尿素包合法分离月见草油中γ-亚麻酸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月见草适应性强,其所榨月见草油是至今发现唯一含有大量γ-亚麻酸(GLA)的植物,且GLA不仅自身具有强大的生物活性,它还可以在体内转变成二高-γ-亚麻酸(DGLA),进而转变为前列腺素E1(PGE1)和花生四烯酸(AA),为前列腺素及生物膜的构成提供前体,被誉为“21世纪功能性食品的主角”。分离纯化月见草油中GLA,充分发挥月见草油中GLA的药用和保健价值,已成为当今研究热点。
     本论文以月见草油为原料,采用目前国内外普遍适用的尿素包合法分离出较高纯度的GLA,通过显微镜对不同设计条件下包合过程及其析晶过程中形成的包合物形态、直径大小及数量多少差异的观察分析,利用气相色谱(GC)对月见草油被包合分离前后及包合物中提取油脂的脂肪酸组成变化分析,得到如下研究成果:
     1、尿素包合结晶物的析晶过程研究表明:包合温度、包合次数及酒精浓度对包合物的析晶影响较大,而包合时间并非主要影响因素。快速降温优于缓慢降温,随包合温度降低、包合次数增加,使用95 %乙醇时,包合效果相对越好。通过观察析晶过程中包合物形态及量变趋势,来反映并指导包合工艺是可行的。
     2、尿素包合过程中不同工艺参数对包合物形态及数量的影响研究再次证实,从结晶物角度为进一步指导优化包合工艺提供参考,在月见草油分离纯化的工艺改进领域探索了一条新途径。单因素试验表明:乙醇浓度、原料配比、包合时间、包合温度及包合次数对尿素包合物的影响均为显著,95 %乙醇最适于尿素包合,且随乙醇和尿素量适宜增加,结晶物完整、粗大而纯净,GLA纯度相应越高;同时包合时间延长、包合温度降低、包合次数增加,形成结晶物越长越粗,有利于尿素包合,其最佳工艺点依次为36 h、-15℃、4次;正交试验表明:适宜配比的95 %乙醇浓度下,-15℃、60 h、包合3次为最佳工艺,该条件下GLA纯度达78.9964 %。
     3、采用GC检测了月见草油被尿素包合分离前后及包合物中脂肪酸的组成,结果显示:不同包合工艺参数对纯化月见草油中GLA工艺的影响均为显著,再次有力地证实了由结晶物角度来优化指导包合工艺是可行而便捷的,且确定了较高纯度GLA获得的最佳工艺组合为:95 %乙醇浓度、1:2:6原料配比、-15℃、60 h、包合3次。
Evening primrose oil from Oenothera biennis L.which has strong adaptability, is the only plant found much riched inγ-linolenic acid (GLA) so far, and the GLA not only has the strong biological activity, but also can be changed into two high-γ-linolenic acid (DGLA), then transformed into prostaglandin E1 (PGE1) and arachidonic acid (AA) to provide precursors for the formation of prostaglandins and biofilm, known as "the protagonist of functional foods in the 21st century." Seperating and purifying the GLA from evening primrose oil and giving it full play for medicinal and health value, have become the hotspot.
     In this thesis, evening primrose oil was the raw material, and urea adduction, widely applied at home and abroad, was adopted to isolate the high purity GLA. Through observing and analyzing the differences between the shape, aperture size and number of the Urea Inclusion Compound formed under different design process with microscope, and the composition of fatty acids before and after separation from evening primrose oil and urea inclusion compound by gas chromatography (GC), research results were as follows:
     1. The study of the forming process of urea inclusion compounds showed, except the inclusion time, effects of inclusion temperature, times and alcohol concentration on the formation of the urea inclusion compound were a little great; At the same time, the fast-cooling was superior to the slow- cooling, with the decreasing of inclusion temperature and increasing of inclusion times, the experimental results were better under 95 % ethanol. So it is feasible to reflect and guide the urea inclusion technology by observing the changing trend of the shape and amount of the crystal in the forming process of urea inclusion compound.
     2. The study on the effects of different technological parameters on the shape and number of the urea inclusion compound in the process confirmed once again that it did can offer reference to Urea inclusion process for further optimization from the point of crystallization, and explore a new way for the improvement of the process of the separation and purification of evening primrose oil. The single-factor tests showed that effects of alcohol concentration, ratio of raw materials, inclusion time、temperature and times on the urea inclusion compound were significant, and 95% ethanol was the most suitable for the urea inclusion. In addition, with the appropriate increase of ethanol and urea, the crystal was more complete, thicker and purer, the GLA purity higher. At the same time, with the extension of inclusion time, the decreasing of inclusion temperature and increasing of inclusion times, the urea inclusion compound became longer and thicker, which was favorable for the urea inclusion, and the optimal conditions of them were 36 h , -15℃, and 4 times, respectively. The results of the orthogonal test demonstrated that under the appropriate ratio and 95 % ethanol, the optimal combination was 60 h, -15℃and 3 times, which made the GLA purity reach 78.996 %.
     3. The results of the composition of fatty acids before and after separation from evening primrose oil and the urea inclusion compound which was detected by GC demonstrated that effects of different technological parameters on the purification of GLA from evening primrose oil were significant, which strongly confirmed once more that it was feasible and simple to optimize and guide the urea inclusion technology from the point of crystallization, and determined the best combination for the higher purity GLA: 95% ethanol, 1:2:6 ratio of raw materials, - 15℃, 60 h, 3 inclusion times.
引文
包宗宏,云志,史美云.1996.超临界CO2富集提取鱼油中EPA和DHA研究进展.中国油脂,2l(4):31-38.
    陈炳华,刘剑秋.2004.海边月见草油的精炼及油中亚油酸的富集.福建师范大学学报(自然科学版),20(2):73-76.
    陈洁.2004.油脂化学.北京:化学工业出版社.
    陈熹兮,吴茂瑛.2002.毛霉对油脂废水的降解及γ-亚麻酸的合成研究.上海环境科学,21(8):473-474.
    陈雅,孟德胜,吴畏.2007.松籽油中γ-亚麻酸的薄层色谱和气相色谱鉴别.中国药业,16(24):25.
    陈永,赵辉.2000.混合脂肪酸的分离.化学世界,(3):156-159.
    程霜,戴桂芝,王兆玉.2003.尿素包合法分离欧李仁油中油酸的研究.粮油加工与食品机械,12:40-42.
    崔玉荣,卢涛.1992.以油角为原料制取精油酸.郑州轻工业学院学报,7(2):29-34.
    党小平,陆兔林,王云峰.2008.GC测定鸦胆子油软胶囊中油酸的含量.南京中医药大学学报,24(1):56-57.
    邓树海,魏欣冰.2003.蚕蛹油α-亚麻酸提取工艺研究及成分分析.中国生化药物杂志,24(5):222-223.
    樊莉,张亚刚,马莉.2002.尿素包合法富集高纯度棉籽油亚油酸甲酯的研究.石河子大学学报(自然科学版),6(3):238-241.
    费栓琴.1998.微生物油脂进展.西部粮油科技,(2):23-24.
    傅方浩,吴大勇,谷月卿.1987.月见草油和二高-γ-亚麻酸抑制血小板聚集和血栓素A合成作用的研究.白求恩医科大学学报,13(1):1-5.
    古锐,张艺,赖先荣.2007.气相色谱法测定心迪软胶囊中亚油酸的含量.中成药,29 (1):155.
    郭煜,韦业成,王亚杰.1990.从月见草油中分离高浓度γ-亚麻酸甲酯的研究.中草药,21 (8): 9-10.
    胡小泓,张新才,周临桃.2005.尿素包合物固相中回收脂肪酸的工艺研究.食品科学,26(11):141-144.
    胡小泓,朱小波,李丹.2006.尿素包合法提纯油茶籽油中油酸的工艺研究.中国油脂, 31(12):45-47.
    胡小明.2008.蚕蛹混合脂肪酸中α-亚麻酸的分离纯化.广西大学.
    黄慧琴,鲍时翔.1999.多价不饱和脂肪酸分离纯化技术进展.中国油脂,24(2):32-34.
    黄亚东. (总69).γ-亚麻酸生产技术.广州食品工业科技,18(1):28-29.
    蒋艳忠,胡小明,杨克迪.2008.硝酸银络合法浓缩蚕蛹油中α-亚麻酸的研究.食品工业科技, 29(4):205-209.
    蒋艳忠.2008.尿素包合法分离蚕蛹油中多不饱和脂肪酸.化学研究与应用,20 (3):363-366.
    李光华,周晶.2004.月见草药用成分研究概述.辽宁中医学院学报,6(5):420.
    李国栋,范伟,陆国浩.2003.月见草油的研究概况.药学实践杂志,21(3):171-173.
    李国文,邱榕.1997.尿素包接法预浓鱼油生理活性组分的研究.农业工程学报,1:26-28.
    李明,张连富,李冀新.2005.尿素包合法纯化红花籽油中亚油酸.中国粮油学报,20 (5):105-107.
    李奇,石梅,麦松威.2002.尿素/硫脲/硒脲晶体及其管状包合物的结构化学.自然科学进展,12(4):337-343.
    李奇,石梅,麦松威.2002.尿素/硫脲/硒脲-阴离子复合主体晶格包合物.自然科学进展,12(3):225-231.
    李奇,石梅,麦松威.2001.新颖的尿素/硫脲/硒脲-阴离子主体晶格包合物.科学通报,46(15):1233-1235.
    李婷婷,吴彩娥,李元瑞.2007.分子蒸馏技术富集猕猴桃籽油中α-亚麻酸的研究.农业机械学报,5(38):96-99.
    刘凤霞,高秋华,薛刚.2005.高纯度GLA包合工艺研究Ⅱ——包合工艺的单因素、2因素试验.中国中药杂志,30(6):433-435.
    刘凤霞,高秋华,薛刚.2005.高纯度γ-亚麻酸包合工艺研究Ⅰ-皂化值及皂化反应.中国中药杂志,30(5):343-346.
    刘凤霞,高伟霞,薛刚.2005.气相色谱法测定γ-亚麻酸和二高γ-亚麻酸含量.化学与生物工程,(1):50-52.
    刘凤霞,薛刚,高秋华.2005.γ-亚麻酸包合工艺优化研究.中成药,27(7):761-763.
    刘丽,启航,夏远征.2006.尿素包合法纯化共扼亚油酸条件的优化研究.食品研究与开发, 27(11):133-136.
    刘婷婷,丁伟,王大为.2007.玉米皮中亚油酸超临界CO2萃取技术的研究.食品科学,28(10):222-225.
    刘志远,刘峻,阮克锋.2007.气相色谱法测定鸦胆子油纳囊中油酸的含量.中成药,29(3):409.
    陆彬.1998.药物新剂型与新技术.北京:人民卫生出版社.
    罗谷风.1985.结晶学导论.地质出版社.
    马雪婷,曹栋.2007.气相内标-标准曲线法测定DLPC中亚油酸.哈尔滨商业大学学报(自然科学版),23(5):592.
    梅树莲,黄为民,周统武.2005.几种油酸亚油酸的定性定量分析.四川理工学院学报(自然科学版),18(4):75-78.
    慕鸿雁,裘爱泳.2004.γ-亚麻酸生理功能、资源及分其离纯化.粮食与油脂,10:12-14.
    任立伟,蒙缔亚.2000.未衍生高效液相色谱法测定螺旋藻粉中γ-亚麻酸含量.分析科学学报,16(1):58-59.
    洒威,魏登邦.2005.高原鼢鼠油脂中亚油酸含量定量分析.青海大学学报(自然科学版),23(5):13-16.
    苏桂红.2004.γ-亚麻酸的开发与应用.黑龙江医药,17(2):142-143.
    田强,刘丽丽.2005.脲包法富集被孢霉菌丝油γ-亚麻酸工艺条件的研究.天津师范大学学报(自然科学版),25(2):26-28.
    田歆珍,王贤磊,孙桂琳.2008.γ-亚麻酸的研究进展.生物技术,18(1):89-92.
    王镜岩,朱圣庚,徐长法.2006.生物化学.北京:高等教育出版社.
    王永福.2002.脂肪酸分离技术的研究进展.日用化学工业,3(32):58-60.
    魏莲.2002.γ-亚麻酸的研究进展.青海大学学报(自然科学版),20(3):13-16.
    翁新楚,董新伟,任国谱.1994.脲包法在脂类分离技术中的应用.中国油脂,19(6):40-44.
    翁臻培,周志朝,李中和.1984.结晶学.中国建筑工业出版社.
    吴纯洁,蒲旭峰,赵朝伟.2002.气相色谱法测定红花籽油中亚油酸的含量.华西药学杂志,17(5):371-372.
    吴明一.2007.尿素包合法纯化不饱和脂肪酸的研究.天津大学.
    吴瑞华,董杰明,袁昌鲁. 2003.γ-亚麻酸的保健作用.卫生研究,32(3):299-301.
    吴水清.1944.微生物多价不饱和脂肪酸的研究.广州食品科技,(4):5-8.
    吴垠,陈爱瑛.2008.气相色谱法测定红花油软胶囊中γ-亚麻酸含量.中国中医药科技, 15(2):124-125.
    咸漠,康亦兼,刘延.2002.△6去饱和酶催化合成γ-亚麻酸.高等学校化学学报, 23(4):624-627.
    萧安民.1995.脂质化学与工艺学.北京:中国轻工业出版社.
    萧圣洁.1996.多组分脂肪酸的精馏分离.日用化学工业,(6):19-22.
    徐寿昌.2008.有机化学.北京:高等教育出版社.
    徐文晖,梁宗锁,王俊儒.2007.不饱和脂肪酸分离技术研究概况.食品研究与开发,28 (8):153-156.
    徐焰,肖瀛.2005.功能性γ-亚麻酸代谢研究的进展.食品科学,26(28):508-512.
    薛刚,刘凤霞,黄开勋.2005.γ-亚麻酸以柱色谱和甲酯化纯化的正交试验.中国医药工业杂志,36(6):340-341.
    杨村,于宏奇,冯武文.2003.分子蒸馏技术.北京:科学出版社.
    杨万政,蓝蓉,关奇.2007.尿素包合法富集葵花油中亚油酸的研究.中国中医药信息杂志,14(5):50-52.
    禹慧明,吴国杰,姚汝华.1999.被孢霉菌体中γ-亚麻酸油脂的提取方法比较.华南理工大学学报(自然科学版), 27(2):28-31.
    曾哲灵,徐春涛,熊涛.2007.尿素包合法分离纯化葵花籽油中亚油酸.南昌大学学报(理科版),31(3):287-289.
    张桂梅,何美莹,邹建云.2008.尿素包合法富集橡胶籽油亚麻酸的工艺试验.热带农业科技,31(1):1-3.
    张海满,刘福祯,戴玲妹.2001.尿素包合法纯化α-亚麻酸工艺研究(Ⅰ)—α-亚麻酸纯化过程单因素实验研究.中国油脂, 26 (2):41-44.
    张镜澄.2000.超临界流体萃取.北京:化学工业出版社.
    张迎庆,马丽,陈腾飞.2000.冷冻结晶法提取蚕蛹油不饱和脂肪酸.湖北工学院学报,15 (1):58-60.
    郑亚军,陈华,李艳.2008.超临界流体萃取技术及其在油脂加工中的应用.现代农业科技, (1):227-229.
    周立新,黄凤洪,严兴初.2000.α-亚麻酸与γ-亚麻酸.西部粮油科技,25(6):46-48.
    Abidi S L.2001.Reversed-phase high-performance liquid chromatographic separation of tocopherols compounds in various matrices. J. Chromatography A, 935(1):45-69.
    Antueno R D, Elliot M, Ells G. 1997.In vivo and in vitro biotransformation of the lithum salt of gamma-linolenic acid by three human carcinomas. Br J Cancer, 17(12): 1812-1818.
    Brandstatter M K, Burger A.1997. PHASE DIAGRAMS OF UREA INCLUSION COMPOU -NDS 2.Stearic acid and urea. Journal of Thermal Analysis, 50:559-567.
    Cantrill R C, Ells G W, Chisholm K A. 1993. Variations in temperature and oxygen content do not alter levels of thiobarbiturate reactive material in human breast tumour cells (ZR-75-1) incubated with gamma-linolenic acid. Anticancer Res, 13 (5A): 1461-1464.
    Cao J M, Blond J P. 1995. Effect of low levels of dietary fish oil on fatty acid desaturation and tissue fatty acids in obese and lean rats. Lipids, 9(30):825-832.
    Clough P. 2001. Sources and production of speciality oils cnotaining GLA and stearidonic acid. Lipid Technology, (1).
    Coste T, Pierlovisi M, Leonardi J.1999.Beneficial effects of gamma-linolenic acid supplementation on nerve conduction velocity, Na+ K+ - ATPase activity, and membrane fatty acid composition sciatic nerve of diabeticrats. J Nutr Bioehem, 10(7):411-420.
    Fan Y Y, Ramos K S, Chapkin R S. 1995.Dietaryγ-linolenic acid modulates macrophage -vascular smooth muscle cell interactions: evidence for amacrophage-derived soluble factor that downregulates DNAsynthesis in smooth muscle cells. Arterioscler Thromb Vasc Biol, 15 (9):1397-1403.
    Garda-Maroto F, Garrido-Ca’rdenas J A, Vilches-Ferro’n M A. 2006.Evolution of’front -end’desaturases in Echium (Boraginaceae). Biochemical Systematics and Ecology, 34:327-337.
    Hamberg M. 1976. Biosynthesis of prostaglandin E1 by human seminal vesicles. Lipids, 3 (11):249-250.
    Harris K D M. 1990. Structural aspects of urea inclusion compounds and their investigation by X-ray diffraction: a general discussion.J Chem Soc Faraday Trans, 86: 2985.
    Hassall C H, Kirtland S J. 1984. Dihomo-γ-linolenic acid reverses hypertension induced in rats by diets rich in saturated fat. Lipids, 9(19): 699-703.
    Hassam A G, Crawford M A.1978.The incorporation of orally administered radiolabeled dihomo-γ-linolenic acid (20∶3ω6) into rat tissue lipids and its conversion to arachidonic acid. Lipids, 11(13) :801-803.
    Hayes D G. 2006. Effect of Temperature Programming on the Performance of Urea Inclusion Compound-Based Free Fatty Acid Fractionation.JAOCS, 83(3):253-259.
    Hollingsworth M D. 1996. Jn: Lehn J-M. Ser. ed. Comprehensive Supramolecular Che- mistry.Oxford: Pergamon, Vol 6.177.
    Horrobin D F, Lin X R, Redden P R.1996. Comparison of the Grignard deacylation TLC and HPLC methods and high resolution C-NMR for the sn-2 positional analysis of triacylglycerols containing γ-linolenic acid.Chemistry and Physics of Lipids, 79:9-19.
    Huang F C, Ju Y H, Chiang J C.1999.γ-Linolenic Acid-Rich Triacylglycerols Derived from Borage Oil via Lipase-Catalyzed Reactions.JAOCS,76(7):833-837.
    Liang J H, Hwang J S. 2000. Journal of the American Oil Chemists’Society.77(7):773-777.
    Lloyd B.1999. Separation of linoleic acid from linolenic acid by azeotropic distillations. US 5928478, 1.28.
    Madrid P C, Guerrero J L G. 2002. High-Performance Liquid Chromatographic Purification of γ-linolenic acid (GLA) from the seed oil of Two Boraginaceae Species. Chromatographia, 56 (11/ 12):673-677.
    Michihata T, Matsud Y, Yasuo S. 1997. Extraction of lipid from the reside of ika- ishiru using supercritical carborn dioxide. Journal of Japanese society of food science, 44 (11):795- 800.
    Moribe K, Tsuchiya M, Tozuka Y. 2006. Equimolar Complex Formation of Urea or Thiourea with 2-alkoxy-benzamides: Structural Factors Required for the Equimolar Complex Formation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 54: 9-16.
    Ramesh G, Das U N. 1996. Effect of free fatty acids on two-stage skin carcinogenesis in mice. Cancer Lett, 100(1,2): 199-209.
    Robert W, John R S. 2001.Chain separation of monounsaturated fatty acid methyl esters by argentation thin layer chromatography. Journal of chromatography A, 905(1):251- 257.
    Ryu S N. 2005.Method for separating and purifying alpha.-linolenic acid from perilla oil. US5 672726, 5.6.
    Sajilata M G, Kamat M Y. 2008. Supercritical CO2 extraction ofγ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. Journal of Food Engineering, 84:321-326.
    Schlenk W.1949. Urea addition of aliphatic compounds. Liebigs Ann Chem, 565: 204.
    Shimada Y, Sakai N, Sugihara N. 1998.Large-scale purification ofγ-linolenic acid by selective esterification using Rhizopus delemar lipase. J. Am. Oil Chem. Soc., 75: 1539– 1543.
    Shimada Y, Sugihara A, Shibahiraki M. 1997. Purification ofγ-linolenic acid from borage oil by a two-step enzymatic methods. J. Am. Oil Chem. Soc., 74:1465-1470.
    Smith A E. 1952. Crystal structure of the urea-hydrocarbon complexes. Acta Crystallogr, 5: 224.
    Toshiliiro N. 2006. Enzymatic purification of dihomo-linolenic acid from Mortierella single cell oil. Joumal of molecular catalysis, 44:14-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700