蒜脱毒技术及应用研究.中国农业科学,1998,31(2):92-93
    32.徐平东,李梅,柯冲.福建西番莲病毒的发生及其病原黄瓜花叶病毒亚组鉴定.植物保护学报,1999,26(1):50-53
    33.闫淼淼.浙江省菖头的高产栽培技术.长江蔬菜,2008,7:14-15
    34.张卿,高尔.薤白的研究进展.中国中药杂志,2003,28(2):105-107
    35.郑红英,史雨红,陈炯,林林,王升吉,陈剑平.一个侵染山东大葱的胡葱黄条病毒分离物的鉴定.病毒学报,2006,22(1):50-53
    36.郑红英.引起长豇豆不同症状的黑眼豇豆花叶病毒两个分离物基因组学研究及其外壳蛋白的原核表达.[硕士学位论文].武汉:华中农业大学图书馆,2002
    37.周向荣,夏延斌,周跃斌,邓后勤.藠头的主要功能成分及其作用的研究进展.食品与机械,2006c,22(3):73-75
    38.周向荣,夏延斌,周跃斌,夏明箭.我国藠头腌制加工技术研究现状.现代食品科技,2006a,22(3):269-271
    39.周向荣,夏延斌,周跃斌.响应面法优化盐渍藠头蒜素提取工艺参数.农业工程学报,2008,24(2):270-276
    40.周向荣,夏延斌,周跃斌.盐渍藠头根与柄的加工技术.食品与发酵工业,2006b,32(12):87-90
    41.祝之友.薤白基原与性效考辨.基层中药杂志,2000,14(6):38-39
    42.Abiko K,Watanabe Y,Nishi Y.Studies on garlic mosaic.I.Causal virus.Bull.Veg.Ornam.Crops.Res.Stn.Jpn.Ser.A.Bull,1980,7:139-147
    43.Adams M J,Antoniw J F,Fauquet C M.Molecular criteria for genus and species discrimination within the family Potyviridae.Arch Virol,2005,150:459-479
    44.Adams M J,Antoniw J F,Bar-Joseph M,Brunt A A,Candresse T,Foster G D,Martelli G P,Milne R G,Zavriev S K,Fauquet C M.The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation.Arch Virol,2004,149:1045-1060
    45.Arshava N V,Kondareva T N,Riabov E V,Zavriev S K.42K protein of shallot X virus is expressed in infected Allium species plants.Mol Biol(Mosk),1995,29:192-198
    46.Badge J,Brunt A,Carson R,Dagless E,Karamagioli M,Phillips S,Seal S,Turner R,Foster G D.A carlavirus-specific PCR primer and partial nucleotide sequence provides further evidence for the recognition of cowpea mild mottle virus as a whitefly-transmitted carlavirus.Eur J Plant Pathol,1996,102:305-310
    47.Barg E,Lesemann D-E,Vetten H J,Green S K.Identification,partial characterization,and distribution of viruses infecting Allium crops in south and southeast Asia.Acta Hortic, 1994, 358:251-258
    48. Bellardi M G, Marani F, Betti L, Rabiti A L. Detection of garlic common latent virus (GCLV) in Allium sativum L.in Italy. Phytopathol Mediterr, 1995, 34:58-61
    49. Bos L, Huttinga H, Maat D Z. Shallot latent virus, a new carlavirus. Neth J Plant Path, 1978, (84):227-237
    50. Bryan G T, Gardner R C, Forster R L S. Nucleotide sequence of the coat protein gene of a strain of clover yellow vein virus from New Zealand: conservation of a stem-loop structure in the 3' region of potyviruses. Arch Virol, 1992,124:133-146
    51. Canavelli A, Nome S F, Conci V C. Efecto de distintos virus en la produccio'n de ajo (Allium sativum)"Rosado Paraguayo". Fitopatologi'a Brasilera, 1998,23(3): 354-358
    52. Candrese T, Namba E, Martelli G P, GenusT, Murphy F A, Fauquet C M, Bisho P D H L. Virus Taxonomy, 6thReport of the ICTV. Wein:springer verlag, 1995:468-470
    53. Carrington J C, Jensen P E, Schaad M C. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J, 1998,14:393-400
    54. Chen J, Adams M J, Zheng H Y, Chen J P. Sequence analysis demonstrates that Onion yellow dwarf virus isolates from China contain a P3 region much larger than other potyviruses. Arch Virol, 2003,148:1165-1173
    55. Chen J, Chen J P, Adams M J. A universal PCR primer to detect members of the Potyviridae and its use to examine the taxonomic status of several members of the family. Arch Virol, 2001b, 146:757-766
    56. Chen J, Chen J P. Genome organization and phylogenetic tree analysis of Garlic vi rus E, a new member of genus Allexivirus. Chinese Science Bulletin, 2002c, 47(1):33-37
    57. Chen J, Shi Y H, Adams M J, Chen J P. The complete sequence of the genomic RNA of an isolate of Lily virus X (genus Potex vi rus). Arch Virol, 2005a, 150(4):825-832
    58. Chen J, Zheng H Y, Chen J P, Yang C L. Genome organization and variation in the 3'-partial sequence of garlic latent virus in China . Science in China (Series C), 2002d, 45(4):441-448
    59. Chen J, Chen J P, Adams M J. Molecular characterisation of a complex mixture of viruses in garlic with mosaic symptoms in China. Arch Virol, 2001a, 146:1841-1853
    60. Chen J, Chen J P, Adams M J. Characterisation of some carla- and potyviruses from bulb crops in China. Arch Virol, 2002b, 147:419-428
    61. Chen J, Wei C B, Zheng H Y, Shi Y H, Adams M J, Lin L, Zhang Q Y, Wang S J, Chen J P. Characterisation of the welsh onion isolate of Shallot yellow stripe virus from China. Arch Virol, 2005b, 150:2091-2099
    62. Chen J, Zheng H Y, Chen J P, Adams M J. Characterisation of a potyvirus and a potexvirus from Chinese scallion. Arch Virol, 2002a, 147:683-693
    63. Chen J, Zheng H Y, Antoniw J F, Adams M J, Chen J P, Lin L. Detection and classification of allexiviruses from garlic in China. Arch Virol, 2004,149:435-445
    64. Clark M F, Adams A N. Characteristics of the Microplate Method of Enzyme-Linked Immunosorbent Assay for the Detection of Plant Viruses. J Gen Virol, 1977, 34:475-483
    65. Conci V C, Nome S F, Milne R G. Filamentous viruses of garlic in Argentina. Plant Dis, 1992,76:594-596
    66. Cruz S S, Roberts A G, Prior D A M, Chapman S, Oparka K J. Cell-to-Cell and Phloem-Mediated Transport of Potato Virus X: The Role of Virions. Plant Cell, 1998, 10:495-510
    67. Dovas C I, Hatziloukas E, Salomon R, Barg E, Shiboleth Y, Katis N I. Incidence of viruses infecting Alliums pp. in Greece. Eur J Plant Pathol, 2001,107:677-684
    68. Dunn D B, Hitchborn J H. The use of bentonite in the purification of plant viruses. Virology, 1965,25:171-192
    69. Fauquett C M, Mayo M A, Maniloff J, Desselberger U, Ball L A. Virus taxonomy. In: Eighth Report of the International Committee on Taxonomy of Virus. Elsevier Academic Press, San Diego, CA, 2005.1101-1106
    70. Foster G D, Meehan B M, Mills P R. Nucleotide sequence of the 7K gene of carnation latent virus. Plant Mol Biol, 1990,15: 937-939
    71. Foster G D, Taylor S C(Eds).Plant Virology Protocols: From Virus Isolation to Transgenic Resistance. Methods in Molecular Biology, Humana Press. 1998, 81
    72. Foster G D. Carlavirus isolation and RNA extraction. Methods Mol Biol, 1998, 81:145-150.
    73. Gera A D, Lesemann D E, Cohen J, Franck A, Levy S, Salomon R. The natural occurrence of turnip mosaic potyvirus in Allium ampeloprasum. J Phytopathol, 1997, 145:289-293
    74. Ha C, Revill P, Harding R M, Vu M, Dale J L. Identification and sequence analysis of potyviruses infecting crops in Vietnam. Arch Virol, 2008, 153: 45-60
    75. Hardy R W, Rice C M. Requirements at the 3'end of the sindbis virus genome for efficient synthesis of minus-strand RNA. J Virol, 2005, 79:4630-4639
    76. Kanyuka K V, Vishmichenko V K, Levay K E, Kondrikov D Y, Ryabov E V, Zavriev S K. Nucleotide sequence of shallot virus X RNA reveals a 50-proximal cistron closely related to those of potexviruses and a unique arrangement of the 30-proximal cistrons. J Gen Virol, 1992, 73: 2553-2560
    77. Kobayashi K, Rabinowicz P, Bravo-Almonacid F, Helguera M, Conci V, Lot H, Mentaberry A. Coat protein gene sequences of garlic and onion isolates of the onion yellow dwarf potyvirus(OYDV). Arch Virol, 1996, 141:2277-2287
    78. Koch M, Salomon R. Improvement of garlic via somaclonal variation and virus elimination. Acta Hortic, 1994, 358:211-214
    79. Lee Y W, Yamazaki S, Osaki T, Inoue T. Two elongated viruses in garlic:Garlic latent virus and garlic mosaic virus. Ann Phytopathol Soc Jpn, 1979,45:727-734
    80. Li X H, Valdez P, Olvera R E, Carrington J C. Functions of the Tobacco Etch Virus RNA Polymerase (NIb):Subcellular Transport and Protein-Protein Interaction with VPg/Proteinase (NIa). J virol, 1997, 71(2):1598-1607
    81. Lot H, Chovelon V, Souche S, Delecolle B. Effects of onion yellow dwarf and leek yellow stripe viruses on symptomatology and yield loss of three French garlic cultivars. Plant Dis, 1998, 82:1381-1385
    82. Lough T J, Netzler N E, Emerson S J, Sutherl P, Carr F, Beck D L, Lucas W J, Forster R L S. Cell-to-Cell Movement of Potexviruses: Evidence for a Ribonucleoprotein Complex Involving the Coat Protein and First Triple Gene Block Protein, Molecular Plant-Microbe Interactions, 2000,13(9):962-974
    83. Lunello P, Ducasse D, Conci V. Improved PCR detection of potyviruses in Allium species. EurJ Plant Pathol, 2005,112:371-378
    84. Mann L K, Steam W T. Rakkyo or Ch'iao T'ou (Allium Chinense G. Don, Syn. A. Bakeri Regel) A Little Known Vegetable Crop. Econ Bot, 1960, 14:69-83
    85. Marys E, Carballo O, Izaguirre-Mayoral M L. Isolation and characterization of viruses present in four clones of garlic (Allium sativum) in Venezuela. J Phytopathol, 1994, 142:227-234
    86. Masuta C, Nishimura M, Morishita H, Hataya T. A Single amino acid change in viral genome—associated protein of potato virus Y correlates with resistance breeding in "Virgin A Mutant"tobacco. Phytopathology, 1999, 89(2):118-123
    87. Messiaen C M. Thirty years of France'experience in production of disease-free garlic and shallot mother bulbs. Acta Hortic, 1994,358:275-279
    88. Morozov S Yu, Solovyev A G, Kalinina N O, Fedorkin O N, Samuilova O V, Schiemann J, Atabekov J G. Evidence for Two Nonoverlapping Functional Domains in the Potato Virus X 25K Movement Protein. Virology, 1999,260(1):55-63
    89. Nagakubo T, Kubo M, Oeda K. Nucleotide Sequences of the 3'Regions of Two Major Viruses from Mosaic-Diseased Garlic:Molecular Evidence of Mixed Infection by a Potyvirus and a Carlavirus. Phytopathology, 1994, 84(6):640-645
    90. Niepel M, Gallie D R. Identification and Characterization of the Functional Elements within the Tobacco Etch Virus 59 Leader Required for Cap-Independent Translation. J Virol, 1999, 73:9080-9088
    91. Pruss G, Ge X, Shi X M, Carrington j C, Vance V B. Plant viral synergism:the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell, 1997,9(6):859-868
    92. Rojas M R, Zerbini M M, Allison R F, Gilbertson R L, Lucas W. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology, 1997,237:283-295
    93. Ryabov E V, Generozov E V, Vetten H J, Zavriev S K. Analysis of the 3-region of the mite born filamentous virus genome testifies its relation to the shallot virus X group. Mol Biol (Mosk), 1996, 30: 103-110
    94. Sako I, Nakasone W, Okada K, Ohki S T, Inouye T. Yellow streak of rakkyo (Allium chinense G.Don) a newly recognised disease caused by garlic latent virus and onion yellow dwarf virus. Ann Phytopathol Soc Jpn, 1991, 57:65-69
    95. Sako I. Ocurrence of garlic latent virus in Allium species. Plant Prot, 1989, 43:389-392
    96. Salomon R, Koch M, Levy S, Gal-OnA. Detection and identification of the viruses forming mixed infection in garlic. BCPC Symposium Proceedings, 1996, 65:193-197
    97. Shukla D D, Ward C W. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. Adv Virus Res, 1989, 36,273-314
    98. Solovyev A G, Stroganova T A, Zamyatnin A A, Fedorkin O N, Schiemann J, Morozov S Yu. Subcellular Sorting of Small Membrane-Associated Triple Gene Block Proteins:TGBp3-Assisted Targeting of TGBp2. Virology, 2000, 269 (1) :113-127
    99. Song J T, Choi J N, Song S I, Lee J S, Choi Y D. Identification of a potexvirus in Korean garlic p lants. Agri chemi Biotech, 1995, 38 (1):55-62
    lOO.Song S I, Choi J N, Song J T, Ahn J H, Lee J S, Kim M, Cheong J J, Choi Y D. Complete Genome Sequence of Garlic Latent Virus, a Member of the Carlavirus Family. Mol Cells, 2002,14(2):205-213
    101.Song S I, Song J T, Kim C H, Lee J S, Choi Y D. Molecular characterization of the garlic virus X genome. J Gen Virol, 1998,79:155-159
    102.Suehiro N, Natsuaki T, Watanabe T,Okuda S. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J Gen Virol, 2004, 85(7): 2087-2098
    103.Sumi S, Matsumi T, Tsuneyoshi T. Complete nucleotide sequences of garlic viruses A and C, members of the newly ratified genus Allixivirus. Arch Virol, 1999, 144:1819-1826
    104.Sumi S, Tsuneyoshi T, Furutani H. Novel rod-shaped viruses isolated from garlic, Allium sativum,possessing a unique genome organization. J Gen Virol, 1993, 74:1 879-1 885
    105.Sutarya R. Virus disease of shallot and garlic in Java, and prospects for their control. ActaHortic, 1994, 369:134-143
    106.Sward R J, Brennan A P. Diagnosis and control Allium virus disease in Victoria, Australia. Acta Hortic, 1994,358:295-298
    107.Syller J. The roles and mechanisms of helper component proteins encoded by potyviruses and caulimoviruses. Physio Mol Plant Pathol, 2006, 67:119-130
    108.Takaichi M, Yamamoto M, Nagakubo T, Oeda K. Four garlic viruses identified by reverse transcription-polymerase chain reaction and their regional distribution in northern Japan. Plant Dis, 1998, 82 (6):695-698
    109.Takaki F, Sano T, Yamashita K, Fujita T, Ueda K, Kato T. Complete nucleotide sequences of attenuated and severe isolates of Leek yellow stripe virus from garlic in northern Japan: Identification of three distinct virus types in garlic and leek world-wide.Arch Virol,2005, 150:1135-1149
    110.Takaki F, Sano T, Yamashita K. The complete nucleotide sequence of attenuated onion yellow dwarf virus: a natural potyvirus deletion mutant lacking the N-terminal 92 amino acids of HC-Pro. Arch Virol, 2006, 151:1439-1445
    111 .Tsuneyoshhi T, Matsumi T, Natsuaka K T, Sumi S. Nucleotide sequence analysis of virus isolates indicates the presence of three potyvirus species in Allium plants. Arch Virol, 1998a, 143:97-113
    112.Tsuneyoshi T, Ikeda Y, Sumi S. Nucleotide sequences ofthe 3'-terminal region of onion yellow dwarf isolates from Allium plants in Japan. Virus Genes, 1997, 15:73-77
    113.Tsuneyoshi T, Matsumi T, Deng T C, Sako I, Sumi S. Differentiation of Allium carlaciruses isolated from different parts of the world based onthe viral coat p rotein sequence. Arch Virol, 1998b, 143(16):1093-1107
    114.Tsuneyoshi Y, Suneyoshi Y, Sumi S T. Differentiation among garlic viruses in mixed infections based on RT-PCR procedures and direct tissue blotting immunoassay. Phytopathology, 1996, 86(3):253-259
    115.Urcuqui-Inchima S,Haenni A-L,Bernaidi F. Potyvirus proteins: a wealth of functions. Virus Res, 2001,74:157-175
    116.Urcuqui-Inchima S, Maia I G, Drugeon G, Haenni A L, Bernardi F. Effect of mutations within the Cys-rich region of potyvirus helper component-proteinase on self-interaction. J Gen Virol, 1999, 80,2809-2812
    117.Valli A, Martin-Hernandez A M, Lopez-Moya J J, Garcia J A. RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus(CVYV), a member of the family Potyviridae that lacks the cysteine protease HCPro. J Virol, 2006, 80:10055-10063
    118.Van der Vlugt RAA, Steffens P,Cuperus C, Barg E, Lesemann D-E, Bos L, Vetten H J. Further evidence that shallot yellow stripe virus (SYSV) is a distinct potyvirus and reidentification of Welsh onion yellow stripe virus as a SYSV strain. Phytopathology, 1999,89:148-155
    119.Van Dijk P. Carlavirus isolated from cultivated Allium species represent three viruses. Neth J Plant Pathol, 1993b, 99:233-257
    120.Van Dijk P,Van der Vlugt R A. New mite-borne virus isolates from rakkyo, shallot and wild leek species. Eur J Plant Path, 1994,100: 269-277
    121.Van Dijk P. Survey and characterization of potyviruses and their strains of Allium species. Neth J Plant Pathol, 1993a, 99:1-48
    122. Van Dijk P. Virus diseases of shallot and garlic in Java, and prospects for their control. ActaHortic, 1994, 369:134-143
    123 .Vance V B, Beachy R N. Translation of Soybean Mosaic Virus RNA in votro:Evidence of Protein Processing. Virology, 1984,132:271-281
    124.Voinnet O, Lederer C, Baulcombe D C. A Viral Movement Protein Prevents Spread of the Gene Silencing Signal in Nicotiana benthamiana. Cell, 2000,103:157-167
    125.Voller A, Bartlett A, Bidwell D E, Clark M F, Adams AN. The detection of viruses by enzyme-linked immunosorbent assay (ELISA). J Gen Virol, 1976, 33:165-167
    126. Walkey D G A, Ebb M J W, Ballooned C J, Millar A. Production of virus-free garlic (Allium sativum L.) and shallot(A. ascalonicum L.) by meristem-tip culture. J Hortic Sci, 1987,62:211-220
    127.Wei C B, Chen J, Zhang Q Y, Shi Y H, Lin L, Zheng H Y, Adams M J, Chen J P. A new Potyvirus from Thunberg fritillary ( Fritillaria thunbergii Miq.) in Zhejiang, China. Arch Virol, 2005,150 (7):1271-1280
    128.Wung C H, Hsu Y H, Liou D Y, Huang W C,Lin N S, Chang B Y.Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. J Gen Virol, 1999,80,1119-1126
    129.Yamashita K, Hanada K, Iwai H. Some properties of Onion yellow dwarf virus isolated from garlic (Allium sativum). Ann Phytopathol Soc Jpn, 1997, 63:195-196
    
    130.Yamashita K, Hanada K. Welsh onion yellow stripe virus (WYSV) isolated from Welsh onion (Allium fistulosum) in Aomori prefecture. Ann Phytopathol Soc Jpn, 1996,62:325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700