一侧迷路切除后前庭系统的变化及银杏叶制剂(Egb761)促前庭代偿机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前庭代偿是一种中枢过程。药物治疗可减轻前庭受损后早期严重的静态及
    动态症状,并促进前庭代偿。银杏叶制剂(EGb761)是银杏叶标准提取物,由
    于其广谱的药理作用,临床应用广泛。银杏叶制剂(EGb761)—金纳多可改善
    眩晕、耳鸣及耳聋,并可促进前庭代偿,但其代偿机制尚未阐明。因此,研究
    药物治疗促进前庭代偿的作用及机制,是耳科学前庭康复领域的一项重要课
    题。本课题通过豚鼠UL的动物模型,采用电生理、组织超微结构、免疫组织化
    学、分子生物学和动物行为学等检测方法,观察银杏叶制剂(EGb761)—金纳
    多(以下简称EGb)对一侧迷路切除(UL)后行为学恢复的影响、前庭内侧核(medial
    vestibular nucleus,MVN)胶质纤维酸性蛋白(glial fibrillary acid protein,GFAP)表达的
    变化、Scarpa神经节的变化、MVN区Synaptophysin的表达、超微结构变化、N-
    甲基-D-天门冬氨酸(NMDA)受体亚单位R_1mRNA表达的变化、谷氨酸免疫反应
    物(GLU-IR)的影响,探讨EGb促进前庭代偿的作用及可能机制。现将研究结果
    报告如下。
    
    
     第四军医大学博士学位论文
     一、银杏叶制剂0Gb761)一金纳多对豚鼠一侧迷路切除后静态和动态症状
     代偿的影响
     观察豚鼠UL后静态和动态症状的自然恢复及银杏叶制剂a 卜金纳
     多对静态和动态症状恢复的影响。观察自发性眼震侣M、W仰平面头位偏斜baw
     headmt.YHT广 *11平面头位偏斜(rol hea hh,Il4T)随时间恢复的差别。结果:
     .UUL后与自发性眼震同时出现11y和RH T,且ITff较IOH明显:UL十E口b
     组较自然恢复快,统计学分析有显著性差异卜001 卜②UL后旋转试验的眼震
     频率明显下降,UL组术后70d眼震频率未恢复正常水平,90d恢复正常;
     U’L+EGb组 ZId眼震频率与正常己无显著差别。两侧优势偏向pV较示 UL组
     7-50d结果异常;而UL+EGb组自7d起DP在正常范围。参照旋转试验后眼震
     频率恢复情况,两侧均衡性的恢复比眼震频率恢复快。提示EGb能促进静态和
     动态症状的代偿,自发性眼震较头位偏斜恢复快而完全;两侧均衡性的恢复比
     眼震频率恢复快。
     二、豚鼠一侧迷路不同损伤模式前庭核区GFAP的表达及银杏叶制剂
     m)一金纳多对其表达的影响
     l.观察豚鼠 UL后不同存活时间前庭内侧核(mwha Vesi沏 nudeus,p
     胶质纤维酸性蛋白W ibillny aCd prot叫GFAI,)的表达变化。结果UL后可诱
     导双侧MVN区星形胶质细胞GFAP免疫反应增强,术侧大于未损侧,GFAP反
     应在术后 10h己较正常对照增强,20h强于 10k此后 40h至 20d GFAP反应处于
     下降趋势。提示UL后可诱导MVN区胶质细胞GFAP免疫反应增强。ULiGb
     组 MVN区 GFAP的表达仍为双侧性,损毁侧更为明显,10h、40h弱于 UL组,
     20d时己呈下降趋势。较同期UL组为低卜001 卜结果提示EGb能减轻同期W
     后MYr-u区星形胶质细胞GFAP的免疫反应性,其作用可能与银杏制剂的神经俱
     护作用白关。
     6
    
     第四军医大学博士学位论文
     二.观察豚鼠庆大霉素肌注后不同存活时间卜WN区GF n的表达变化和旋
     转试验后眼震的变化。结果:庆大霉素给药 10h后 NtW区双侧星形胶质细胞
     GFAP免疫反应开始出现,20h、40h、6d逐渐增强,20d在观察期间反应最强。
     提示庆大霉素给药诱导MVN区胶质细胞GFAP免疫反应有增强的趋势,可能与
     庆大霉素对前庭系统渐进性损害、中枢系统的保护作用有关。
     三、豚鼠一侧迷路切除后Scal’pa神经节的变化及银杏叶制剂O)一
     金纳多对其影响
     目前,去除初级前庭传入为迷路切除和前庭神经切断。UL后 10h. S啊a神
     经节变化不明显,20h有明显变化,细胞大量死亡,有凋亡细胞,外周损伤较中
     央区重:以后逐渐加重;而UL+*口b组的反应较UL明显减轻。提示*C七对前
     庭神经节具有保护作用及对凋亡的抑制作用。
     四、银杏叶制剂(EGb761)一金纳多对一侧迷路切除后前庭核区
     Synaptophysin表达的影响
     SPtOPhysin是神经末梢突触小泡主要的膜整和蛋白,是分子水平突触密
     度定量敏感的标志。以Sy呷tophysin免疫反应强度为标志,评价UL后MVN区
     突触密度的变化。结果:UL后*,受损侧 MVN区 Soaptophysin免疫反应强
     度降低,术后20d有所增加,90d强度恢复较明显,但仍弱于正常对照。未损侧
     syn叩o…吓h免疫反应强度在不同时间段与正常对照无显著差别。UL亿吐组,
     术后 10h、20d、90d较同期 UL组 MVN区 Symptophysin免疫反应强度高。术后
     90d与
1.Standard extract of Ginkgo Biloba enhancing static and dynamic syndromes compensation following UL in guinea pigs
    After UL, guinea pigs manifest SN, head lift and other static syndrome.Recovery of the static syndrome" s with and without standard extract of Ginkgo biloba following UL were observed. UL+EGb recovered faster than UL.Standard extract of Ginkgo biloba could enhance the compensation of static syndrome and SN recuperated faster and more completely than head tilt. The UL group's post-lesional nystagmus frequency didn't recover until the 90th d, while UL+EGb group return to normal 21 d post-lesion. In addition, the UL group's directional preponderance (DP) was abnormal 50d post- lesion, but lesion plus EGb's return to normal from the 7th d post-lesion. The recovery of DP was faster than nystagmus frequency Therefore Ginaton could enhance dynamic compensation. And bilateral equilibrium's recovery was faster than that of nystagmus
    frequency
    
    
    
    
    2. The expression of GFAP in the MVN following different modes of peripheral vestibular lesions in guinea pigs
    U)GFAP staining enhancement can be induced in bilateral MVN following UL. However, that of the lesioned side is stronger than that of the unlesioned side The reaction became evident 10 h post-UL and was intense 20-40 h after lesion. Then it declined until 20 d, but still intenser than that of the control group If Ginaton is administered, the staining positive cells are less than that of the UL. But the significance of the reactive satrocytes in the vestibular compensation is still unknown. And Ginaton may play a role in sparing the EAA toxicity to some extent.It can be drawn that proliferation of astrocytes may to some extent serve as somewhat of protection for MVN
    (2)Gentamycin can induce the proliferation of astrocytes in the MVN. 20d after gentamycin administration, the proliferation reached its peak.The reaction is maily through the peripheral vestibular system because gentamycin cannot transpass the blood-brain barrier The proliferation of astrocytes after gentamycin administration may contribute to the neuronal protection for glial cells play an important role in the regulation of glutamic acid and aspartate.
    3.The influence of Ginaton on the Scarpa's ganglion after UL
    UL and vestibualr neuroectomy was applied to remove the primary vestibular afferent After UL, Scarpa's ganglion were spared Therfore, it may still exert some effects on the vestibular system. The findings showed that lOhr after UL, the ganglion had no evident change under microscope But the change became severe at 20hr and aggravated gradually thereafter: The change in UL+EGb group was lessen than UL. It manifested that Ginaton had the effect of ganglion protection and the better way to remove the primary afferent was through neurotomy.In addition,Ginaton also had the function of suppression of ganglion apotosis
    
    
    
    4. The influence of Ginaton on expression of synaptophysin in the MVN after UL
    Synaptophysin is a major membrane integrated protein at the synaptic follicles. It acts as a sensitive marker for synaptic intensity at molecular level hi this expenment,synaptophysin was used to evaluate the change of synaptic density post-UL lOhr post UL, the immunoreactive intensity of synaptophysin declined in the lesioned side.lt increased slightly at 20d;and the intensity recovered significantly at 90d post UL, but still lower than that in control. In the UL+EGb group, the intensity of synaptophysin was stronger than that in the UL at 1 Oh and 20d But at 90 d, the UL+EGb was intense than UL and had no significant difference compared with the control. It suggested that in UL+EGb group the synaptic density recovered quickly. It underlied that vestibular compensation and the enhancing effect of Ginaton is involved in the structural resconstruction in the MVN.
    5.The influence of standard extract of Ginkgo biloba on the MVN infrastructure following UL in guinea pigs
    Following UL, EGb can promote the recovery of the post-rotational nystagmus. On the aspect of ultrastruc
引文
1 于立身主编.前庭功能检查技术 北京.人民军医出版社.1994,36-37
    2 IgarashiM Vestibularcompensation. ActaOtolaryngol.1984.406:78-82
    3 Clausen CF Vestibularcompensation ActaOtolaryngol. 1994.513 33-36
    4 蒙卡斯尔VB主编 韩济生 乔健大 张英才 等译.医学生理学.上册.北京:科学出社.1988,755-774
    5 李学佩 编著 神经目科学 贵州:贵州科技出版社,1991 51-75
    6 Herdman SJ Advances in the tremnent of vestibular disorders Physical therapy. 1997;77(6)602-618
    1 Sansom AJ. Darlinglon CL. Smith PF Pretreament with MK-801 reduces spontaneous nystagmus following unilateral labyrinthectomy Eur J Pharmocol. 1992:220(2-3). 123-129
    2 Gilchrist DPD. Smith PF. Darlington CL. ACTH(4-10) accelerates ocular motor recovexy following vestibular deafferentation. Nenrosci Lett 1990.118(1):14-16
    3 Gispen WH. Therapeutic potential for melanocortins in peripheral nerve disease. Trends in Pharmocoi Sci. 1990.11(6):221-222.
    4 Gerritsen Van Der Hoop R. Vecht CJ. Van der MEL, et al. Prevention of cisplatin neurotoyacity with an ACTH-(4-9)analouge in patients with ovarian cancer New Engl Med 1990;322(1)89-94.
    5 Mountjoy KG. Robbins LS. Mortrud MT. et al The clorung of a family of genes that encode the melanocortin receptors Science 1992:257(5074)1248-1251
    6 Flohr H. Luneberg U Effects of ACTH-(4-10) on vestibular compensation Brain Res 1982:248(1)169-173
    7 Luneberg U, Flohr H Effects of melanocortins on vestibular compensation In. Pompeiano O, Allum JHJ. eds Progress in brain research, vol 76 Amsterdam. Elsevier: 1988;76:421-429
    8.Luneberg U, Flohr H. Richter-Landsberg C ACTH/MSH-like neuropeptides and lesion-induced plastic process, In: Keller EL. Zee. DS. eds Adaptive processes in visual and oculomotor systems. New York. Pergamon: 1988.409-416
    9 Luneberg U, Flohr H Influncc of melanocortin fragments on vestibular compensation. In:Lacour M, Toupet M. Deruse P. Christen Y. eds Vestibular compensation. Facts. theories and clinical perspectives. Paris Elsevier: 1989 161-174
    10 Igarashi M. Ishikawa K. Schmidt KA Effect of ACTH-(4-10) on equilibrium compensation after unilateral labyrinthectomy in the squirrel monkey Eur J Pharmocol 1985;119(3)239-242.
    
    
    11 Darlington CL. Smith PF. Harburd JI Guinea pig medial vesbbular neucleus neurons in vitro respond to ACTH-(4-10) al picomolar concentrations Exp Brain Res 1990:82(3) :637-640.
    12 Darlington CL. Smith PF. Gllchrist DPD. Comparison of the effects of ACTH-(4-10) on medial vcstibular neurons in brainstem slices from labyrinthine-intact and compensated guinea pigs. Neusci Lett. 1992 145(1) .97-99
    13. Darlington CL. Smith PF. Gllchrist DPD. The effects of short fragments of the adrenocorticotropic hormone molecule on brainstem \ estibular nucleus neurons in vitro In: Vaudry H. Eberle AN,eds. The melanotropic peptides. Annals of the NY sci 1993;680(31) 481-482
    14. Trifiletti RR. Pranzatelli MR ACTH binds to [~3H]MK-801-labelled rat hippocampal NMDA receptor. Eur J Phamiocol. 1992;26(4) 377-379.
    15. Florijn WJ, De Boer T, Tonnaer JADM, Van Nispen, et al. ACTH/MSH-like peptides inhibit the binding of dopaminergic ligands to the doapmnine D_2 receptor in \'itro. Eur J Pharmocol 1991;207(1) :43-50.
    16 Gispen WH, Buitelaar J. Wiegant VM. et al. Interaction between ACTH fragments, brain opiate receptors and morphine-induced analgesia Eur J Pharmocol. 1976. 39(2) :393-397.
    17. Tonnaer JA, Van Vugt M, De Graaf JS. In vitro interaction of ACTH with rat brain muscarinic receptors. Peptides. 1986;7(3) :425-429.
    18. Gomar MD, Fernandez B, Del Aguila C, et al. Influence of behaviouraUy active peptides ACTH-(1-10) and ACTH-(4-10) on thev melantonin modulation of [3H]-flunitrazepam receptor binding in the rat cerebral cortex. Neuroendocrinology. 1994;60(3) :252-260.
    I9. Gomar MD, Fernandez B, Castillo JL, et al. Suppressive effect of simutaneous injetion of ACTH-(1-10) and B-endorphin on brain [~3H]flunitrazepam binding. Neuroreport. 1993;5(3) :252-254.
    20. Ito M, Onnfof, Chiu TH. Interaction of ACTH-(4-10) and ACTH(l-24) withL-[~3H]glutamate binding sites and GABA/benzodiazepine/picrotoxin receptors in vitro. Brain Dev 1988;10(2) 106-109.
    21. Kendall DA, McEwen BS, Enna SJ. The influence of ACTH and corticosterone on [~3H]GABA binding in rat brain Brain Res. 1982; 236(2) 365-374
    22. Spruijt B, Josephy M, Van Rijzingen I, et al. The ACTH-(4-9) analog Org2766 modulates the behaviuoral changes induced by the NMDA receptor antangorust AP5 J Neurosci. 1994;14(5Pt2) 3225-3230.
    23. Gilchrist DP. Smith PF,Darlington CL A dose-response analysis of the beneficial effects of the ACTH-(4-9) analogue. Org2766 on behavioural recovery following unilateral labyrinthectomy in guinea pig. Br J Pharmocol. 1994;111(1) :358-363
    
    
    24Gilchrist DP. Smith PF,Darlington CL Org2766 treament prevents disruption of vestibular compensation by an NMDA receptor antangorust. Eur J Pharmocol 1994:252:R1-R2
    25 Uematsu D. Araki N. Greenberg JH. Sladky J. et al. Combined therapy with MK-801 and rumodipine for protection of ishemic brain damage. Neurol. 1991. 41(1) 88-94.
    26 Grotta JC. Picone CM. Ostrow PT. et al CGS19755. a comparative NMDA receptor antangonist reduces calcium calmodulin binding and improves outcome after global cerebral ischemia. Ann Neurol 1990. 27(6) 612-619
    27 Goodman Gilman A. Rall TW. Nies AS. et al . eds. Goodman and Gilman's the pharmocological basis of therapeutic. 8~(th) edition. New York Pergamon.1991
    28 Scott RH. Pearson HA, Dolphin AC. Aspects of vertebrate neuronal voltage-activated calcium currents and their regulation. Prog Neurol. 1991. 36(6) :485-520.
    29 Collingndge GL,Lester RAJ. Exitatory amino acid receptors in the vertebrate central nervous system. Pharmocol Rev 1989;41(2) :143-210.
    30 Choi DW, Rothman SM. The role of GLU neurotoxicity in hypoxic-ishemic neuronal death. Ann Rev Neurosci. 1990. 13 171-182.
    31 Sciabine A. Schuurman T, Traber J. Pharmocological basis for the use of rumodipine in central nervous system disorders. FASEB J. 1989,3(7) 1799-1806.
    32. Faden AI. Salzman S. Pharmocological strategies in CNS trauma. Trends Pharmocol Sci. 1992:13(1) 29-35.
    33 Tolu E. Mameli O.Caria MA, et al. Improvement of vestibular plasticity in the guinea pig with a calcium entry blocker. Acta Otolaryngol(Stockh). 1988; 460(Suppl) 72-79.
    34. Tolu E, Caria MA. Mameli O, et al. Role of the Ca~+ entry blocker flunarizine in vestibular compensation. In: Flohr H,ed. Post-lesion neural plasticity. Berlin-Heidelberg. Springer: 1988;460 687-698
    35 Gilchrist DP, Darlington CL,Smith PF. The effects of flunarizine on ocular motor and postural compensation following peripheral vestibular deafferentation in guinea pig. Pharmocol Biochem Behav.l993;44(l):99-105.
    36 Darlington CL,Smith PF. Pre-treament with a Ca~+ channel antangonist faciliates vestibular compensation. Neuroreport. 1992;3(2) :143-145.
    37 Smith PF . Darlington CL Neurochemical mechanisms of recovery from peripheral vestibular lesions(estibular compensation) Brain Res Rev. 1991:16(2) 117-133
    38 Smith PF . de Wacle C. Vidal PP. Darlington CL. Excitaton, amino acid receptors in normal and abnormal vestibular function. Mol Neurobiol 1991 ;5(2-4) .369-387
    
    
    39. Flohr H. Luneberg U Role of NMD A receptors in lesion-induced plasticity Arch Ital Biol. 1993;131(2-3) :173-190
    40 .1Petrosini P. Behavioural recovery from unilateral vestibular lesion is facihated by GM1 ganglioside treament. Behav Brain Res. 1987:23(2) : 117-126.
    41. Lacour M. Ez-Zaher L. Raymond J. Plasticity mechanisms in vestibular compensation in the cat are improved by an extract of extract of ginkgo bijoba (EGb761) Pharmocol Biochem Behav 1991. 40(2) 367-379
    42 .Denise P. Bustany P The effect of Ginkgo Biloba on central compensation of a total unilateral peripheral vestibualr deficit in the rat. In: Lacour MToupet M. Denise P. et al. eds Vestibular compensation :Vestibular compensation:Facts, theories and clinical perspectives. Paris: Elsevier: 1989. 201-208.
    43. Laue L. Lotze MT. Chrousos GP. et al Effects of chronic treament of the glucocorticold antagonist RU486 in man toxicity. immunological and hormonal aspects J Clin Endocrinol Metab. 1990,71(6) :1474-1480.
    44. Ariyasu L. Byl FM. Sprague MS, et al The beneficial effect of methylpredorusolone in acute vestibular vertigo. Arch Otolaryngol H N Surg. 1990;116(6) :700-703.
    45. Parnes SM, Spector Z, Strominger N. Effects of lidocaine infusion in cats after unilateral Labynnthectomy. Arch Otolaryngol H N Surg. 1988;114(6) .653-656.
    46. Tighilet B, Leonard J. Lacour M. Betahistidine dihydrochloride treament facilitates vestibular compensation in the cat. J Vestibular Res. 1995. 5(1) :53-66.
    47. Suga F, Snow JB. Cochlear blood flow in response to vasodilatmg drugs and some related agents. Laryngoscope. 1969. 79:1956-1979
    48 Tomita M, Gotoh F. Sato t, et al. Comparative resposes of me carotid and vertebral arterial systems of rhesus monkeys to betahistidine Stroke. 1978:9(4) :382-387
    49. Ganellin CR Chemistry and structure-activity relationships of drugs acting at histamine receptors. In: Ganellin CR, Parsons ME, eds. Pharmocology of histamine receptors. Wright PSG, Bnstol, London, Boston, 1982;10.
    50. Wada H, Inagaki N. Itowi N, et al.Histaminergic neuron system in the brain: distribution and possible functions.Brain Res Bull. 1991;27(3-4) :367-70.
    51. Steinbusch HWM, Mulder AH. Localization and projections of histamine immunoreactive neurons in the central nervous system of the rat. In. Ganellin CR. Schwartz JC, eds. Frontiers in histamine research Plenum Press, Oxford, New York, 1986,119-130.
    52. Schwartz JC, Arrang JM, Garbarg M. et al. Histaminergic trsmission in the mammalian brain. Physiol Rev. 1991. 71(1) . 1-51
    
    
    53 Bouthenet MI. Ruat M. Sales N. et al A detailed mapping of histanune H_1 receptors in guinea-pig central nervous system established by autoradiography with [I~(125) ]idobopyramine. Neurosci. 1988:26(2) 553-600
    54 Kjrsten EB. Sharma JN. Microiontophoresis of acetylcholine. lustamineand their antagonist on neurons in the medial and lateral estibular nuclei of cat. Neuropharmocology 1976;15(2) :743-753.
    55 Phelan KD. Nakaniura J. Gallagher JP Histamine depolarizes rat medial vestibular neurons recorded intracellularly in vitro. Neurosci Lett. 1990,109(3) :287-292.
    56 Hill SJ Distribution. properties. and functional characteristics of three classes of histanune receptor. Pharmocol Rev. 1990;42(l).45-83
    57. Arrang JM. Garbag M. Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H_3) of histanune receptor Nature. 1983:302(59110:832-837
    58. Arrang JM, Garbag M, Quach TT. et al Actions of betahistidine at histamine receptors in the bram. Eur J Pharmocol 1985;111(l):73-84.
    59 Timmerman H Histamine agonists and antagonists Acta Otolaryngol.(Stockh)1991 ;479(suppi).5-11
    60. Peppard SB Effect of drug therapy on compensation from vestibular injury. Laryngoscope 1986;96(8) :878-898
    61. Lin JS.Sakai K.Vanni-Mercier G,et al Involvement of histaminergic neurons in arousal mechanisms demonstrated with H_3 receptor ligands in the cat Brain Res. 1990:523(2) :325-330.
    62. Schlicker E, Fink K. Detzner M et al.Histamme inhibits dopamine release in the mouse striatum via presynaptic H_3 receptors. J Neural Transm.l993;93(1) :1-10.
    63. Bekkers JM. Enhancement by histamine of NMDA-receptors synaptic transmission in the hippocampus. Science. 1993;261(5177) :104-106.
    64 .Yamanaka T, Sasa M, Amano T. Miyahara H, Mastunaga T. kole of glucocoticoids in vestibular compensation in relation to activation of vestibular nucleus neurons[J]. Acta Otolaryngol(Stockh).1995;519(Suppl):168-172. 65.
    65 Clostre F.[Ginkgo biloba extract (EGb 761) State of knowledge in the dawn of the year 2000] .Ann Pharm Fr.1999,57(Suppl1) :1S8-88
    66. Cameron SA, Dutia MB.Lesion-induced plasticity in rat vestibular nucleus neurones dependent on glucocorticoid receptor activation.J Physiol 1999;518(Pt1) :151-8.
    67. Akiba S. Kawauchi T. Oka T, et al Inhibitory effect of the leaf extract of Ginkgo biloba L on oxidtive stress-induced platelet aggregation Biochem Mol Biol Int 1998;46(6) . 1243-8.
    68. Ainri H, Ogwuegbu SO, Boujrad N, et al In vivo regulation of peripheral-type benzodiazepine receptor and glucocorticoidsynthesis by Ginkgo biloba extract EGb 761 and isolated ginkgolides Endocrinology 1996:137(12) :5707-18
    
    
    1. Bignami A, Dahl D. Specificity of the glial fibrillary acidic protein for astroglia. J Histochem Cytochem, 1977;25(6):466-9.
    2 蔡文琴.王伯纭 主编.实用免疫细胞化学与核酸分子杂交技术,成都.四川科技出版社.1994,第一版.227-228
    3. Gardner-Medwin AR. Analysis of potassium dynamics in mammalian brain tissue. J Physiol(Lond),1983;Feb335 393-426.
    4 Nathaniel EH. Nathaniel AR. Adv Cell Neurobiol 1981;2 249-301
    5. Steward O, Torre ER. Phllips LL. et al The process of reinneryation in the dentate gyrus of adult rats: time course of increases in mRNA for glial fibrillary acidic protein. J Neurosci. 1990,10(7):2373-2384.
    6 Benveniste H, Drejer J. Schousboe J, et al. Elevation of the Extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem, 1984;43(5)1369-1374.
    7. Malandro MS, Kilberg MS. Molecular biology of mammalian amino acid transporters. Annu Rev Biochem. 1996;65:305-36.
    8 Jager W, Goiny M, Herrera-Marschitz M, et al. Noise-induced aspartate and glutamateefflux in the guinea pig cochlea and hearing loss. Exp Brain Res. 2000;134(4):426-34.
    9. Chin KW, Lopez I, Lee SC, et al. Glutamate-like immunoreactivity during hair cell recovery after gentamicin exposure in the chinchilla vestibular sensory periphery. Laryngoscope. 1999;109(7 Pt 1)1037-44.
    10 Storck T, Schulte S, Holfman K, et al. Structure, expression and functional analysis of a Na+independent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA, 1992;89(22):10955-10959.
    11. Takumi Y, Matsubara A, Danbalt NC, et al. Discrete cellular and subcellular localization of glutamine synthatase and the glutamate transporter GLAST in the rat vestibular end organ. Neurosci, 1997;79(4):1137-1144.
    12. Matsuda K, Ueda Y. Doi T, et al. Increase in glutamate-sapartate transporter (GLAST) mRNA during kanamycin-induced cochlear insult in rats. Hear Res, 1999;133(1-2):10-6.13. Wood PM, Bunge RP Biology of the oliogodendricyte. Ach, Neurochem, 1984-5(1):1-46.
    14. Poineroy SL, Purves D. Neuron/Glia relationship observed over interals of several months in living mice. J of Cell Biol. 1988,107(3)1167-1175.
    15 Canady KS. Rubel EW Rapid and reversible astrocytic reaction to afferent activity blockade in chick cochlear neucleus. J Neurosci. 1992,12(3).1001-1009.
    
    
    16. Rubel EW. MacDonald GH. Rapid growth of astrocytic processes in nucleus magnicellularis following cochlea removal. J CompNeurol. 1992:318(4) :415-425
    17. Canady KS, Olavarna JF, Rubel EW. Reduced retinal activity increases GFAP immunoreactivity in rat lateral geniculate nucleus. Brain Res, 1994;663(2) .206-214.
    18 Henderson CE. Camu W, Mettling C. et al. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature. 1993:363(6426) 266-270.
    19 Yan Q. Matheson C. Lopez OT. et al. The biological responses of axotomized adult motoneurons to brain-derived neurotrophic factor.J Neurosci, 1994;14(9) .5281-5291
    20. Friedman B, Kleinfeld D, Ip NY, et al. BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons. J Neurosci, 1995;15(2) :1044-1056.
    21 Henderson CE, Phillips HS, Pollock RA. et al GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle.Science.l994:266(5187) .1062-1064.
    22 Springer JE. Seeburger JL, He J. et al. cDNA sequence and differential mRNA regulation of two forms of ghal cell line-derived neurotrophic factor in Schwann cells and rat skeletal muscle. Exp Neurol. 1995;131(l):47-52.
    23. Springer JE, Mu X. Bergman LW, et al. Expression of GDNF mRNA in rat and human nervous tissue Exp Neurol,1994;127(2) :167-170.
    24 Choi-Lundberg DL. Bohn MC. Ontogeny and distribution of ghal cell line-derived neurotrophic factor (GDNF) mRNA in rat. Dev Brain Res,1995;85(l):80-88.
    25. Li L. Wu WT,Lin LF,et al.Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor. Proc Natl Acad Sci, 1995;92(21) :9771-9775
    26 Lin LF. Doherty DH. Lile JD, et al GDNF: a ghal cell-line-derived neutrotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(511) :1130-1132.
    27 Burt DW. Law AS. Evolution of the transforming growth factor-β superfamily. Prog Growth Factor Res, 1994:5(1 ):99-118.
    28. Tomac A. Lindqvist E, Lin L-F H, et al Protection and repair of the mgrostriatal dopaminergic system by GDNF in vivo. Nature,1995;373(6512) .335-339.
    29. Muganaini E, Walberg F, Brodal A. Mode of termination of primary vestibular fibers in the lateral vestibular nucleus. Exp Brain Res, 1967;4(2) :187-211.
    30. Schwartz DWF. Schwartz IE, Friedrickson JM. Fine structure of the medial and descending vestibular nucleus in normal rats and after unilateral transaction of the vestibular nerve. Acta Otolaryngol(Stockh).1977;84(l):80-90
    31. Graeber MB, Kreutzberg GW. Astrocytes increase glial firillary acidic protein retrograde changes in facial motor neurons JNeurocytol, 1986:15(3) .363-373.
    
    
    32 Cass SP. Goshganan HG. Increased glial fibrillary acidic protein immunoreactuvity in astrocytes within the lateral veslibular nucleus of the cat following Iabyrinthectomy and vestibular neuroectomy Ann Otol Laryngol. 1990;99(3Pt1) :221-227.
    33. de Waele C, Campos Torres A, Josset P. et al. Evidence for reactive astrocytes in rat vestibular and cochlear nuclei following unilateral inner ear lesion. European J of Neurosci. 1996;8(9) :2006-2018
    34 Li H.Godfrey DA. Rubin AM Astrocyte reaction in rat vestibular nuclei after unilateral removal of Scarpa's ganglion. Ann Otol Rhinol laryngol. 1999;108(2) :181-188.
    35. Laping NJ. Teter B. Nichols NR. et al. Glial fibrillary acidic protein:regulation by hormones.cytokines. and growth factors Brain Pathol, 1994;4(3) .259-275.
    36 McMillian MK. Thai L, Hong JS, et al. Brain injury in a dish: a model for reactive gliosis. Trends Neurosci. 1994;17(4) :138-142.
    37 Pines G, Danbolt NC, Bjorats M, et al. Cloning and.expression of a rat brain L-Glutamate transporter. Nature. 1992,360(6403) :464-467
    38. Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter Nature,1992:360(6403) :467-471.
    39. Ariiza JL. Fairman WA, Wadiche JL. Murdoch GH, et al. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci,1994;14(9) :5559-5569.
    40. Nicholls B. Attwell D The release and uptake of excitatory amono acid. Trends Pharmacol Sci,1990,11(11) .462-468.
    41. Amara SG Neurotransmitter transporters. A tale of two families.Nature,1992;360(6403) :420-l.
    42. Otori Y. Shimada S. Tanaka K, et al Marked increase in glutamate-aspartate transporter (GLAST/GluT-l)mRNA following transient retinal ischemia. Mol Brain Res,1994;27(2) :310-314.
    43 Yamashita T, Kohmura E, Yuguchi T. et al. Changes in glutamate/aspartate transporter(GLAST/GluT-1) mRNA expression following facial nerve transsection. Mol Brain Res,1996,38(2) :294-299.
    44 Shibata T, Watanabe M, Tanaka K, et al. Dynamic changes in expression of glutamate transporter mRNAs in developing brain. NeuroReport,1996;7(3) :705-709.
    45. Arzberger T, Krampfl K, Limgruber S,et al. Changes of NMDA receptors subunit and glutamate transporter mRNA expression in Huchington s disease--an in situ hybridization study. J Neuropathol Exp Neurol,1997;56(4) 40-454.
    46. Torp R, Leikeffre D. Levy LM, et al. Reduced postischemic expression of a glial glutamate transporter. GLT-I. in the rat hippocampus. Exp Brain Res,1995;103(1) :51-58.
    47 Rothstein JD. Dykes-Hoberg M. Pardo CA. et al. Knockout of glutamate transporters reveals a major role of astroghal transport in excitotoxicity and clearance of glutamate.
    
     Neuron, 1996; 16(3) 675-686
    1 Raymond J. Demenes D. Nieoullon D Neurotransmitter in vestibular pathways. In Pompeiano O.Allum JHJ.eds. Progress in Brain Research.vol.76. Elsevier Amsterdam, 1988,pp.29-43.
    2 Dememes D. Wenthold RJ. Moniot B. et al. Glutamate-like immunoreactivity in the peripheral vestibular system of mammals. Hear Res. 1990;46(3) .261-269.
    3 Demenes D. Raymond J, Sans A. Selective retrograde labelling of the cat vestibular ganglion with H-D-aspartate, Brain Res,1984;304(l) 188-191
    4 Touati J. Raymond J.Dememes D Quatitative autoradiographic characterization of L-3H Glutamate-bindings sites in rat vestibular nuclei. Exp Brain Res,l989;76(3) :646-650.
    5 Ito J, Matsuoka I. Sasa M, et al. Electrophysiologic evidence for involvement of acetylchohne as a neurotransmmiter in the lateral vestibular nucleus Otolaryngol Head Neck Surg,1981 ;89(6) . 1025-1029.
    6 Gallagher JP, Lewis MR, Shmnick-Gallagher P. An electrophysiological investigation of the rat medial vestibular nucleus in vitro, In Correia MJ, Perochio AA, eds Contemporary Sensory Neurobiology, Alan RL, New York. 1985,pp.293-304.
    7 Lewis MR, Gallagher JP, Shinmck-Gallagher P. An in vitro brain slice preparation to study the pharmacology of central vestibular neurons. J Pharmocol Methods, 1987;18(3) :267-273.
    8 Monaghan DT, Olverman HJ, Nguyen L. et al. Two classes of NMD A recognition sites differential distribution and differential regulation by glycine Proc Natl Acad Sci USA, 1988;85(24) :9836-9840.
    9 Masu M. Tanabe K. Tsuchida R. et al Sequence and expression of a metabotropic glutamate receptor Nature, 1991;349(6312) . 760-765.
    10. Houamad KM, Kuijper JL, Gilbert TL, et al Cloning, expression and gene structure of a G protein-coupled glutamate receptor from rat brain. Science,1991;252(5010) : 1318-1321.
    11 Cochran SL, Kasic P, Precht W. Pharmocological aspects of excitatory synaptic transmission to second-order vestibular neurons in frog. Synapse, 1987;1(1) :102-123.
    12. Monaghan DT. Agonist and Antagonist-prefering NMD A receptors and independent activation of their ion channel, In Meldrum BS, Moroni F, Simon RP, eds. Excitatory Amino Acid, Raven, New York, 1991, pp.203-211.
    13. Petralia RS, Wenthold RJ Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol, 1992:318(3) :329-354
    14 Kinney GA, Peterson GW, Slator NT Long-term synaptic plasticity in the rat medial vestibular nucleus studied using patch-clamp recording in an in vitro brain slice preparation. Soc Neurosci
    
     Abstr.l993;19:6134
    15 Smith PF. Darlington CL Recent advances in the pharmacology of the vestibular-ocualr reflex system Trends Phamiocol Sci.l996. 17(l 1) 421-427
    16 Monaghan DT. Cotman CW. Distribution of NMDA-sensitive L-~3H-glutamate-binding sites in rat brain. J Neurosci. 1985:5(11) :2909-2919
    17 de Waele C, Abitbol M. Chat M. et al. Distnbution of glutamatergic receptors and GAD messenger RNA-contaming neurons in the vestibular nuclei of normal and henulabyrinthectomized rats Eur J Neurosci, 1994,6(4) 565-577.
    18. Smith PF, Darlington CL, Hubbard JH. Evidence that NMDA receptors contribute to synaptic function in the guinea pig medial vestibular nucleus. Brain Res,1990;513(1) : 149-151.
    19 de Waele C, Vibert N, Baudrimont M, et al NMDA receptors contribute to the resting discharge of vestibular neurons in the normal and hemilabyrinthectomized guinea-pig Exp Brain Res,1990;81(l):125-133.
    20. Knopfel T Evidence for N-methyl-D-aspartic acid receptor-mediated modulation of the commisurral input to central vestibular neurons of the frog. Brain Res,1987;426(2) :212-224.
    21 Schaefer KP, Meyer DL. Compensation of vestibular lesions. In Kornnuber NN, eds,Handbook of sensory physiology ,Vol. VI, Part 2, Springer, New York,1974,pp.463-490.
    22. de Waele C, Serafin M, Muherlethaler M, et al. Vestibular compensation an in vivo and in vitro study of second-order vestibular neurons, Soc Neurosci Abstr,1988;18 137. 10.
    23. Smith PF, Curthoys IS. Mechanisms of recovery following unilateral labyrinthectomy a review. Brain Res Rev,1989;14(2) :155-180.
    24. Smith PF, Curthoys IS.Exitatory amino acid receptors in the vertebrate central nervous system. Pharmocol Rev,1989;40:143-210.
    25 Bhss TVP, Collingridge GL. Synaptic model of memory long term potentiation in the hippocampus. Nature,1993;361(6407) 31-39
    26. Smith PF. Darlington CL. Neurochemical mechanisms of recovery from peripheral vestibular lesion. Brain Res Rev. 1991; 16(2) 117-133.
    27. de Waele C, Abitbol M, Chat M, et al In situ hybridization study of NMDA receptors and glutarnic acid decarboxylase in vestibular nuclei of intact and hemilabyrinthectomized rats Soc Neurosci Abstr,1993;23:59. 8.
    28. Capocchi G, Delia TG, Grassi S, et al. NMDA receptor-mediated long term modulation of electrically evoked field potentials in the rat medial vestibualr nuclei Exp Brain Res,1992;90(3) :546-550
    29. Shigemoto R, Shigemoto N, Mizuno N Distribution of mRNA for a metabotropic glutamate
    
     receptor(mGluR1) in the central nervous sysyem an in situ hybridyzation study in adult and developing rat J Comp Neurol. 1992:322(1) 121-1315.
    30 Vibert N. Sefaffin M. Katheb A. et al Effects of aminoacids on medial vestibular neurons in guinea pig brainstem slices Soc Neurosci Abstr. 1992:18:215. 10
    31 Enna SJ. Maggi A. Biochemical pharmacology of GABAergic agonists. Life Science. 1979:24(19) 1727-1728
    32. Kmjevic K Chemical nature of synaptic transmission in vertebrates Physiol Rev. 1974. 54:418-540.
    33 Straube A. Kurxan R. Buttner U Differential effects of bicuculhne and muscimol microinjections into the vestibular nuclei on simian eye movement. Exp Brain Res.1991:86(2) .347-358.
    34 Luccarini P. Gahery Y. Blanchet G. et al. GABA receptors in Deiter's nuleus modulate posturokinetic responses to cortical stimulation in the cat Arch Ital Biol. 1992; 130(2) : 127-154.
    35. Cohen B. Helwig B. Raphan T. Balclofen and velocity storage a model of the effects of the drug on the vehbulo-ocular reflex. J Physiol,1987:393:703-725.
    36. Dieterich M, Straube A. Brandt T. et al. The effects of balcofen and cholineric drugs on upbeat and downbeat nystagmus. J Neurol Neurosurg Psychiat,1991;54(7) :627-632.
    37. Curtis DR. Duggan AW. Felix D GABA and inhibition of Deiters neurons Brain Res.l970:23(l):117-120.
    38 Smith PF. Darlinton CL. Hubbard Jl. Evidence for inhibitory amino acid receptors on guinea pig medial vestibular nucleus neurons in vitro. Neutosci Lett,1991;121(l-2) .244-246
    39. Serafin M. Khateb A. Vibert N. et al. Medial vestibular nuleus in the guinea-pig. Histaminergic receptors. I . An in vitri study. Exp Brain Res,1993;93(2) :242-248.
    40. Buttner-Ennever JA. Patterns of connectivity in me vestibular nuclei. Ann NY Acad Sci,1985;656(22) 363-378.
    41. Furuya N. Yabe T. Koizumi T. Neurotransmitters regulating vestibular commissural inhibition in me cat. Acta Otolaryngol, 1991. 481(Suppl) 205-208.
    42. Precht W. Schwindt PC, Baker R. Removal of vestibular commissural inhibition by antagonist of GABA and glycine. Brain Res,.1973:62(l):222-226.
    43. Ito J, Sasa M, Masuoka I, et al. Afferent projection from reticular nuclei, inferior olive and cerebellum to lateral vestibular nucleus of the cat as demonstrated by horseradish peroxydase. Brain Res,1982:231(2) 427-432.
    44. de Waele C. Abitol M. Chat M. et al Distribution of glutamatergic receptors and GAD messenger RNA-containing neurons in the vesubular nuclei of normal and hermilabyrinthectomized rats Eur J Neurosci. 1994. 6(4) 565-577.
    45. Dieringer N, Precht W. Mechanism of compensation for vestibular defects in the frog Ⅱ. IJ9
    
     Modification of the inhibitor, pathways Exp Brain Res.l979;36(2) :329-341
    46 Thompson GC. Igarashi M, Cortez AM GABA imbalance in squirrel monkey after unilateral vestibular end-organ ablation. Brain Res. 1986;370(1) 182-185
    47 Kitahara T. Takeda N. Saikaaa T. el al. Effects of MK-801 on Fos expression in the rat brainstem after unilateral labyrinthectomy Brain Res. 1995;700(1-2) :182-190
    48 Sekitani T. McCabe BF. Ryu JH Drug effects on the medial vestibular nucleus Arch Otolaryngol.1971. 93(6) 581-589.
    49 McCabe BF. Sekitam T. Ryu JH. Drug effects on postlabyrinthectomy nystagmus. Arch Otolaryngol. 1973. 98(5) .310-313
    50. Martin J. Gilchrist DP. Smith PF. ey al. Early diazepam treament following unilateral labyrinthectomy does not impair vestibular compensation of spontaneous nystagmus in guinea pig. J Vestibular Res, 1996;6(2) :35-139.
    51. Kitahara T, Fukushima M, Takeda N,et al. Effects of pre-flocculectomy on Fos expression and NMDA receptor-mediated neuralcircuits in the central vestibular system after unilateral labyrinthectomy ActaOtolaryngo12000: 120(7) 866-71.
    52. Hirate K. Kitayama A. Furuya N. Roles of glutamate receptor subtypes in the development of vestibularcompensauon after unilateral labyrinthectomy in the guinea pig. Neurosci Lett 2000;296(2-3) . 158-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700