下丘神经元对不同声刺激模式的反应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在自由声场条件下,采用在体神经电生理记录方法,以大蹄蝠(leaf-nosed bat, Hipposideros armiger)、几内亚长翼蝠(Miniopterus magnater)和小鼠(mouse, Mus musculus, Km)为模型,研究了“下丘(inferior colliculus, IC)神经元对不同声刺激模式的反应特性”,获得了一系列有意义的研究结果:
     1.所录制到的大蹄蝠回声定位叫声为恒频-调频(constant frequency-frequency modulation, CF-FM)信号,一般含有2-3个谐波,1-3谐波的CF频率依次为33.3(±0.2)、66.5(±0.3)、99.4(±0.5)kHz,其中第2谐波为其主频(dominant frequency, DF)。所记录大蹄蝠IC神经元的最佳频率(best frequency, BF)和记录深度之间存在线性相关(n=169,r=0.716,P<0.001),BF调谐在DF的神经元具有较低的最小阈值(minimal threshold, MT)和较高的Q值。当用CF和FM声单独刺激时,神经元对1次刺激只产生1个on反应(single-on response)。当用CF-FM声刺激时,大部分(76%)IC神经元仅对CF-FM声刺激的开始产生反应,即single-on反应,将其称之为single-on神经元;其余(24%)的IC神经元则对CF-FM声刺激的CF和FM成分的开始分别产生反应,即双反应(double-on response),将其称之为double-on神经元。实验观察到double-on神经元对单独的FM成分反应的阈值和潜伏期要比单独的CF成分更高和更长;double-on神经元对CF-FM刺激反应的潜伏期短于single-on神经元。这些结果表明,大蹄蝠IC神经元的频率调谐与回声定位信号的主频之间密切相关,BF位于主频及其附近的神经元其频率调谐和分析能力最强,CF-FM声信号中的FM成分在定型神经元的发放类型、阈值、反应潜伏期和放电率方面起着重要作用;并提示这两种反应类型的神经元有可能在蝙蝠巡航期间,分别扮演着根据回声定性靶物和获取靶物细节信息的角色。
     2.大蹄蝠IC神经元对CF和CF-FM声刺激的强度放电率函数均表现为单调型、饱和型和非单调型,在CF-FM声刺激下,单调型神经元比例下降,饱和型和非单调型比例增加;且神经元的最佳强度(best amplitude, BA) (84.4±11.3 dB SPL)和动力学范围(dynamic range, DR)(22.5±8.5 dB)均要比CF刺激下的BA(93.0±9.8 dB SPL)(P<0.01)和DR(27.5±9.4 dB)(P<0.05)低;而强度放电率函数曲线的斜率(slope) (4.1±1.7%/dB)则要高于CF刺激(3.1±1.4%/dB)(P<0.05)。进一步分析不同强度下FM成分对神经元放电率的影响,结果显示,在低强度(MT+30 dB)下则降低了CF的兴奋作用(P<0.001)。基于以上结果推测,低强度下FM中邻近CF的频率成分发挥了CF的持续效应;而高强度下,FM中偏离CF较远的频率成分激活了低频边高阈值的侧抑制神经元,从而抑制了神经元的放电率。结果提示CF-FM蝙蝠回声定位信号FM成分能够提高了下丘神经元的声强敏感性。
     3.由于回声频率和强度均可发生改变,而时程则不然,成为蝙蝠识别自身声脉冲的“标签”。本实验通过向几内亚长翼蝠给不同的刺激呈现率(presentation rate, PR)的单声刺激和不同间隔的脉冲-回声对刺激,来研究IC神经元在不同PR条件下的时程调谐以及对声刺激下的前掩蔽。结果显示,随着PR的增加,IC神经元的时程调谐类型由长通或者全通型向带通、短通型转变,大多数神经元关键带(critical band)带宽变窄(P<0.001);前掩蔽的效果与神经元的时程调谐特性无关,R值随着时程的增加而增加(P<0.001)。这些结果表明,PR增加导致带通和短通型神经元比例增加,使得神经元跟随高脉冲重复率能力增强,其结果正好与蝙蝠在回声定位过程中不断增加发声脉冲重复率和缩短时程的回声定位行为相匹配,而前掩蔽效应与声刺激时程的正相关有利于蝙蝠在捕食过程中更多地获取回声信息。
     4.用对声刺激模式在几内亚长翼蝠的IC所获得研究结果显示,当掩蔽效应指数“R”下降50%时,高、低频边的半带宽(half-band width),可将受前掩蔽影响的神经元分为低频边长效掩蔽型、高频边长效掩蔽型和双边等效或均衡掩蔽型;所有神经元的高频边半带宽(half-band widthhigh)与低频边半带宽(half-band widthlow)之间存在线性相关(n=24,r=0.47,P<0.05);50%神经元的half-band widthlow显著大于half-band widthhigh(P<0.001),25%神经元half-band widthhigh显著大于half-band width,low (P<0.05),其余25%的神经元的half-band widthhigh与half-band widthlow之间无显著差异(P>0.05)。基于这些结果推测,由偏离BF声刺激所产生的强掩蔽效应,或许能为蝙蝠的发声抑制理论和有回声环境中的听觉抑制效应提供某种实验证据。
     5.在对声刺激模式下,研究了小鼠IC神经元前掩蔽所致的膜电位变化,结果显示,神经元对单声刺激诱发的动作电位(action potential, AP)发放主要有单AP(n=11)、双AP(n=8)和串AP(n=5)发放3种模式;所诱发的抑制性突触后电位(inhibitory postsynaptic potential, IPSP)可出现在兴奋前或/和兴奋后。58.3%的神经元在对声间隔大于掩蔽声诱发的兴奋后IPSP时程时,探测声诱发的AP恢复到单声刺激水平;41.7%的神经元在对声间隔小于或等于掩蔽声诱发的兴奋后IPSP时程时,AP发放恢复到单声刺激水平;而几乎所有的神经元(23/24,95.8%)只有对声间隔大于掩蔽声诱发的兴奋后IPSP时程时,探测声反应潜伏期才完全恢复到单声刺激水平。但发放数完全恢复所需的平均对声间隔与掩蔽声诱发的兴奋后IPSP时程之间并无显著差异(P>0.05),而潜伏期恢复所需的平均对声间隔显著大于掩蔽声诱发的兴奋后IPSP寸程(P<0.05)。这些结果提示突触后抑制和神经元的膜电位状态等参与了前掩蔽的形成。
Under free field stimulation condition, we studied the auditory response properties of inferior collicular (IC) neurons of leaf-nosed bat (Hipposideros armiger), Miniopterus magnater, and mouse (Mus musculus) to different sound stimulus patterns using in vivo neuroelectrophysiological recording, and obtained the results as following.
     1. The recorded echolocation calls of the leaf-nosed bats were a constant frequency-frequency modulation (CF-FM) signal with 2-3 harmonics. The recoded CF components of three harmonics from 18 leaf-nosed bats (n=18) were 33.3±0.2 kHz,66.5±0.3 kHz, and 99.4±0.5 kHz, respectively, and the second one among these three harmonics was its dominant frequency. The best frequencies (BFs) had linear correlation with recording depth of all the recorded IC neurons (n=169, r=0.716, P<0.001). The neurons tuned at DF had lower minimal threshold (MT) and larger Qn values than other neurons. All the neurons could generate a single onset response (single-on response, SO) to both CF and FM sound stimuli. When using CF-FM sound stimulus, most (76%) neurons were still to generate a SO response to CF-FM stimulus, which were called SO responders, but the remaining (24%) neurons could generate severally an onset response (double-on (DO) response) to both CF and FM components of CF-FM sound, which were called DO responders. On the other hand, the DO responders have higher minimum threshold (MT) and longer latency to the alone FM stimulus than alone CF. The results showed that there was certain relationship between echolocation call and frequency tuning of IC neurons in the leaf-nosed bats, and the FM component of the CF-FM sound took part in shapping discharge pattern, latency and firing rate of IC neurons. The data also suggested that these two types of responders might play respectively different roles in echo analysis during hunting.
     2. Under CF and CF-FM stimulation conditions, rate-amplitude functions (RAF) of the leaf-nosed bats'IC neurons could be classified into three types, i.e monotonic, saturated, and non-monotonic. CF-FM stimulus induced higher proportions of the nonmonotonic and saturated than CF stimulus. Comparison of best amplitude (BA), dynamic range (DR), and slope of the RAEs obtained by CF and CF-FM stimuli, CF-FM stimulus decreased BA from 93.0±9.8 to 84.4±11.3 dB SPL (P<0.01), DR from 27.5±9.4 to 22.5±8.5 dB (P<0.05), and increased slope from 3.1±1.4 to 4.1±1.7%/dB (P<0.05). On the other hand, the result showed that FM component could increase firing rates of the IC neurons at less than 30 dB above MT while could decrease firing rates at more than 30 dB above MT (P<0.001). It is suggested that the mechanism underlying the firing rate increasing at lower amplitude could be a summational effect induced by partial frequencies of FM near CF, while the firing rate decreasing at higher amplitude was perhaps because of lateral inhibition activated by those frequencies of FM away from the CF at higher amplitude. Therefore, FM of the echolocation call of CF-FM bat could increase the sensitivity of IC neurons to sound amplitude.
     3. Generally, the frequency and amplitude of echo would change during echolocation, but the echo duration could keep no change, as such the echo duration was served as a "tag" to recognize a bat's own call. By presenting single sound stimulus of different presentation rate (PR) and pulse-echo pair stimulus of different duration to the Miniopterus magnater, we examined the duration tuning and forward masking of IC neurons. The duration tuning of most IC neurons were changed from all-pass or long-pass toward band-pass or short-pass and their critical bandwidths were decreased (P<0.001) with PR increasing. There was no any relationship between types of duration tuning and forward masking, the R value of forward masking increased with the masker's duration increasing for all types of duration tuning (P<0.001). These results indicated that the higher PR could induce a large proportion of short-pass and band-pass neurons and enhance the ability of the IC neurons to follow high PR. So, it was matched better with the echolocation of bats which increase their emitted pulse repletion rate with approaching target during hunting.
     4. The forward masking of IC neurongs in Miniopterus magnater decreased gradually with off-BF of masker frequency toward low and high frequency sides under pulse-echo pair stimulation condition. The neurons affected by maskers could be categorized into three types, i.e. low frequency side long-masking, high frequency side long-masking, and both side equal-masking neurons according to their half-band widths of low (half-band widthlow) and high (half-band widthhigh) frequency sides and the forward masking index "R" at 50% forward masking. There was linear correlated between half-band widths of low and high frequency sides in all neurons (n=24, r=0.47, P<0.05). Among theses neurons, half-band widthlow in 50% of the neurons was remarkable more than half-band widthhigh (P<0.001), half-band widthhigh, in 25% of the neurons was remarkable more than half-band widthlow (P<0.05), and half-band widths of low and high frequency sides in the remaining 25% of neurons were equal (P>0.05). These results suggested that forward masking caused by off-BF sound could be the base of depression induced by bat vocalization and precedence effect in the hearing.
     5. Under paired sound stimulation condition, the changes in membrane potentials of mouse IC neurons were studied. The types of action potentials (AP) elicited by single sound could be classified into the single (n=11), double (n=8) and train (n=5) while inhibitory postsynaptic potential (IPSP) evoked by sound stimuation could occur at pre- or/and post-AP firing. The AP firing to probe was completely recovery when the paired sound gap was longer than the duration of masker-evoked IPSP at post-AP in 58.3% of IC neurons. The AP firing of the remaining (41.7%) IC neuronms could be completely recovery at paired sound gap less than or equal to the duration of masker-evoked IPSP at post-AP. However, the response latency to probe could be completely recovery when paired sound gap was longer than the duration of masker-evoked IPSP at post-AP in almost all the IC neurons (23/24,95.8%). By statistical analysis, only latency recovery need paired sound gap longer than the duration of the masker-evoked IPSP at post-AP (P<0.05). These results suggested that the postsynaptic inhibition and membrane potential level of the IC neurons might participate in the forward masking.
引文
[1]陈其才,Jen PHS,吴飞健.(2002).γ-氨基丁酸能抑制可锐化大棕蝠听皮层神经元频率调谐[J].动物学报48:346-352.
    [2]李安安,陈其才,吴飞健.(2006).持续与间断噪声前掩蔽条件下小鼠下丘神经元的不同反应模式[J].生理学报58:141-148.
    [3]李安安,王艳,吴飞健,陈其才,Bibikov NG. (2007)昆明小鼠下丘神经元对调频声的反应[J].动物学报53:659-667.
    [4]林良恭,李玲玲,郑锡奇.台湾的蝙蝠.自然科学博物馆.梁之安.(1999).听觉感受和辨别的神经机制[M].上海科技教育出版社.
    [5]栾瑞红,吴飞健,Jen PHS,孙心德.(2003).大棕幅下丘神经元对双声刺激的前掩蔽效应[J].科学通报48:1530-1534.
    [6]罗凯,秦剑,陈其才,吴飞健.(2007).声负载增加导致老年鼠下丘神经元潜伏期波动性加强[J].华中师范大学学报(自然科学版)41:437-439.
    [7]马杰,梁冰,张树义,沈钧贤.(2004).食鱼蝙蝠形态和行为特化研究[J].生态学杂志23:76-79.
    [8]梅慧娴,郭玉萍,吴飞健,陈其才.(2005a).不同时程弱前掩蔽声对小鼠下丘神经元声反应的选择性抑制[J].生物物理学报21:418-424.
    [9]梅慧娴,郭玉萍,吴飞健,陈其才.(2005b).不同时程的前掩蔽声对小鼠下丘神经元声反应的掩蔽效应[J].华中师范大学学报(自然科学版)39:236-240.
    [10]王坚,蒋涛,曾凡刚.(2005).听觉科学概论[M].中国科学技术出版社.
    [11]王绪中,胡开良,韦力,徐栋,张礼标.(2010).大蹄蝠多普勒正负补偿效应的声波特征与比较[J].动物学研究6:663-669.
    [12]张荣祖.(1997).中国哺乳动物分布[M].中国林业出版社.
    [13]章句才.(1995).工业噪声测量[M].中国计量出版社.
    [14]张树义,赵辉华,冯江,盛连喜,王立新.(2000).两种蹄蝠回声定位频率与体型的相关性[J].科学通报45:740-743.
    [15]Ahuja TK, Wu SH. (2007). Intrinsic membrane properties and synaptic response characteristics of neurons in the rat's external cortex of the inferior colliculus [J]. Neuroscience 145:851-865.
    [16]Aitkin L. (1991). Rate-level functions of neurons in the inferior colliculus of cats measured with the use of free-field sound stimuli [J]. JNeurophysiol 65:383-392.
    [17]Asanuma A, Wong D, Suga N. (1983). Frequency and amplitude representations in anterior primary auditory cortex of the mustached bat [J]. J Neurophysiol 50: 1182-1196.
    [18]Backoff PM, Shadduck Palombi P, Caspary DM. (1997). Glycinergic and GABAergic inputs affect short-term suppression in the cochlear nucleus [J]. Hear fes 110:155-163.
    [19]Bear MF, Connors BW, Paradiso MA. (2007). Neuroscience:Exploring the brain [M]. Lippincott Williams & Wilkins.
    [20]Bell GP, Fenton MB. (1984). The use of Doppler-shifted echoes as a flutter detection and clutter rejection system:the echolocation and feeding behavior of Hipposideros rubber [J]. Behav Ecol Sociobiol 15:109-114.
    [21]Blauert J, Divenyi PL. (1988). Spectral selectivity in binaural contralateral inhibition []].Acustica 66:267-274.
    [22]Boettcher FA, Salvi RJ, Saunders SS. (1990). Recovery from short-term adaptation in single neurons in the cochlear nucleus [J]. Hear Res 48:125-144.
    [23]Bregman AS. (1994). Auditory scene analysis:The perceptual organization of sound [M]. The MIT Press.
    [24]Bronkhorst AW. (2000). The cocktail party phenomenon:a review of research on speech intelligibility in multiple-talker conditions [J]. Acustica 86:694-703.
    [25]Brosch M, Schreiner CE. (1997). Time course of forward masking tuning curves in cat primary auditory cortex [J]. J Neurophysiol 77:923-943.
    [26]Bruns V. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea [J]. J Comp Physiol A 106:77-86
    [27]Bruns V. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM Bat, Rhinolophus ferrutnequinum. Ⅱ. Frequency mapping in the cochlea [J]. J Comp Physiol A 106:87-97.
    [28]Bruns V, Schmieszek E. (1980). Cochlear innervation in the Greater Horseshoe bat: Demonstration of an acoustic fovea [J]. Hear Res 3:27-43.
    [29]Casseday JH, Covey E. (1992). Frequency tuning properties of neurons in the inferior colliculus of an FM bat [J]. J Comp Neurol 319:34-50.
    [30]Casseday JH, Covey E. (1995). Mechanisms for analysis of auditory temporal patterns in the brainstem of echolocating bats [M]. In:Covery E, Hawkins HL, Port RF (eds) Neural representation of temporal patterns. Plenum, New York.
    [31]Casseday JH, Ehrlich D, Covey E. (1994). Neural tuning for sound duration:role of inhibitory mechanisms in the inferior colliculus [J]. Science 264:847-850.
    [32]Casseday JH, Ehrlich D, Covey E. (2000). Neural measurement ofsound duration: control by excitatory-inhibitory interaction in the inferior colliculus [J]. J Neurophysiol 84:1475-1487.
    [33]Chadderton P, Agapiou JP, McAlpine D, Margrie TW. (2009). The synaptic representation of sound source location in auditory cortex [J].J Neurosci 29: 14127-14135.
    [34]Chen GD. (1998). Effects of stimulus duration on responses of neurons in the chinchilla inferior colliculus [J]. Hear Res 122:142-150.
    [35]Chen QC, Jen PHS. (1994). Pulse repetition rate increases the minimum threshold and latency of auditory neurons [J]. Brain Res 654:155-158.
    [36]Chen QC, Jen PH. (2000). Bicuculline application affects discharge patterns, rate-intensity functions, and frequency tuning characteristics of bat auditory cortical neurons [J]. Hear Res 150:161-74.
    [37]Cheng HC, Lee LL. (2004). Temporal variations in the size and composition of Formosan leafnosed bat (Hipposideros terasensis) colonies in central Taiwan [J]. Zool Stud 43:787-794.
    [38]Cherry EC. (1953). Some experiments on the recognition of speech, with one and with two Ears [J]. JAcoust SocAm 25:975-979.
    [39]Clifton RK, Freyman RL. (1989). Effect of click rate and delay on breakdown of the precedence effect [J]. Percept Psychophys 46:139-145.
    [40]Covey E, Casseday JH. (1999). Timing in the auditory system of the bats [J]. Annu Rev Physiol 61:457-476.
    [41]Covey E, Kauer JA, Casseday JH. (1996). Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats [J]. J Neurosci 16:3009-3018.
    [42]Dai H, Wright BA. (1995). Detecting signals of unexpected or uncertain durations [J]. J Acoust Soc Am 98:798-806.
    [43]Elliott LL. (1962). Backward masking:Monotic and dichotic conditions [J]. J Acoust Soc Am 34:1108-1115.
    [44]Elliott LL. (1971). Backward and forward masking[J]. Int J Audiol 10:65-76.
    [45]Fastl H. (1979). Temporal masking effects:Ⅲ. Pure tone masker [J]. Acustica 43: 282-294.
    [46]Fitzgibbons PJ, Gordon-Salant S. (2010). Age-related differences in discrimination of temporal intervals in accented tone sequences [J]. Hear Res 264:41-47.
    [47]Fitzpatrick DC, Kanwal JS, Butman JA, Suga N. (1993). Combination-sensitive neurons in the primary auditory cortex of the mustached bat [J]. J Neurosci 13: 931-940.
    [48]Fitzpatrick DC, Suga N, Misawa H. (1991). Are the initial frequency-modulated components of the mustached bat's biosonar pulses important for ranging [J]? J Neurophysiol 66:1951-1964.
    [49]Frisina RD. (2001). Subcortical neural coding mechanisms for auditory temporal processing [J]. Hear Res 158:1-27.
    [50]Fu ZY, Tang J, Jen PHS, Chen QC. (2010). The auditory response properties of single-on and double-on responders in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger [J]. Brain Res 1306:39-52.
    [51]Furukawa T, Matsuura S. (1978). Adaptive rundown of excitatory post-synaptic potential at synapses between hair cells and eighth nerve fibres in the goldfish [J]. J Physiol 276:193-209.
    [52]Fuzessery ZM. (1994). Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus [J]. J Neurophysiol 72:1061-1079.
    [53]Fuzessery ZM, Richardson MD, Coburn MS. (2006). Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the inferior colliculus of the pallid bat [J]. J Neurophysiol 96:1320-1336.
    [54]Gaioni SJ, Riquimaroux H, Suga N. (1990). Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation [J]. J Neurophysiol 64:1801-1817.
    [55]Gordon M, O'Neill WE. (1998). Temporal processing across frequency channels by FM selective auditory neurons can account for FM rate selectivity [J]. Hear Res 122: 97-108.
    [56]Gralla G. (1992). Wahrnehmungskriterien bei simutan-und nacchorschwellenmessungen [J]. Acustica 77:243-251.
    [57]Grantham DW. (1996). Left-right asymmetry in the buildup of echo suppression in normal-hearing adults [J]. JAcoust Soc Am 99:1118-1123.
    [58]Grinnell AD. (1963). The neurophysiology of audition in bats:temporal parameters [J]. J Physiol 167:67-96.
    [59]Grinnell AD. (1967). Mechanisms of overcoming interference in echolocating animals [M]. In:Busnel RG (ed) Animal sonar systems vol Ⅰ. Laboratoire de physiologie acoustique, Jouy-en-Josas
    [60]Grinnell AD. (1970). Comparative auditory neurophysiology of neotropical bats employing different echolocation signals [J]. Z vergl Physiol 68:117-153.
    [61]Grinnell AD. (1973). Neural processing mechanisms in echolocating bats, correlated with differences in emitted sounds [J]. J Acoust Soc Am 54:147-156.
    [62]Grinnell AD, Griffin DR. (1958). The sensitivity of echolocation in bats [J]. Biol Bul 114:10-22.
    [63]Griffin DR. (1958). Listening in the Dark [M]. Yale University Press.
    [64]Griffin DR, Webster FA, Michael CR. (1960). The echolocation of flying insects by bats [J].Anim Behav 8:141-154.
    [65]Gu XM, He SY, Lei A. (2008). Molecular Molecular phylogenetics among three families of bats (Chiroptera:Rhinolophidae, Hipposideridae, and Vespertilionidae) based on partial sequences of the mitochondrial 12S and 16S rRNA genes [J]. Zool Stud 47:368-378.
    [66]Gulick WL, Gescheider GA, Frisina RD. (1989). Hearing:physiological acoustics, neural coding, and psychoacoustics [M]. Oxford University Press.
    [67]Gustafson Y, Schnitzler HU. (1979). Echolocation and obstacle avoidance in the hipposiderid bat Asellia tridens [J]. J Comp Physiol A 131:161-167.
    [68]Habersetzer J, Schuller G, Neuweiler G. (1984). Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, Hipposideros bicolor and Hipposideros speoris [J].J Comp Physiol A 155:559-567.
    [69]Haplea S, Covey E, Casseday JH. (1994). Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus [J]. J Comp Physiol A 174:671-83.
    [70]Harris DM, Dallos P. (1979). Forward masking of auditory nerve fiber responses [J]. J Neurophysiol 42:1083-1107.
    [71]Harris KC, Eckert MA, Ahlstrom JB, Dubno JR. (2010). Age-related differences in gap detection:Effects of task difficulty and cognitive ability[J]. Hear Res 264: 21-29.
    [72]Heil P, Rajan R, Irvine DRF. (1992). Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I:Effects of variation of stimulus parameters [J]. Hear Res 63:108-134.
    [73]Henson MM, Henson OW. (1991). Specializations for sharp tuning in the mustached bat:the tectorial membrane and the spiral limbus [J]. Hear Res 35:237-258.
    [74]Hiryu S, Bates ME, Simmons JA, Riquimaroux H. (2010). FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter [J]. Proc Natl Acad Sci 107:7048-7053.
    [75]Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y. (2005). Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight [J]. J Acoust Soc Am 118: 3927-3933.
    [76]Hiryu S, Katsura K, Nagato T, Yamazaki H, Lin LK, Watanabe Y, Riquimaroux H. (2006). Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members [J]. J Comp Physiol A 192:807-815.
    [77]Hughes JW. (1946). The threshold of audition for short periods of stimulation [J]. P Roy Soc B-Biol Sci 133:486-490.
    [78]Hulse SH, MacDougall-Shackleton SA., Wisniewski AB. (2007). Auditory scene analysis by songbirds:stream segregation of birdsong by European starlings (sturnus vulgar is) [J].J Comp Psych 111:3-13.
    [79]Ito M. (1991). The cellular basis of cerebellar plasticity [J]. Curr Biol 1:616-620.
    [80]Jen PHS, Chen QC. (1998). The effect of pulse repetition rate, pulse intensity, and bicuculline on the minimum threshold and latency of bat inferior collicular neurons [J]. J Comp Physiol A 182:455-65.
    [81]Jen PHS, Chen QC, Wu FJ. (2002). Interaction between excitation and inhibition affects frequency tuning curve, response size and latency of neurons in the auditory cortex of the big brown bat, Eptesicus fuscus [J]. Hear Res 174:281-289.
    [82]Jen PHS, Feng RB. (1999). Bicuculline application affects discharge pattern and pulse-duration tuning characteristics of bat inferior collicular neurons [J]. J Comp Physiol A 184:185-194.
    [83]Jen PHS, Schlegel PA. (1982). Auditory physiological properties of the neurones in the inferior colliculus of the big brown bat, Eptesicus fuscus [J]. J Comp Physiol A 147:351-363.
    [84]Jen PHS, Suthers RA. (1982). Responses of inferior collicular neurones to acoustic stimuli in certain FM and CF-FM paleotropical bats [J].J Comp Physiol A 146: 423-434.
    [85]Jen PHS, Wu CH. (2005). The role of GABAergic inhibition in shaping the response size and duration selectivity of batinferior collicular neurons to sound pulses in rapid sequences [J]. Hear Res 202:222-234.
    [86]Jen PHS, Wu CH, Luan RH, Zhou XM. (2002). GABAergic inhibition contributes to pulse repetition rate-dependent frequency selectivity in inferior colliculus of the big brown bat, Eptesicus fuscus [J]. Brain Res 948:159-164.
    [87]Jen PHS, Zhang JP. (1999). Corticofugal regulation of excitatory and inhibitory frequency tuning curves of bat inferior collicular neurons [J]. Brain Res 841: 184-188.
    [88]Jen PHS, Zhou XM. (1999). Temporally patterned sound trains affect duration tuning characteristics of bat inferior collicular neurons [J]. J Comp Physiol A 185: 471-478.
    [89]Jen PHS, Zhou XM, Wu CH. (2001). Temporally patterned sound trains affect intensity and frequency sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus [J]. J Comp Physiol A 187:605-616.
    [90]Jesteadt W, Bacon SP, Lehman JR. (1982). Forward masking as a function of frequency, masker level, and signal delay [J]. JAcoustSocAm 71:950-962.
    [91]Jones G, Morton M, Hughes PM, Budden RM. (1993). Echolocation, flight morphology and foraging strategies of some West African hipposiderid bats [J]. J Zool 230:385-400.
    [92]Kober R, Schnitzler HU. (1990). Information in sonar echoes of fluttering insects available for echolocating bats [J]. JAcoustSocAm 87:882-896.
    [93]Kossl M. (1994). Evidence for a mechanical filter in the cochlea of the "constant-frequency" bats, Rhinolophus rouxi and Pteronotus parnellii [J]. Hear Res 72:73-80.
    [94]Kossl M, Vater M. (1996). A tectorial membrane fovea in the cochlea of the mustached bat [J]. Naturwissenschaften 83:89-91.
    [95]Lin AQ, Jin LR, Liu Y, Sun KP, Feng J. (2010). Postnatal growth and age estimation in Horsfield's leaf-nosed bat Hipposideros larvatus [J]. Zool Stud 49:789-796.
    [96]Litovsky RY, Colbum HS. (1999). The precedence effect [J]. JAcoust Soc Am 106: 1633-1654.
    [97]Lu Y, Jen PHS. (2002). Interaction of excitation and inhibition in inferior collicular neurons of the big brown bat, Eptesicus fuscus [J]. Hear Res 169:140-150.
    [98]Lu Y, Jen PHS, Zheng QY. (1997). GABAergic disinhibition changes the recovery cycle of bat inferior collicular neurons [J]. J Comp Physiol A 181:331-41.
    [99]Luan RH, Wu FJ, Jen PHS, Sun XD. (2003). Effects of forward masking on the responses of the inferior collicular neurons in the big brown bats, Eptesicus fuscus [J]. Chinese Sci bull 48:1748-1752.
    [100]Luo F, Ma J, Li AA, Wu FJ, Chen QC, Zhang SY. (2007). Echolocation calls and neurophysiological correlations with auditory response properties in the inferior colliculus of Pipistrellus abramus(Microchiroptera:Vespertilionidae) [J]. Zool Stud 46:622-630.
    [101]Luo F, Metzner W, Wu FJ, Zhang SY, Chen QC. (2008). Duration-sensitive neurons in the inferior colliculus of horseshoe bats:adaptations for using CF-FM echolocation pulses [J]. JNeurophysiol 99:284-296.
    [102]Luscher E, Zwislocki J. (1949). Adaptation of the ear to sound stimuli [J]. J Acoust Soc Am 21:135-139.
    [103]Metzner W, Radtke-Schuller S. (1987). The nuclei of the lateral lemniscus in the rufous horseshoe bat, Rhinolophus rouxi [J]. J Comp Physiol A 160:395-411.
    [104]Metzner W, Zhang SY, Smotherman M. (2002). Doppler-shift compensation behavior in horshoe bats revisited:auditory feedback controls both a decrease and an increase in call frequency [J]. J Exp Biol 205:1607-1616.
    [105]Mittmann DH, Wenstrup JJ. (1995). Combination-sensitive neurons in the inferior colliculus [J]. Hear Res 90:185-91.
    [106]Moore BCJ. (1978). Psychophysical tuning curves measured in simultaneous and forward masking [J]. J Acoust Soc Am.63:524-532.
    [107]Moore BCJ, Glasberg BR, Plack CJ, Biswas AK. (1988). The shape of the ear's temporal window [J]. J Acoust Soc Am 83:1102-1116.
    [108]Munson WA, Gardner MB. (1950). Loudness patterns-a new approach [J]. J AcoustSocAm 22:177-190.
    [109]Narayan R, Best V, Ozmeral E, McClaine E, Dent M, Shinn-Cunningham B, Sen K. (2007). Cortical interference effects in the cocktail party problem [J]. Nat Neurosci 10:1601-1607.
    [110]Neff DL. (1986). Confusion effects with sinusoidal and narrow-band noise forward maskers [J]. J AcoustSocAm 79:1519-1529.
    [111]Nelson DA. (1991). High-level psychophysical tuning curves:Forward masking in normal-hearing and hearing-impaired listeners [J]. J Speech Hear Res 34: 1233-1249.
    [112]Nelson PG, Erulkar SD. (1963). Synaptic mechanisms of excitation and inhibition in the central auditory pathway [J]. J Neurophysiol 26:908-923.
    [113]Nicholls JG, Martin AR, Wallace BG, Fuchs PA. (2003). From neuron to brain [M]. Sinauer Associates.
    [114]Neuweiler G. (1980). Auditory processing of echoes:peripheral processing [M]. In: Busnel RG ed. Animal Sonar Systems. New York:Plenum.
    [115]Neuweiler G. (1990). Auditory adaptations for prey capture in echolocating bats [J]. Physiological Rev 70:615-641.
    [116]Neuweiler G. (2003). Evolutionary aspects of bat echolocation [J]. J Comp Physiol A 189:245-256.
    [117]Neuweiler G, Schuller G, Schnitzler HU. (1971). On-and off-responses in the inferior colliculus of the greater horseshoe bat to pure tones [J]. J Comp Physiol A 74:57-63.
    [118]Neuweiler G, Singh S, Sripathi K. (1984). Audiograms of a South Indian bat community [J]. J Comp Physiol A 154:133-142.
    [119]Olsen JF, Suga N. (1991). Combination-sensitive neurons in the medial geniculate body of the mustached bat:encoding of relative velocity information [J]. J Neurophysiol 65:1254-1274.
    [120]O'Neill WE. (1985). Responses to pure tones and linear FM components of the CF-FM biosonar signal by single units in the inferior colliculus of the mustached bat [J]. J Comp Physiol 157:797-815.
    [121]Ostwald J. (1984). Tonotopical organization and pure tone response characteristics of single units in the auditory cortex of the greater horseshoe bat [J]. J Comp Physiol A 155:821-834.
    [122]Oswald AMM, Schiff ML, Reyes AD. (2006). Synaptic mechanisms underlying auditory processing [J]. Curr Opin Neurobiol 16:371-376.
    [123]Oxenham AJ. (2001). Forward masking:Adaptation or integration [J]? J Acoust Soc Am 109:732-741.
    [124]Oxenham AJ, Moore BCJ, Vickers DA. (1997). Short-term temporal integration: Evidence for the influence of peripheral compression [J]. J Acoust Soc Am 101: 3676-3687.
    [125]Oxenham AJ, Plack CJ. (2000). Effects of masker frequency and duration in forward masking:further evidence for the influence of peripheral nonlinearity [J]. Hear Res 150:258-66.
    [126]Penner MJ. (1975). Persistence and integration:Two consequences of a sliding integrator [J]. Percept Psychophys 18:114-120.
    [127]Penner MJ. (1975). Persistence and integration:Two consequences of a sliding integrator [J]. Percept Psychophys 18:114-120.
    [128]Pinheiro AD, Wu M, Jen PHS. (1991). Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus [J]. J Comp Physiol A 169:69-85.
    [129]Pollak GD, Bodenhamer RD. (1981). Specialized characteristics of single units in inferior colliculus of mustache bat:frequency representation, tuning, and discharge patterns [J]. JNeurophysiol 46:605-620.
    [130]Poon PWF, Chen X, Cheung YM. (1992). Differences in FM response correlate with morphology of neurons in the rat inferior colliculus [J]. Exp Brain Res 91: 94-104.
    [131]Popper AN, Fay RR (Eds.). (1995). Hearing by Bats [M]. Springer.
    [132]Portfors CV, Wenstrup JJ. (1999). Delay-tuned neurons in the inferior colliculus of the mustached bat:implications for analyses of target distance [J]. J Neurophysiol 82:1326-1338.
    [133]Qiu Q, Tang J, Yu ZL, Zhang J, Zhou YJ, Xiao ZJ, Shen JX. (2007). Latency represents sound frequency in mouse IC [J]. Sci China Ser C 50:258-264.
    [134]Raab DH. (1963). Backward masking [J]. Psychol Bull 60:118-129.
    [135]Rees A, Mller AR. (1983). Responses of neurons in the inferior colliculus of the rat to AM and FM tones [J]. Hear Res 10:301-330.
    [136]Relkin EM, Turner CW. (1988). A reexamination of forward masking in the auditory nerve [J]. JAcoust Soc Am 84:584-591.
    [137]Rubsamen R, Neiweiler G, Sripathi K. (1988). Comparative collicular tonotopy in two bat species adapted to movement detection, Hipposideros speoris and Megadermalyra [J]. J Comp Physiol A 163:271-285.
    [138]Russell IJ, Kossl M. (1999). Micromechanical responses to tones in the auditory fovea of the greater mustached bat's cochlea [J]. J Neurophysiol 82:676-686.
    [139]Schnitzler HU. (1968). Die Ultraschall-ortungslaute der hufeisen-fledermause (Chiropetera, Rhinolophidae) inverschiedenen orientierungssituationen [J]. Z vergl Physiol 57:376-408.
    [140]Schnitzler HU. (1978). Die detektion von bewegungen durch echoortung bei fledermausen [J]. Verh Dtsch Zool Ges 71:16-33.
    [141]Schnitzler HU, Denzinger A. (2011). Auditory fovea and Doppler shift compensation:adaptations for flutter detection in echolocating bats using CF-FM signals [J]. J Comp Physiol A 197:541-559.
    [142]Schnitzler HU, Hackbarth H, Heilmann U, Herbert H. (1985). Echolocation behavior of rufous horseshoe bats hunting for insects in the flycatcher-style [J]./ Comp Physiol A 157:39-46.
    [143]Schnitzler HU, Henson OW. (1980). Performance of airborne animal sonar systems 1. Microchiropetera [M]. In Animal Sonar Systems, (Busnel RG and Fish JF eds). Plenum Press, New York.
    [144]Schnitzler HU, Kalko EKV. (2001). Echolocation by insect-eating bats [J]. Bioscience 51:557-569.
    [145]Schuller G. (1979). Vocalization influences auditory processing in collicular neurons of the CF-FM bat, Rhinolophus ferrumequinum [J].J Comp Physiol A 132: 39-46.
    [146]Schuller G, Pollak G. (1979). Disproportionate frequency representation in the inferior colliculus of Doppler compensating greater horseshoe bats. Evidence for an acoustic fovea [J]. J Comp Physiol A 132:47-54.
    [147]Shannon RV (1990). Forward masking in patients with cochlear implants [J]. J Acoust Soc Am 88:741-744.
    [148]Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M. (1995). Speech recognition with primary temporal cues [J]. Science 270:303-304.
    [149]Shen JX, Feng AS, Xu ZM, Yu ZL, Arch VS, Yu XJ, Narins PM. (2008). Ultrasonic frogs show hyperacute phonotaxis to female courtship calls [J]. Nature 453: 914-916.
    [150]Shtyrov Y, Kujala T, Ilmoniemi RJ. (1999). Noise affects speech-signal processing differently in the cerebral hemispheres [J]. Neuroreport 10:2189-2192.
    [151]Simmons JA, Vernon JA. (1971). Echolocation:discrimination of targets by the bat, Eptesicus fuscus [J]. J Exp Zool 176:315-328.
    [152]Simmons JA. (1979). Perception of echo phase information in bat sonar [J]. Science 204:1336-1338.
    [153]Simmons JA, Fenton MB, O'Farrell MJ. (1979). Echolocation and pursuit of prey by bats [J]. Science 203:16-21.
    [154]Simmons JA, Vernon JA. (1971). Echolocation:discrimination of targets by the bat, Eptesicus fuscus [J]. J Exp Zool 176:315-328.
    [155]Sommers MS, Gehr SE. (1998). Auditory suppression and frequency selectivity in older and younger adults [J]. JAcoust Soc Am 103:1067-1074.
    [156]Sommers MS, Gehr SE. (2010). Two-tone auditory suppression in younger and older normal-hearing adults and its relationship to speech perception in noise [J]. Hear Res 264:56-62.
    [157]Suga N. (1969). Classification of inferior collicular neurones of bats in terms of responses to pure tones, frequency-modulated sounds and noise bursts [J]. J Physiol 200:555-574.
    [158]Suga N. (1978). Specialization of the auditory system for reception and processing of species-specific sounds [J]. Fed Proceed 37:2343-2354.
    [159]Suga N. (1990). Biosonar and neural computation in bats [J]. Sci Am 262:60-68.
    [160]Suga N. (1994). Multi-function theory for cortical processing of auditory information:implications of single-unit and lesion data for future research [J]. J Comp Physiol A 175:135-144.
    [161]Suga N. (1995). Sharpening of frequency tuning by inhibition in the central auditory system:tribute to Yasuji Katsuki [J]. J Neurosci Res 21:287-299.
    [162]Suga N, Neuweiler G, Moller J. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. Ⅳ. Properties of peripheral auditory neurons [J].J Comp Physiol A 106:111-125.
    [163]Suga N, Jen PHS. (1977). Further studies on the peripheral auditory system of "CF-FM" bats specialized for fine frequency analysis of Doppler-shifted echoes [J]. J Exp Biol 69:207-232.
    [164]Suga N, Schlegel P. (1973). Coding and processing in the auditory system of FM signal producing bats [J]. JAcoust Soc Am 54:174-190.
    [165]Suga N, Simmons JA., Jen PHS. (1975). Peripheral specialization for fine analysis of doppler-shifted echoes in the auditory system of the "CF-FM" bat Pteronotus parnellii [J]. J Exp Biol 63:161-192.
    [166]Suga N, Simmons JA, Shimozawa T. (1974). Neurophysiological studies on echolocation system with awake "CF-FM" bats [J]. J Exp Biol 61:379-399.
    [167]Suga N, Tsuzuki K. (19850. Inhibition and level-tolerant frequency tuning in the auditory cortex of the mustached bat [J]. JNeurophysiol 53:1109-1145.
    [168]Suga N, Zhang Y, Yan J. (1997). Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat [J].J Neurophysiol 77: 2098-2114.
    [169]Sun H, Wu SH. (2008). Modification of membrane excitability of neurons in the rat's dorsal cortex of the inferior colliculus by preceding hyperpolarization [J]. Neuroscience 154:257-272.
    [170]Surlykke A, Moss CF. (2000). Echolocation behavior of big brown bat, Eptesicus fuscus, in the field and the laboratory [J]. J Acoust Soc Am 108:2419-2429.
    [171]Sutter ML. (2000). Shape and level tolerances of frequency tuning curves in primary auditory cortex:quantitative measures and population codes [J]. J Neurophysiol 84:1012-1025
    [172]Tan AYY, Zhang LI, Merzenich MM, Schreiner CE. (2004). Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons [J]. J Neurophysiol 92:630-643.
    [173]Tan ML, Theeuwes HP, Feenstra L, Borst JGG. (2007). Membrane properties and firing patterns of inferior colliculus neurons:an in vivo patch-clamp study in rodents [J]. JNeurophysiol 98:443-453.
    [174]Tang J, Fu ZY, Jen PHS, Chen QC. (2011). Recovery cycles of single-on and double-on neurons in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger [J]. Brain Res 1385:114-126.
    [175]Tang J, Pi JH, Wang D, Wu FJ, Chen QC. (2004). Effect of weak noise on the frequency tuning of mouse inferior collicular neurons [J]. Zool Res 25:191-197.
    [176]Tang J, Wu FJ, Wang D, Jen PHS, Chen QC. (2007). The amplitude sensitivity of mouse inferior collicular neurons in the presence of weak noise [J]. Chin J Physiol 50:187-98.
    [177]Tang J, Xiao ZJ, Suga N. (2007). Bilateral cortical interaction:modulation of delay-tuned neurons in the contralateral auditory cortex [J]. J Neurosci 27:8405-8 413.
    [178]Thorpe SJ. (1990). Spike arrival times:A highly efficient coding scheme for neural networks [M]. Parallel processing in neural systems
    [179]Thornton ARD. (1972). PSM studies Ⅱ. Post-stimulatory masked thresholds as a function of probe tone duration [J]. J Sound Vib 22:183-191.
    [180]Trappe M, Schnitzler HU. (1982). Doppler-shift compensation in insect-catching horseshoe bats [J]. Naturwissenschaften 69:193-194.
    [181]Turner CW, Relkin EM, Doucet J. (1994). Psychophysical and physiological forward masking studies:Probe duration and rise-time effects [J]. J Acoust Soc Am 96:795-800.
    [182]Ulanovsky N, Moss CF. (2008). What the bat's voice tells the bat's brain [J]. Proc Natl Acad Sci 105:8491-8498.
    [183]Uttal WR. (1973). The Psychobiology of Sensory Coding [M]. Harper and Row, Publishers, Inc, New York, N. Y.
    [184]Vater M, Feng AS, Betz M. (1985). An HRP-study of the frequency-place map of the horseshoe bat cochlea:morphological correlates of the sharp tuning to a narrow frequency band [J]. J Comp Physiol A 157:671-686.
    [185]Voytenko SV, Galazyuk AV. (2010). Suppression of spontaneous firing in inferior colliculus neurons during sound processing [J]. Neuroscience 165:1490-1500.
    [186]Wang X, Luo F, Wu FJ, Chen QC, Jen PHS. (2008). The recovery cycle of bat duration-selective collicular neurons varies with hunting phase [J]. Neuroreport 19: 861-865.
    [187]Wang X, Jen PHS, Wu FJ, Chen QC. (2007). Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition [J]. Brain Res 1167:80-91.
    [188]Wehr M, Zador AM. (2005). Synaptic mechanisms of forward suppression in rat auditory cortex [J]. Neuron 47:437-445.
    [189]Werner H. (1935). Studies on contour:Ⅰ. Qualitative analyses [J]. Am JPsychol 47: 40-64.
    [190]Wu CH, Jen PHS. (2006). The role of GABAergic inhibition in shaping duration selectivity of bat inferior collicular neurons determined with temporally patterned sound train [J]. Hear Res 215:56-66.
    [191]Wu CH, Jen PHS. (2007). Neurons in the inferior colliculus of the big brown bat show maximal amplitude sensitivity at the best duration [J]. Chin J Physiol 50: 258-268.
    [192]Wu CH, Jen PHS. (2008). Auditory frequency selectivity is better for expected than for unexpected sound duration [J]. Neuroreport 19:127-131.
    [193]Wu CH, Jen PHS. (2009). Echo amplitude selectivity of the bat is better for expected than for unexpected echo duration [J]. Neuroreport 20:1183-1187.
    [194]Wu M, Jen PHS. (1991). Encoding of stimulus intensity by inferior collicular neurons of the big brown bat, Eptesicus fuscus [J]. Chin J Physiol 34:145-155.
    [195]Wu M, Jen PHS. (1995). Responses of pontine neurons of the big brown bat, Eptesicus fuscus, to temporally patterned sound pulses [J]. Hear Res 85:155-168.
    [196]Wu M, Jen PHS. (1996). Temporally patterned sound pulses affect directional sensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus [J]. J Comp Physiol A 179:385-393.
    [197]Wu FJ, Jen PHS. (2009). Involvement of GABA-mediated inhibition in shaping the frequency selectivity of neurons in the inferior colliculus of the big brown Bat, Eptesicus fuscus [J]. Chinese J Physiol 52:38-46.
    [198]Yovel Y, Franz MO, Stilz P, Schnitzler HU. (2010). Complex echo classification by echo-locating bats:a review. J Comp Physiol A. in press.
    [199]Yan J, Suga N. (1996). The midbrain creates and the thalamus sharpens echo-delay tuning for the cortical representation of target-distance information in the mustached bat [J]. Hear Res 93:102-110.
    [200]Zhang SY, Zhao HH, Feng J, Sheng LX, Wang H, Wang LX. (2000). Relationship between echolocation frequency and body size in two species of hipposiderid bats [J]. Chin Sci Bull 45:1587-1590.
    [201]Zhou XM, Jen PHS. (2001). The effect of sound intensity on duration-tuning characteristics on bat inferior collicular neurons [J].J Comp Physiol A 187:63-73.
    [202]Zhou XM, Jen PHS. (2002). The effect of sound duration on rate-amplitude functions of inferior collicular neurons in the big brown bat, Eptesicus fuscus [J]. Hear Res 166:124-135.
    [203]Zhou XM, Jen PHS. (2002). The role of GABAergic inhibition in shaping directional selectivity of bat inferior collicular neurons determined with temporally patterned sound trains [J]. J Comp Physiol A 188:815-826.
    [204]Zwislocki J, Pirodda E, Rubin H. (1959). On some poststimulatory effects at the threshold of audibility [J]. JAcoustSocAm 31:9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700