视觉系统信息与前庭系统信息整合机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正常情况下,人体各感觉系统接受到的感觉信息是相互匹配的。不同感觉通道间信息的整合和匹配是维持机体正常生理和心理活动的前提。当不同通道信息间发生冲突时将会出现不同程度的生理和心理反应,可能导致工作能力降低,有时甚至会导致机体失能。视觉系统和前庭系统是人体两个非常重要的感觉系统,在维持机体正常的生理和心理活动中发挥着重要的作用。据统计80%-90%的外界信息是通过视觉系统传入的,而前庭系统在人体平衡、各种运动状态的感知和空间定向等方面发挥着重要的作用。
     视觉系统与前庭系统是与航空航天活动最密切相关的两个感觉系统。视觉系统信息和前庭系统信息的冲突或不匹配是导致运动病(motionsickness,MS)和空间定向障碍(sp atial disorientation,SD)发病的重要原因。运动病和空间定向障碍长期以来是困扰全世界航空航天活动的两大难题,由于具体的发病机制至今仍未阐明,使得预防和治疗措施缺乏针对性而难以奏效。因此,关于视觉系统信息与前庭系统信息互相作用和整合机制的研究是各国航空航天医学界研究的重点和热点问题。但由于缺乏相应的视觉缺陷研究模型,使得视觉信息与前庭系统信息的整合机制以及视觉信息在MS和SD发病机制中作用的研究受到极大限制。
     视觉缺陷模式动物是一类视觉功能先天存在缺陷的模式动物,在国内外被广范地应用于视觉相关的研究中。我们实验室发现和培育了1种视觉功能缺陷的模式动物—视网膜快速变性(retinal degeneration fast,rdf)小鼠,遗传特性稳定,并已建立了近交系。研究证实rdf小鼠出生后早期视锥细胞和视杆细胞发生凋亡,出生后3周时外层视网膜已消失,因此成年rdf小鼠明视觉和暗视觉丧失。由于其视觉功能的先天性缺陷,为我们从视觉系统入手开展视觉信息在SD和MS发病机制中的作用,以及视觉系统信息与前庭系统信息在中枢神经系统的整合机制的相关研究提供了独特的优势。本课题拟利用rdf小鼠先天性视觉功能缺陷的特性,观察旋转运动刺激对正常野生型昆明小鼠和rdf小鼠中枢神经系统Fos蛋白及降钙素基因相关肽和已酰胆碱表达的影响。初步阐明视觉系统信息与前庭系统信息在小鼠中枢神经系统整合的机制,为预防和治疗SD和MS提供理论依据。
     材料与方法
     1.采用标准化视觉电生理检查方案和HE染色对F 19(Filial 19)代成年rdf小鼠和正常野生型成年昆明小鼠的视觉电生理学特征和视网膜组织结构特点进行观察。
     2.分别给予rdf小鼠和正常野生型昆明小鼠旋转运动刺激(旋转半径0.6m,角速度180°/S,顺时针/逆时针交替刺激,每周期3 min,持续时间共30 min),通过观察它们条件性厌食症(conditioned taste avetsion,CTA)的程度,即旋转运动刺激前后对糖精水饮用量的变化,研究两种小鼠运动病敏感性的差异。
     3.运用免疫组织化学染色的方法观察旋转运动刺激(刺激模式同上)30 min后,两种小鼠中枢神经系统前庭相关的区域(前庭核、舌下神经前置核、下橄榄体β亚核和K帽、小脑绒球和旁绒球)Fos表达的差异。通过观察视觉信息对以上区域Fos蛋白表达的影响,明确视觉系统信息与前庭系统信息在小鼠神经中枢整合的关键区域。
     4.运用免疫组织化学染色的方法观察多次旋转运动前庭刺激(刺激模式同上,每次刺激30 min,间隔24 h,共3次)后,降钙素基因相关肽(calcitonin gene-related peptide,CGRP)和胆碱乙酰转移酶(choline acetyltransferase,ChAT)在视觉系统信息与前庭系统信息整合区域的表达差异,明确CGRP和乙酰胆碱(acetylcholine,Ach)是否参与了视觉系统信息与前庭系统信息在小鼠中枢神经系统的整合。
     结果
     1.野生型昆明小鼠ERG五项检查——视杆细胞反应视网膜电图(scotopic electroretinogram,Scot ERG)、振荡电位(oscillatory potentials,Ops)、最大混合反应视网膜电图(maximal combined responseelectroretinogram,Max ERG)、明适应视网膜电图(photopic electroretinogram,Phot ERG)、闪烁光视网膜电图(flicker electroretinogram,Flicker ERG)均可引出正常波形。在同样条件下rdf小鼠均未引出诱发电位波形。视网膜组织HE染色结果显示,正常野生型昆明小鼠视网膜各层均存在,层次清楚;而rdf小鼠视网膜外核层、光感受细胞层和外网状层消失,内核层也变薄。
     2.旋转运动刺激30 min后,两种小鼠24 h糖精水的饮用量与刺激前相比均显著减少[rdf小鼠:10.94±0.92 g(刺激前)vs 6.87±0.79 g(刺激后第1个24 h),n=7,P<0.01;昆明小鼠:11.16±0.96 g(刺激前)vs 9.37±0.86 g(刺激后第1个24 h),n=7,P<0.01]。但rdf小鼠比正常野生型昆明小鼠减少的程度更大[刺激后第1个24 h饮用量/刺激前饮用量:63.07±8.35(%,rdf小鼠)vs84.49±10.16(%,昆明小鼠),n=7,P<0.05]。
     3.旋转运动刺激30 min后,rdf小鼠舌下神经前置核(prepositushypoglossal nucleus,PrH)和下橄榄体内侧核K帽(Kooy cap ofinferior olivemedial nucleus,IOK)Fos阳性神经元数目显著少于正常野生型昆明小鼠[PrH:35.33±2.19(昆明小鼠)vs 20.67±1.45(rdf小鼠),n=6,P<0.01;IOK:12.17±1.19(昆明小鼠)vs 6.67±0.42(rdf小鼠),n=6,P<0.01]。神经中枢与前庭相关的其他区域,两种小鼠Fos蛋白表达也存在差异,但差异无显著性。
     4.3次间隔24 h的30 min旋转运动刺激后,CGRP和ChAT在rdf小鼠和正常野生型昆明小鼠前庭相关区域的表达模式均与旋转运动刺激后Fos蛋白的表达模式相似。rdf小鼠PrH和IOK的CGRP阳性神经元[PrH:87.33±1.96(昆明小鼠)vs 62.67±1.65(rdf小鼠),n=6,P<0.01;IOK:26.50±1.23(昆明小鼠)vs 17.00±0.89(rdf小鼠),n=6,P<0.01]和ChAT阳性神经元[PrH:78.33±1.78(昆明小鼠)vs 56.67±1.73(rdf小鼠),n=6,P<0.01;IOK:17.17±1.05(昆明小鼠)vs 10.33±0.92(rdf小鼠),n=6,P<0.01]均明显少于正常野生型昆明小鼠。除前庭内侧核rdf小鼠ChAT阳性神经元稍多于正常野生型昆明小鼠外[62.67±3.84(昆明小鼠)vs 66.67±2.54(rdf小鼠),n=6,P=0.03],神经中枢与前庭相关的其他区域,两种小鼠CGRP和ChAT表达的差异无显著性。
     结论
     野生型昆明小鼠ERG五项检查——Scot ERG、Ops、Max ERG、PhotERG Flicker ERG均可引出正常波形,证实其视网膜功能正常。在同样条件下rdf小鼠五项检查均未引出诱发电位波形,为熄灭型表现,说明其视杆体细胞与视锥体细胞功能均丧失。视网膜组织学观察表明,正常野生型昆明小鼠视网膜各层均存在,层次清楚。而rdf小鼠视网膜外核层、光感受器细胞层和外网状层消失,内核层也变薄,说明其视锥细胞和视杆细胞均完全凋亡。从视觉电生理特征和视网膜组织结构两方面证明,我们实验室发现的rdf小鼠是一种先天性视觉功能缺陷小鼠,其明视觉和暗视觉功能完全丧失。旋转运动刺激后,rdf小鼠糖精水饮用量的减少程度大于正常野生型昆明小鼠,rdf小鼠比野生型昆明小鼠发生了更加严重的厌食症。由于实验中,给予两种小鼠的旋转运动刺激的刺激模式、刺激时间和旋转角速度均完全相同,因此,rdf小鼠的运动病敏感性高于正常野生型昆明小鼠。这说明视觉系统信息在运动病的发病过程中发挥了一定的作用,视觉信息通过某种途径与前庭信息发生了关系,影响了中枢神经系统对运动刺激的反应性。
     30 min旋转运动刺激后,rdf小鼠舌下神经前置核和下橄榄体内侧核K帽Fos阳性神经元数目显著少于正常野生型昆明小鼠。说明视觉系统信息影响了这两个与前庭系统相关区域的神经元的激活,以上两个区域可能是视觉系统信息与前庭系统信息在小鼠中枢神经系统整合的关键部位。3次间隔24 h的30 min旋转运动刺激后,rdf小鼠舌下神经前置核和下橄榄体内侧核K帽的CGRP阳性神经元和ChAT阳性神经元数目均显著少于正常野生型昆明小鼠。结果表明旋转运动刺激后CGRP和ChAT在rdf小鼠和正常野生型昆明小鼠前庭相关区域的表达模式均与Fos蛋白的表达模式相似。这说明舌下神经前置核和下橄榄体内侧核K帽的神经元可能通过生成、释放CGRP和Ach参与了视觉系统信息与前庭系统信息在小鼠中枢神经系统的整合,CGRP和Ach可能做为神经递质或神经调质参与了视觉系统信息与前庭系统信息在小鼠神经中枢的整合。为今后探索运动病和空间定向障碍的发病机制及预防和对抗措施提供了重要的依据。
Normally,sensory information accepted by different sensory systems iscompatible and complementary.Sensory conflict would induce varying degreesof physiology or psychological reactions,even incapacitation.Visual system andvestibular system are two very important sensory systems in maintaining normalphysical and mental activities.80%-90% of enviromental information isaccepted through the visual system,and the vestibular system plays animportment role in the body balance,sensing sports state and spatial orientation.Therefore,the match of visual system information and vestibular systeminformation is essential to maintain normal psychological and physiologicalactivities.
     Motion sickness and spatial disorientation has been two problems impedingaviation and aerospace activities.Due to their unclear pathogenesis,it is difficultto prevent and treat them effectivly.The conflict of visual system informationand vestibular system information is one of the main reasons which inducemotion sickness and spatial disorientation.It become hot issue to explore integration and impact mechanism of visual information and vestibularinformation in aerospace medicine.However,for lacking animal model withvisual defect,the role of visual system information in mechanisms of spatialdisorientation and motion sickness is rarely reported.
     A kind of mouse with dysopia named rdf (retinal degeneration fast)mousehas been detected and nurtured in our laboratory.In this study,we may initiallyclarify the integration mechanism of visual information and vestibularinformation in the central nervous system using animal model with visual defect—rdf mouse under motion sickness,and provide basic theory for the preventionand treatment of spatial disorientation and motion sickness.
     Materials and Methods
     1.Electrophysiological characteristics of rdf mice and normal wild-typeKunming mice were investigated using international standardization schedule ofelectroretinogram test,and organizational structures were observed by HEstaining.
     2.Rdf mice and normal wild-type Kunming mice were subjected to rotarystimulation (turning radius:0.6 m;angular volicity:180°/s;3 min per cycle;clockwise rotation alternated with the anticlockwise rotation)for 30 minutes toinduce motion sickness.The conditions taste anorexia (CTA)to saccharinsolution was used to observe the differences in the sensitivity of motion sicknessof the two kinds of mice.
     3.The critical regions of sensory integration of visual information andvestibular information in the central nervous system were determined throughobserving the differences in the expressions of Fos in the vestibular-relatedregions (vestibular nucleus,prepositus hypoglossal nucleus,Kooy cap of inferior olive medial nucleus,βsubnucleus of olive inferior,flocculus andparaflocculus)of rdf mice and normal wild-type Kunming mice after rotatorystimulation (turning radius:0.6 m;angular volicity:180°/s;3 min per cycle;clockwise rotation alternated with the anticlockwise rotation)30 min.
     4.The differences in the expressions of calcitonin gene-related peptide(CGRP)and choline acetyl transferase (ChAT)in the vestibular-related regionsof rdf mice and normal wild-type Kunming mice after rotatory stimulation(turning radius:0.6 m;angular volicity:180°/s;3 min per cycle;clockwiserotation alternated with the anticlockwise rotation;30 min every time;interval:24 h)3 times were used to determine whether the calcitonin gene-related peptideand diacetyl-choline play the roles in the sensory integration of visualinformation and vestibular information in the central nervous system of mice.
     Results
     1.The results of electroretinogram tests indicted that ScotERG,Ops,MaxERG,PhotERG and Flicker ERG induced normal waves in the normal wild-typeKunming mice,But under the same conditions,the five tests failed to inducenormal waves in the rdf mice.The HE staining of retina displayed that all layersexisted clearly in normal wild-type Kunming mice.The photoreceptor layer,outer nuclear layer and outer plexiform layer of retina were invisible,and theinner nuclear layer became thining in the rdf mice.
     2.The intake of saccharin solution was significantly reduced in rdf mice[10.94±0.92 g (before stimulation)vs 6.87±0.79 g (first 24 h after stimulation),n=7,P<0.01] and normal wild-type Kunming mice [11.16±0.96 g (beforestimulation)vs 9.37±0.86 g (first 24 h after stimulation),n=7,P<0.01] afterrotary stimulation.The intake volumes first 24 h after stimualation of rdf mice and normal wild-type Kunming mice were 62.07% and 84.49% of intake beforestimulation respectively,the decrease of rdf mice was more greater than that ofnormal wild-type kunming mice [the intake volume in first 24 h afterstimulation/the intake volume before stimulation:63.07±8.35 (%,rdf mice)vs84.49±10.16(%,Kunming mice),n=7,P<0.05]
     3.The numbers of Fos-positive neurons in prepositus hypoglossal nucleusand Kooy cap of inferior olive medial nucleus were significantly less in rdf micethan those in normal wild-type Kunming mice after rotary stimulation[PrH:35.33±2.19 (Kunming mice)vs 20.67±1.45 (rdf mice),n=6,P<0.01;IOK:12.17±1.19 (Kunming mice)vs 6.67±0.42 (rdf mice),n=6,P<0.01].In othervestibular-related regions,the differences in the numbers of Fos-positiveneurons between the two experimental groups were not significant.
     4.After rotatory stimulus 3 times at interval 24 h,the expressions of CGRP[PrH:87.33±1.96 (Kunming mice)vs 62.67±1.65 (rdfmice),n=6,P<0.01;IOK:26.50±1.23 (Kunming mice)vs 17.00±0.89 (rdfmice),n=6,P<0.01] and ChAT[PrH:78.33±1.78 (Kunming mice)vs 56.67±1.73 (rdfmice),n=6,P<0.01;IOK:17.17±1.05 (Kunming mice)vs 10.33±0.92 (rdf mice),n=6,P<0.01] inprepositus hypoglossal nucleus and Kooy cap of inferior olive were significantlyless in rdf mice than those in normal wild-type Kunming mice.There were somedifferences in expression of CGRP and ChAT in the other vestibular-regions inthe two kinds of mice after rotatory stimulus,but the differences were notsignificant except the differences of ChAT in the medial vestibularnucleus[62.67±3.84 (Kunming mice)vs 66.67±2.54 (rdfmice),n=6,P=0.03].
     Conclusion
     The five electroretinogram tests of Scot ERG、Ops、Max ERG、Phot ERG and Flicker ERG failured to induce normal waves in the rdf mice,and the HEstaining of retina displayed that photoreceptor layer,outer nuclear layer andouter plexiform layer were not visible and the inner nuclear layer became thin inthe rdf mice.All those indicated that the rdf mouse is a kind of mouse withdysopia.After rotatory 30 min,the reduction of intake volune of saccharinsolution was greater in rdf mice compared to that of normal wild-type Kunmingmice.That indicated that anorexia in the rdf mice was more seriously than thatin the normal wild-type Kunming mice.It also manifested that the rdf mice weremore sensitivie to rotatory stimulation than normal wild-type Kunming mice.Sowe came to a conclusion that visual information plays a role in the mechanismof motion sickness.Visual information and vestibular information impact eachother through certain channels.
     After rotatory stimulation 30 min,the numbers of Fos-positive neurons inprepositus hypoglossal nucleus and Kooy cap of inferior olive were significantlyless in rdf mice than those in normal wild-type Kunming mice.The expressionof Fos protein reflects activation of neurons.The results indicated that visualinformation may affect the activation of neurons by rotatory stimulation in thosetwo regions.Therefore,the prepositus hypoglossal nucleus and Kooy cap ofinferior olive medial nucleus are key regions where the visual information andvestibular information integrate in the central nervous system in mice.Theexpression patterns of CGRP and ChAT were similar to that of Fos in thevestibular-related regions in the normal wild-type Kunming mice and rdf miceafter rotatory stimulus 3 times at interval 24 h.So we speculated that CGRP andAch generated and released by neurons in the hypoglossal nucleus and Kooy capof inferior olive may paly a role in the sensory integration of visual systeminformation and vestibular system information in the central nervous system in mice with motion sickness.
引文
1. 葛坚.眼科学.北京:人民卫生出版社, 2002. 193
    
    2. Pak WL. Drosophila in vision research. The Friedenwald Lecture. Invest.Ophthal. Vis. Sci. 1995; 36(12): 2340-2357.
    
    3. Brockerho SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W and Dowling JE. A behavioral screen for isolating zebrafish mutants with visual system defects. Proc. Natl. Acad. Sci. 1995; 92(23): 10545-10549.
    
    4. Semple-Rowland SL and Lee NR. Avian models of inherited retinal disease.Methods Enzymol. 2000; 316: 526-536.
    
    5. Pittler SJ, Keeler CE, Sidman RL and Baehr W. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc. Natl. Acad. Sci. 1993; 90(20): 9616-9619.
    
    6. Suber ML, Pittler SJ, Qin N, Wright GC, Holcombe V, Lee RH, Craft CM,Lolley RN, Baehr W and Hurwitz RL. Irish setter dogs a.ected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta subunit gene. Proc. Natl. Acad. Sci. 1993; 90(9): 3968-3972.
    
    7. Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature. 1990; 347(6294): 677-80.
    
    8. Scott K. and Zuker C. Lights out: deactivation of the phototransduction cascade. Trends Biochem. Sci. 1997, 22(9): 350-354.
    
    9. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S and Heckenlively JR. Retinal degeneration mutants in the mouse. Vision Res.2002; 42(4): 517-525.
    
    10. Portera CC, Sung CH, Nathans J and Adler R. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc. Natl. Acad. Sci. 1994;91(3): 974-978.
    
    11. Chang GQ, Hao Y and Wong F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron. 1993;11(4): 595-605.
    
    12. Pittler SJ and Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase P-subunit gene of the rd mouse.Proc. Natl. Acad. Sci. 1991; 88(19): 8322-8326.
    
    13. Palczewski K and Saari JC. Activation and inactivation steps in the visual transduction pathway. Curr. Opin. Neurobiol. 1997, 7(4): 500-504.
    
    14. Farber DB and Lolley RN. Cyclic guanosine monophosphate: elevation in degenerating photoreceptor cells of the C3H mouse retina. Science. 1974;186(4162): 449-451.
    
    15. Farber DB and Lolley RN. Enzyme basis for cyclic GMP accumulation in degenerative photoreceptor cells of mouse retina. J. Cyclic Nucleotide Res.1976; 2(3): 139-148.
    
    16. Bennett J, Tanabe T, Sun D, Zeng Y, Kjeldbye H, Gouras P and Maguire AM.Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nature Med. 1996; 2(6): 649-654.
    
    17. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=180072
    
    18. McLaughlin ME, Sandberg MA, Berson EL and Dryja TP. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genetics. 1993; 4(2): 130-134.
    
    19. Weber B, Riess O, Hutchinson G, Collins C, Lin BY, Kowbel D, Andrew S,Schappert K and Hayden MR. Genomic organization and complete sequence of the human gene encoding the beta-subunit of the cGMP phosphodiesterase and its localisation to 4p 16.3.Nucleic Acids Res.1991;19(22):6263-6268.
    20.Bateman JB,Klisak I,Kojis T,Mohandas T,Sparkes RS,Li TS,Applebury ML,Bowes C and Farber DB.Assignment of the beta-subunit of rod photoreceptor cGMP phosphodiesterase gene PDEB(homolog of the mouse rd gene)to human chromosome 4p16.Genomics.1992;12(3):601-603.
    21.Altherr MR,Wasmuth JJ,Seldin MF,Nadeau JH,Baehr W,Pittler SJ.Chromosome mapping of the rod photoreceptor cGMP phosphodiesterase beta-subunit gene in mouse and human:tight linkage to the Huntington disease region(4p16.3).Genomics.1992;12(4):750-754.
    22.McLaughlin ME,Ehrhart TL,Berson EL and Dryja TP.Mutation spectrum of the gene encoding the β subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa.Proc.Natl.Acad.Sci.1995;92(8):3249-3253.
    23.崔云,王立,赵堪兴,王擎,陈薇婴,王犁明.视网膜色素变性隐性遗传致病基因PDE6B的突变分析.中华医学遗传学杂志.2003;20(3):200-202
    24.Ogilvie JM,Tenkova T,Lett JM,Speck J,Landgraf M and Silverman MS.Age-related distribution of cones and ON-bipolar cells in the rd mouse retina.Curr Eye Res.1997;16(3):244-251.
    25.Carter-Dawson LD,LaVail MM and Sidman RL.Differential effect of the rd mutation on rods and cones in the mouse retina.Invest Ophthalmol Vis Sci.1978;17(6):489-498.
    26.Jimenez AJ,Garcia-Fernandez JM,Gonzalez B and Foster RG.The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina.Cell Tissue Res.1996;284(2):193-202.
    27.Strettoi E and Pignatelli V.Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc. Natl. Acad. Sci. 2000; 97(20):11020-11025.
    
    28. Strettoi E, Pignatelli V, Rossi C, Porciatti V and Falsini B. Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res. 2003;43(8): 867-877.
    
    29. Strettoi E, Porciatti V, Falsini B, Pignatelli V and Rossi C. Morphological and Functional Abnormalities in the Inner Retina of the rd/rd Mouse. J.Neurosci. 2002; 22(13): 5492-5504.
    
    30. Varela C, Igartua I, De la Rosa EJ and De la Villa P. Functional modifications in rod bipolar cells in a mouse model of retinitis pigmentosa.Vision Res. 2003, 43(8): 879-885.
    
    31. Sanyal S and Jansen H. A comparative survey of synaptic changes in the rod photoreceptor terminals of rd, rds and double homozygous mutant mice.Prog. Clin. Biol. Res. 1989; 314: 233-50.
    
    32. Johanna L, Renata P, Reinier OS, Martin H, William BS, Corazon DB,Richard LS and Wadih A. An anti-angiogenic state in mice and humans with retinal photoreceptor cell degeneration. Proc. Natl. Acad. Sci. 2001; 98(18):10368-10373.
    
    33. Blanks JC and Johnson LV. Vascular atrophy in the retinal degenerative rd mouse. J. Comp. Neurol. 1986; 254(4): 543-553.
    
    34. Neuhardt TH, May CA, Wilsch C, Eichhorn M and L(?)tjen-Drecoll E.Morphological changes of retinal pigment epithelium and choroids in rd-mice. Exp. Eye Res. 1999; 68 1): 75-83.
    
    35.RetNet: Summaries of genes and loci causing retinal diseases.http://www.sph.uth.tmc.edu/RetNet. 2007-3-24.
    36. Miquel T, Gemma M and Roser GD. Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa(RP26). Am. J. Hum. Genet. 2004; 74(1): 128-38.
    
    37. Ricardo F, Monika B, Linn G, W WP, Patrcia F, Magnus A, Samuel G, Paul AS, Sten A and Anard S. Analysis of the RPGRGene in 11 Pedigrees with the Retinitis Pigmentosa Type 3 Genotype: Paucity of Mutations in the Coding Region but Splice Defects in Two Families. Am. J. Hum. Genet.1997; 61(3): 571-80.
    
    38. Seymour AB, Dash-Modi A, O'Connell JR, Shaffer-Gordon M, Mah TS,Stefko ST, Nagaraja R, Brown J, Kimura AE, Ferrell RE, Gorin MB.Linkage analysis of X-linked cone-rod dystrophy: Localization to Xp11.4 and definition of a locus distinct from RP2 and RP3. Am. J. Hum. Genet.1998; 62(1): 122-9.
    
    39. 查锡良.医学分子生物学(研究生教材).北京:人民卫生出版社. 2002.28-34.
    
    40. Dryja TP, Rucinski DE, Chen SH and Berson EL. Frequency of mutations in the gene encoding the alpha sspubunit of rod cGMP-phohodiesterase in autosomal recessive retinitis pigmentosa. IVOS. 1999; 40(8): 1859-65.
    
    41. Musarella MA, Burghes A, nson-Cartwright L, Mahtani MM, Argonza AR,Tsui LC, Worton R. Localization of the gene for X-linked recessive type of retinitis pigmentosa(XLRP) to Xp21 by linkage analysis. Am. J. Hum.Genet. 1988; 43(4): 484-94.
    
    42. Paylo AF. Insights into X-linked retinitis pigmentosa type 3, allied diseases and underlying pathomechanisms. Hum Mol Genet. 2005; 14(2): R259-67.
    
    43. Brown J, Dry KL, Edgar AJ, Pryde FE, Hardwick LJ, Aldred MA, Lester DH, Boyle S, Kaplan J, Dufier JL Ho MF, Monaco AM, Musarella MA and Wright AF. Analysis of Three Deletion Breakpoint in Xp21.1 and the Further Localization of RP3. Genomics. 1996; 37(2): 200-10.
    
    44. Hans-Holger R, Frans PMC and Wolfgang B. Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. Hum. Mol. Genet. 1996; 5(7):1034-41.
    
    45. Marco L, Marius U, Forbes M, Alan W, Thomas M and J(?)rg B. The retinitis pigmentosa GTPase regulator, RPGR, interacts with the delta subunit of rod cyclic GMP phosphodiesterase. PNAS. 1999; 96(4): 1315-20.
    
    46. Roepman R, Bernoud-Hubac N, Schick DE, Maugeri A, Berger W, Ropers HH, Cremers FP and Ferreira PA. The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segment of rod photoreceptors. Hum. Mol. Genet. 2000; 9(14): 2095-105.
    
    47. Pittler SJ, Keeler CE, Sidman RL and Baehr W. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. PNAS. 1993; 90(20): 9616-9.
    
    48. Cathy B and Debora BF. mRNAs coding for proteins of the cGMP cascade in the degenerative retina of the rd mouse. Experimental Eye Research.1987; 45(4): 467-80.
    
    49. Cathy B, Theovan V and Debora BF. Opsin, G-protein and 48-kDa protein in normal and rd mouse retinas: Developmental expression of mRNAS and proteins and light/dark cycling of mRNAs. Experimental Eye Research.1988; 47(3): 369-90.
    
    50. Cathy B, Michael D, Christine AK and Debora BF. Isolation of a candidate cDNA for the causing retinal degeneration in the rd mouse. PNAS. 1989;86(24): 9722-6.
    
    51. Bowes C, Li T, Frankel WN, Danciger M, Coffin JM, Applebury ML and Farber DB. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. PNAS. 1993; 90(7):2955-9.
    
    52. Pittler SJ and Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase P-subunit gene for the rd mouse.PNAS. 1991; 88(19): 8322-6.
    
    53. Lem J, Flannery Jg, Li T, Applebury ML, Farber DB and Simon MI.Retinal degeneration is rescued in transgenic rd mouse by expression of the cGMP phosphodiesterase β subunit. PNAS. Neurobiology. 1992; 89(10):4422-6.
    
    54. Bateman JB, Klisak I, Kojis T, Mohandas T, Sparkes RS, Li TS, Applebury ML, Bowes C and Farber DB. Assignment of the P-subunit of rod photoreceptor cGMP phosphodiesterase gene PDEB (homolog of the mouse rd gene) to human chromosome 4pl6. Genomics. 1992; 12(3): 601-3.
    
    55. Riess O, Noerremoelle A, Weber B, Musarella MA and Hayden MR. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa. Am. J. Hum. Genet. 1992; 51(4): 755-62.
    
    56. Mclaughlin ME Ehrhart TL, Berson EL and Dryja TP. Mutation spectrum of the gene encoding the β subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. PNAS. 1995; 92(8): 3249-53.
    
    57. Danciger M, Blaney J, Gao YQ, Zhao DY, Heckenlively JR, Jacobson SG and Farber DB. Mutation in the PDE6B gene in autosomal ressive retinitis pigmentosa. Genomics. 1995; 30(1): 1-7.
    
    58. Cui Y, Zhao KX, Wang L, Wang Q, Zhang W, Chen WY and Wang LM. A study of PDE6B gene mutation and phenotype in Chinese cases with retinitis pigmentosa.Zhonghua Yan Ke Za Zhi.2003;39(1):28-32.
    59.Danciger M,Heilbron V,Gao YQ,Zhao DY,Jacobson SG and Farber DB.A homozygous PDE6B mutation in a family with autosomal recessive retinitis pigmentosa.Mol.Vis.1996;2:10.
    60.Gao YQ,Danciger M,Zhao DY,Blaney J,Piriev NI,Shih J,Jacobson SG,Heckenlively JH and Farber DB.Screening of the PDE6B gene in patients with autosomal dominant retinitis pigmentosa.Experimental Eye Research.1996;62(2):149-54.
    61.Poehner WJ,Fossarello M,Rapoport AL,Aleman TS,Cideciyan AV,Jacobson SG,Wright AF,Danciger M and Farber DB.A homozygous deletion in RPE65 in a small Sardinian family with autosomal recessive retinal dystrophy.Mol.Vis.2000;6:192-8.
    62.Dryja TP Finn JT,Peng YW,McGee TL,Berson EL and Yau KW.Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa.PNAS.1995;92(22):10177-81.
    63 Dryja TP,Rucinski DE,Chen SH,Berson EL.Frequency of mutations in the gene encoding the α subunit of rod cGMP-Phosphodiesterase in autosomal recessive retinitis pigmentosa[J].IVOS.1999;40(8):1859-65.
    64.Gao YQ,Danciger M,Longmuir R,Piriev NI,Zhao DY,Heckenlively JR,Fishman GA,Weleber RG,Jacobson SG,Stone EM and Farber DB.Screening of the gene encoding the alpha'-subunit of cone cGMP-PDE in patients with retinal degenerations.IVOS.1999;40(8):1818-22.
    65.于立身.飞行中空间定向障碍研究进展.航空军医.2001;29(2):83-86
    66.徐先荣,赵霆,张扬,刘莼,刘华凤.歼击机飞行员飞行错觉的研究.临床耳鼻咽喉科杂志.2004;18(1):6-7
    67. Holmes SR, Bunting A, Brown DL, Hiatt KL, Braithwaite MG and Harrigan MJ. Survey of spatial disorientation in military pilots and navigators. Aviat.Space Environ. Med. 2003; 74(9): 957-965.
    
    68. Goh J and Wiegmann D. Human factors analysis of accidents involving visual flight rules flight into adverse weather. Aviat. Space Environ. Med.2002; 73(8): 817-822.
    
    69. Braithwaite MG, Douglass PK, Durnford SJ and Lucas G. The hazard of spatial disorientation during helicopter flight using night vision devices.Aviat. Space Environ. Med. 1998; 69(11): 1038-1044.
    
    70. Collins DL and Harrison G. Spatial disorientation episodes among F-15C pilots during Operation Desert Storm. J. Vestib. Res. 1995; 5(6): 405-10.
    
    71. Huber SW. Recovery from unusual attitudes: HUD vs. back-up display in a static F/A-18 simulator. Aviat. Space Environ. Med. 2006; 77(4): 444-8.
    
    72. http://crisp.cit.nih.gov/crisp/CRISP_LIB.getdoc?textkey=6983476&p_grant_num=1R01EY016178-01A1&p_query=(spatial+%26+disorientation)&ticket=17536291&p_audit_session_id=81677408&p_audit_score=8&p_audit_numfound=6&p_keywords=spatial+disorientation.
    
    73. Day BL, Cole J. Vestibular-evoked postural responses in the absence of somatosensory information. Brain. 2002; 125(9): 2081-2088.
    
    74. Baker JF. Dynamics and directionality of the vestibulo-collic reflex (VCR) in mice. Exp. Brain Res. 2005; 167(1): 108-113.
    
    75. Harrod CG and Baker JF. The vestibulo ocular reflex (VOR) in otoconia deficient head tilt (het) mutant mice versus wild type C57BL/6 mice.Brain Res. 2003; 972(1-2): 75-83.
    
    76. Kaufman G, Weng T and Ruttley T. A rodent model for artificial gravity:VOR adaptation and Fos expression. J Vestib Res. 2005; 15(3): 131-147.
    77.Pompeiano O.The vestibulo-ocular and the vestibulospinal reflexes:noradrenergic influences on the plastic changes which affect the cerebellar cortex during vestibular adaptation.Arch.Ital.Biol.2006;144(3-4):197-253.
    78.Horn ER.Microgravity-induced modifications of the vestibuloocular reflex in Xenopus laevis tadpoles are related to development and the occurrence of tail lordosis.J.Exp.Biol.2006;209(15):2847-58.
    79.Mitani K,Horii A and Kubo T.Impaired spatial learning after hypergravity exposure in rats.Brain.Res Cogn.Brain Res.2004;22(1):94-100.
    80.石力.次声对小鼠视觉系统作用.第四军医大学硕士论文.2003.
    81.龙潭.快速视网膜变性小鼠视网膜发育的研究.第四军医大学硕士论文.2005.
    82.Zhang Z,Gu Y,Li L,Long T,Guo Q and Shi L.A potential spontaneous rat model of X-linked congenital stationary night blindness.Doc Ophthalmol.2003;107(1):53-7.
    83 Gu YH,Zhang ZM,Long T,Li L,Hou BK and Guo Q.A naturally occurring rat model of X-linked cone dysfunction.Invest Ophthalmol Vis Sci.2003;44(12):5321-6.
    84.张作明.航空航天临床医学.西安:第四军医大学出版社.2005:141-147
    85 Kohl RL.Sensory conflict theory of space motion sickness:an anatomical location for the neuroconflict.Aviat.Space Environ.Med.1983;54(5):464-465.
    86.戴文权,孙新环,张立,于立身.检验飞行中飞行学员晕机反应的动态观察.航空军医.1996;24(6):346-348.
    87.Muth ER.Motion and space sickness:intestinal and autonomic correlates.Auton Neurosci.2006 30;129(1-2):58-66.
    88. Golding JF. Motion sickness susceptibility. Auton Neurosci. 2006; 129(1-2):67-76.
    
    89. 姜正林.运动病发病机制与防治措施.交通医学,2000; 14(5): 433-435.
    
    90. Eversmann T, Gottsmann M and Uhlich E.Increased secretion of growth hormone, prolactin, antidiuretic hormone, and cortisol induced by the stress of motion sickness. Aviat. Space Environ. Med .1978; 49(1): 53-7.
    
    91. Treisman M. Motion Sickness: An evolutionary hypothesis. Science. 1977;197: 493-5.
    
    92. Money KE, Cheung BS. Another function of the inner ear: Facilitation of the emetic response to poisons. Aviat Space Environ Med. 1983; 54:208-13.
    
    93. Paker DE, Paker KL. Adaptation to the simulated stimulus rearrangement of weightlessness In:Motion and space sickness. Crampton GH (ed) CRC press. Boca Raton: 247-62
    
    94. Baumgarten Von RJ, Wetzig J, Vogel H. Static and dynamic mechanisms of space vestibular malaise. Physiologist. 1982; 25:33-6;
    
    95. Diamond SQ Markham GH. Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat Space Environ Med. 1991; 59: 1158-62.
    
    96. Diamond SQ Markham GH. The effect of space missions on gravity-responsive torsional eye movements. J. Vestib. 1998; 3: 217-31
    
    97. Parker DE, Reschke MF. Otolith Tilt -Translation Reiterpretation following prolonged weightlessness: Implications for preflight training. Aviat Space Environ Med. 1985; 56:601-9
    
    98. Thaung C, Hough T, Hunter AJ, Hardisty R and Nolan PM. In search of new disease models in the mouse using ENU mutagenesis. Ernst Schering Res.Found Workshop.2002;36(1):109-134.
    99.闫果林.一种视网膜色素变性小鼠致病基因的鉴定.第四军医大学硕士论文.2008.
    100.惠延年主编.眼科学.第6版.北京:人民卫生出版社.2004.181
    101.王小成,冯立宁,张作明,慧瑞,武胜昔.降钙素基因相关肽在运动病大鼠前庭传出中枢神经系统和前庭核的表达变化.航天医学与医学工程.2006,19(3):167-170.
    102.王小成,冯立宁,张作明.运动病大鼠血浆降钙素基因相关肽含量的变化.第四军医大学学报.2006,27(22):2020-2022.
    103.姜正林,沈洪妹,杨凯.大鼠运动病模型-条件性厌食症的建立.中华航海医学杂志.2000,7(2):97-100.
    104.Dobie TG and May JG.Cognitive-behavioral management of motion sickness.Aviat.Space Environ.Med.1994;65(Sup):C1.
    105.Roy MA and Brizzee KR.Motion sickness-induced food aversions in the squirrel monkey.PhysiolBehav.1979,23:39-41.
    106.Wilpizeski CR,Lowry LD and GreenSJ.Subjective concomitants of motion sickness:quantifying rotation-induced illness in squirrel monkeys.Otolaryngol Head Neck Surg.1987;97:433-440.
    107.Fox RA,Corcoran M and Brizzee KR.Conditioned taste aversion and motion sickness in cats and squirrel monkeys.Can.J.Physio Pharmacol,1990;68:269-278.
    108.王小成.降钙素基因相关肽(CGRP)在运动病发病中作用的初步研究.第四军医大学硕士论文.2006.
    109.程记伟,白宇.即刻早期基因c-fos与癫痫关系的研究进展.现代医药卫生.2008;14(2):221-222.
    110.刘俊华.急性热应激对大鼠中脑和脑桥Fos和GFAP表达的影响.第四军医大学硕士论文.2007.
    111. Kaufman GD and Perachio AA. Translabyrinth electrical stimulation for the induction of immediate early genes in the gerbil brainstem. Brain Res.1994; 646: 345-360
    
    112. Kaufman GD, Anderson JH and Beitz AJ, Brainstem. Fos expression following acute unilateral labyrinthectomy in the rat. NeuroReport 1992; 3:829-832.
    
    113. Kaufman GD, Anderson JH and Beitz AJ. Otholith-brainstem connectivity:evidence for differential neural activation by vestibular hair cells based on quantification of Fos-expression in unilateral labyrinthectomized rats. J.Neurophysiol. 1993; 70: 117-127.
    
    114. Saika T, Kiyama H, Senba E and Tohyama M. Expression of c-fos-like protein following unilateral labyrinthectomy. Neurosci. Res. 1991; 16:S36.
    
    115. Duflo SGD, Gestreau C, Tighilet B and Lacour M. Fos expression in the cat brainstem after unilateral vestibular neurectomy. Brain res. 1997; 82:41-17.
    
    116. Shinder ME, Perachio AA and Kaufman GD. Fos responses to short-term adaptation of the horizontal vestibuloocular reflex before and after vestibular compensation in the Mongolian gerbil. Brain Res. 2005; 1050:79-93.
    
    117. Cirelli C, Pompeiano M, D'Ascanio P, Arrighi P and Pompeiano O. C-fos expression in the rat brain after unilateral labyrinthectomy and its relation to uncompensated and compensated stages. Neuroscience. 1996; 70:515-546.
    
    118. Kaufman GD.Fos expression in the vestibular brainstem:what one marker can tell us about the network. Brain research reviews. 2005;50: 200-211.
    
    119. Schmidt M, Schiff D and Bentivoglio. Independent efferent populations in the nucleus of the optic tract: an anatomical and physiological study in rat and cat. J. Comp. Neurol. 1995; 360: 271-285.
    120. Shinder ME, Perachio AA and Kaufman GD. VOR and Fos response during acute vestibular compensation in the Mongolian gerbil in darkness and in light.Brain Research. 2005; 1038: 183-197.
    
    121. Kaufman GD , Shinder ME and Perachio AA. Correlation of Fos expression and circling asymmetry during gerbil vestibular compensation.Brain Research. 1999; 817: 246-255.
    
    122. McCrea RA and Cullen KE. Responses of vestibular and prepositus neurons to head movements during voluntary suppression of the vestibuloocular reflex. Ann. NY. Acad. Sci. 1992; 656: 379-395.
    
    123. Balaban CD, Schuerger RJ and Porter JD. Zonal organization of flocculo-vestibular connections in rats. Neuroscience. 2000; 99: 669-682.
    
    124. Purcell IM and Perachio AA. Peripheral patterns of terminal innervation of vestibular primary afferent neurons projecting to the vestibulo-cerebellum in the gerbil. J. Comp. Neurol. 2001; 433(1): 48- 61.
    
    125. Duflo SGD, Gestreau C and lacour M. Fos expression in the rat brain after exprosure to gravito-intertial force changes. Brain research. 2000; 861:333-344.
    
    126. Kaufman GD, Anderson JH and Beitz AJ. Fos-defined activity in rat brainstem following centripetal acceleration. J. Neurosci. 1992; 12: 4489-4500.
    127. Azizi SA and Woodward DJ. Inferior olivary nuclear complex of the rat:morphology and comments on the principles of organization within the olivocerebellar system. J. Comp. Neurol. 1987; 263: 467-484.
    
    128. Balaban CD, Schuerger RJ and Porter JD. Zonal organization of flocculo-vestibular connections in rats. Neuroscience. 2000; 99: 669-682.
    
    129. Fukushima K. Corticovestibular interactions:anatomy, Electrophysiology and functional considerations. Exp. Brain Res. 1997; 117: 1-16.
    
    130. Krukoff TL. c-fos expression as a marker of functional activity in the brain:immunohistochemistry Cell Neurobiology Techniques.Neuromethods.1998;33:213-230.
    131.Li J,Potts JT and Mitchell JH.Effect of barodenervation on c-Fos expression in the medulla induced by static muscle contraction in cats.Am.J.Physiol.1998;274:901-908.
    132.赵真,米文娟,刘顺利,邱建华.TH和ChAT阳性神经元在大鼠面神经核团中的分布及其意义.中华耳科学杂志.2008;6(3):273-277.
    133.温泽锋,姜平,童鑫康,张晔.出生前后胆碱乙酰转移酶在大鼠脑内定位的研究.神经解剖学杂志.2008;24(2):176-180.
    134.Wckym PA,Popper P and Ward PH.Cell and molecular anatomy of nicotinic acetylcholine receptor subunits and calcitonin gene-related peptide in the rat vestibular system.Otolaryngol Head Neck Surg.1991;105:493-510.
    135.迟放鲁,王正敏,李宽,吴雯.外周前庭系统损伤后传出性前庭神经系统降钙素基因相关肽的变化.中华耳鼻咽喉科杂志.1999;34(1):11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700