REZ-1型成人语后聋人工耳蜗植入者的临床应用及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的多导人工耳蜗是通过控制刺激电流准确传导到耳蜗内的目标电极,模拟生理听觉的部位编码原理,从而产生电听觉使人工耳蜗植入者获益。理论上讲,越是限制电流在蜗内传导的电极阵列(比如bi-polar, tri-polar),越有可能提供优越的部位选择性,相较电流限制较差的电极阵列(比如mono-polar),其就可能提供更好的言语识别表现。然而,电极阵列对神经兴奋分布空间的影响到目前为止还未被系统研究。本实验旨在通过改变人工耳蜗刺激模式(电极阵列)、刺激强度、及电极位置,应用前掩蔽技术检测人工耳蜗植入者在不同刺激参数下的神经兴奋分布空间,从而分析刺激参数对神经兴奋分布空间的影响,为优化语音信号的传输与接收、改进国产人工耳蜗功能提供理论和实验基础。
     方法从2009年6月~2009年11月在全国五个临床中心所实施的48例单侧REZ-1型成人语后聋植入者中选出20名接受测试。根据性别、植入耳全聋年限、人工耳蜗植入时间等因素进行匹配筛选出Nucleus-22成人语后聋植入者10名。受试者均经过一定的言语训练,言语识别能力等心理生理状况相对良好。所有刺激脉冲均为速率为500p/s的双向脉冲(200us/phase,20us inter-phase gap)。掩蔽脉冲时程为200ms,电极阵列由窄(BP+1)到宽(BP+17)。探测脉冲时程为20ms,掩蔽-探测脉冲间隔为5ms;探测电极的电极阵列固定为BP+1。首先测量所有受试对象掩蔽电极的听觉阈值、最大可接受响度级及动态范围,而后探测电极分别在无掩蔽及弱(相当于50%掩蔽电极的DR的刺激强度)、强掩蔽下(相当于80%掩蔽电极的DR的刺激强度)的听阈,计算掩蔽量并对掩蔽量进行归一化。使用SPSS10.0统计软件对数据进行统计学处理。对归一化数据作多因素方差分析(ANOVA)。对两种类型电极做归一化数据的秩和检验。
     结果在双极阵列中,随着激动电极与参考电极间距离的增宽,神经兴奋分布空间逐渐变宽阔。当两者距离足够宽时,兴奋分布空间可见双峰,类似于被分开较宽的双极子产生的无交叠电场。随着掩蔽脉冲的刺激强度的增加,掩蔽量成不同程度增加,分析标化数据显示刺激强度对神经兴奋分布空间形式几乎没有影响。相同刺激参数设置下REZ-1型成人语后聋植入者的神经兴奋分布空间大小与Nucleus-22成年语后聋植入者相一致。结论刺激模式对单侧REZ-1型成人语后聋人工耳蜗植入者的神经兴奋分布空间会产生一定影响;前掩蔽模式下单侧语后聋成人REZ-1型植入者的兴奋分布空间形式特点与大小与Nucleus-22型成人语后聋人工耳蜗植入者一致;前掩蔽技术是测量通道间干扰的一种可靠手段。
     第二部分REZ-1型人工耳蜗成人语后聋植入者听觉言语识别能力评估
     目的目前人工耳蜗植入已被公认为是药物、助听器治疗无效的重度、极重度感音神经性聋患者的有效治疗手段,但CI患者植入效果差异很大。REZ-1型多道人工耳蜗是国内最早用于临床的国产耳蜗,其采用多峰提取编码策略。本实验主要探讨植入REZ-1型成人语后聋人工耳蜗植入者的听觉言语识别能力康复效果,并就其安全性、可靠性进行分析。
     方法对2009年6月~2009年11月在五个临床中心的48例接受REZ-1型成人语后聋人工耳蜗植入者的术耳在植入前及植入后不同阶段(1月、3月、6月及12月)的声场测听听阈、听觉言语识别能力进行评估,并记录术后不良事件,分析REZ-1型国产人工耳蜗临床应用效果及安全性。并在植入后12个月时对受试者的生活质量进行调查评估。声场听阈评估在符合国家标准GB16296-1996声场测试环境中,用250~4000Hz的啭音作为刺激声,选择500Hz、1000Hz、2000 Hz和4000Hz四个频率进行测定。听觉言语识别能力评估采用聋儿听觉言语康复评估词表及标准评估程序。评估内容主要包括单音节词(字)识别、双音节词识别和短句识别,测试方法均采用封闭式听觉描述和开放式听觉描述;其次还包括声母识别、韵母识别、声调识别、自然环境声识别和数字识别5项内容,测试采用听声识图或听说复述法进行。
     结果声场测听听阈:术前500HZ、1000HZ、2000HZ及4000HZ声场测听听阈平均值为107.1dB,开机12月时为(39.0±5.4)dB,且随着开机时间的增加逐渐下降;听觉言语识别能力:术前评估平均得分(%)为仅自然环境声为0.97±1.70,其余均为0。开机12月时各项得分均显著提高(59.55~82.06),且随着开机时间的增加,听觉言语识别得分逐步提高;与术前相比所有结果均有统计学差异;讲方言CI人群效果明显,与普通话CI人群相比效果一致;生活质量问卷及有意义听觉整合量表评估:术后12个月患者生活质量及听觉能力获得满意改善;安全性:研究中所有不良事件中经分析均与研究器械相关,均为轻度且均经处理后恢复正常。
     结论REZ-1型成人语后聋人工耳蜗植入者在安静环境下可以获得较好听觉言语识别能力且安全可靠。
Effects of stimulation mode、level and location on forward-masked excitation patterns in REZ-1 cochlear implant patients
     Objective To evaluate electrode interaction in REZ-1 cochlear implantees with respect of stimulation mode、level、location, and to compare the spatial spread width of neural excitation between patients with Nucleus-22 cochlear implant. Methods With standard assessment table and standard testing program,20 postlingual hearing-impaired adults with REZ-1 cochlear implants and 10 postlingual hearing-impaired adults with Nucleus-22 cochlear implants were tested. In the present study, forward-masked excitation patterns were measured in the 30 cochlear implant patients as functions of stimulation mode, level and location within the cochlea. All stimuli were 500 pulses-per-second biphasic pulse trains. Masker stimuli were 200ms in duration; the bi-polar configuration was varied from narrow (BP+1) to wide (BP+17), depending on the test condition. Probe stimuli were 20 ms in duration and masker-probe delay was 5 ms; the probe configuration was fixed at BP+1. Results As the distance between the active and return electrodes in a bi-polar pair was increased, the excitation pattern broadened within the cochlea. When the distance between active and return electrodes was sufficiently wide, two peaks were often observed in the excitation pattern, comparable to non-overlapping electric fields produced by widely separated dipoles. Analyses of the normalized data showed little effect of stimulation level on the shape of the excitation pattern. Analyses of the area under the normalized curve showed that there was no significant difference between the two cochlear implants. Conclusions Forward-masked excitation patterns would be effected by stimulation mode in cochlear implantees with REZ-1 cochlear implants; Forward masking patterns are a reliable measure of channel interaction.
     Part Two Clinical effectiveness of REZ-1 multi-channel unilateral cochlear implants for profoundly postlingual deaf adults
     Objective To investigate the development of hearing and speech rehabilitation of severe-to-profound hearing-impaired adults, each of them received a REZ-1 cochlear implant that was made in China. And the security and stability of the new cochlear implant was also studied. Methods With standard assessment table and standard testing program,48 postlingual hearing-impaired adults aged from 18 to 62 years (mean age at implantation,35.0 years) who were operated in 5 clinical centers from June 2009 to November 2009 were tested and scored at different periods for their hearing and speech perception rehabilitation. Sound field audio-metry were performed at the same time. Quality of life at the twelfth month after cochlear implantation was conducted for each implantees Complications of the procedure and audiological outcome with this new implant were also analyzed. Results All the patients'average audiometry thresholds decreased gradually during the postoperative following-up. Preoperative average threshold was 107. 1dB, after 12 months training, the average threshold was decreased to (39.0±5.4) dB. Preoperative hearing and speaking ability scores were almost 0 with the exception of the environmental sounds (0.97±1.70), after 12 months training the average scores were increased significantly (59.55~82.06). There was a statistic significant difference between pre-and post-implantation whether in subjective audiometry thresholds or hearing ability and speech perception (P<0.01). REZ-1 cochlear implantation is a effective intervention in the postlingually deaf adults. All the adverse events did not statistically correlate with the cochlear implant. Conclusions REZ-1 cochlear implantation could improve hearing and speech perception ability of adults with postlingual severe-to-profound hearing loss via appropriate postoperative rehabilitation and it can be taken as an effective and safe treatment for postlingual deaf adults.
引文
[1]Bodmer D, Shipp DB, Ostroff JM, Ng AH, Stewart S, Chen JM, Nedzelski JM. A comparison of postcochlear implantation speech scores in an adult population [J]. Laryngoscope,2007 Aug,117(8):1408-11.
    [2]Green KM, Bhatt YM, Mawman DJ, O'Driscoll MP, Saeed SR, Ramsden RT, Green MW. Predictors of audiological outcome following cochlear implantation in adults [J]. Cochlear Implants Int,2007 Mar,8(1):1-11.
    [3]Santarelli R, De Filippi R, Genovese E, Arslan E. Cochlear implantation outcome in prelingually deafened young adults. A speech perception study [J]. Audiol Neurootol,2008,13(4):257-65.
    [4]Fu QJ, Nogaki G. Noise susceptibility of cochlear implant users:the role of spectral resolution and smearing [J]. J Assoc Res Otolaryngol, 2005 Mar,6(1):19-27.
    [5]Migirov L, Taitelbaum-Swead R, Drendel M, Hildesheimer M, Kronenberg J. Cochlear implantation in elderly patients:surgical and audiological outcome [J]. Gerontology,2010,56(2):123-8.
    [6]邱思财.38例人工耳蜗植入儿童康复效果及其影响因素研究[J].中国听力语言康复科学杂志,2010,38(1):74-78.
    [7]Dawson PW, Mauger SJ, Hersbach AA. Clinical Evaluation of Signal-to-Noise Ratio-Based Noise Reduction in Nucleus(R) Cochlear Implant Recipients [J]. Ear Hear,2011 Jan,4.
    [8]Hitselberger WE, House WF, Edgerton BJ, Whitaker S. Cochlear nucleus implants [J]. Otolaryngol Head Neck Surg,1984 Feb,92(1):52-4.
    [9]Holden LK, Reeder RM, Firszt JB, Finley CC. Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system [J]. Int J Audiol,2011 Apr,50(4):255-69.
    [10]Pierschalla M. Clarion cochlear implant:phase I investigational results [J]. Am J Otol,1994 Jul,15(4):568.
    [11]Schindler RA, Kessler DK. Preliminary results with the Clarion cochlear implant [J]. Laryngoscope,1992 Sep,102(9):1006-13.
    [12]Muller J, Schon F, Helms J. Speech understanding in quiet and noise in bilateral users of the MED-EL COMBI 40/40+cochlear implant system [J]. Ear Hear,2002 Jun,23(3):198-206.
    [13]Tonndorf J. Cochlear prostheses. A state-of-the-art review [J] Ann Otol Rhinol Laryngol Suppl,1977,86(6 Pt 2 Suppl 44):1-20.
    [14]马秀岚.语前聋儿童人工耳蜗植入的特点和效果比较研究[J].中国医科大学学,2008,37(6):825-827.
    [15]Throckmorton CS, Collins LM. Investigation of the effects of temporal and spatial interactions on speech-recognition skills in cochlear-implant subjects [J]. J Acoust Soc Am,1999,105(2 Pt 1):861-73.
    [16]Baskent D. Speech recognition in normal hearing and sensorineural hearing loss as a function of the number of spectral channels. J Acoust Soc Am2006 Nov;120(5 Pt 1):2908-25.
    [17]Throckmorton CS, Collins LM. The effect of channel interactions on speech recognition in cochlear implant subjects:predictions from an acoustic model [J]. J Acoust Soc Am,2002,112(1):285-96.
    [18]Cohen LT, Saunders E, Richardson LM. Spatial spread of neural excitation:comparison of compound action potential and forward-masking data in cochlear implant recipients. Int J Audiol2004 Jun;43(6):346-55.
    [19]Cohen LT, Richardson LM, Saunders E, Cowan RS. Spatial spread of neural excitation in cochlear implant recipients:comparison of improved ECAP method and psychophysical forward masking [J]. Hear Res,2003 179(1-2):72-87.
    [20]Bierer JA, Middlebrooks JC. Auditory cortical images of cochlear-implant stimuli:dependence on electrode configuration [J] J Neurophysiol,2002,87(1):478-92.
    [21]Bierer JA, Middlebrooks JC. Cortical responses to cochlear implant stimulation:channel interactions [J]. J Assoc Res Otolaryngol,2004 5(1):32-48.
    [22]Pfingst BE, Zwolan TA, Holloway LA. Effects of stimulus configuration on psychophysical operating levels and on speech recognition with cochlear implants[J]. Hear Res,1997,112(1-2):247-60.
    [23]Franck KH, Xu L, Pfingst BE. Effects of stimulus level on speech perception with cochlear prostheses [J]. J Assoc Res Otolaryngol,2003, 4(1):49-59.
    [24]Morris DJ, Pfingst BE. Effects of electrode configuration and stimulus level on rate and level discrimination with cochlear implants [J]. J Assoc Res Otolaryngol,2000,1(3):211-23.
    [25]Pfingst BE, Franck KH, Xu L, Bauer EM, Zwolan TA. Effects of electrode configuration and place of stimulation on speech perception with cochlear prostheses [J]. J Assoc Res Otolaryngol,2001,2(2):87-103.
    [26]Boex C, Kos MI, Pelizzone M. Forward masking in different cochlear implant systems [J]. J Acoust Soc Am,2003,114(4 Pt 1):2058-65.
    [27]Chatterjee M. Effects of stimulation mode on threshold and loudness growth in multielectrode cochlear implants [J]. J Acoust Soc Am,1999, 105(2 Pt 1):850-60.
    [28]Chatterjee M, Galvin JJ,3rd, Fu QJ, Shannon RV. Effects of stimulation mode, level and location on forward-masked excitation patterns in cochlear implant patients[J]. J Assoc Res Otolaryngol,2006, 7(1):15-25.
    [29]Chatterjee M, Shannon RV. Forward masked excitation patterns in multielectrode electrical stimulation [J]. J Acoust Soc Am,1998,103(5 Pt 1):2565-72.
    [30]Shannon RV. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics [J]. Hear Res,1983,11 (2):157-89.
    [31]Shannon RV. Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction [J]. Hear Res,1983,12(1):1-16.
    [32]Lim HH, Tong YC, Clark GM. Forward masking patterns produced by intracochlear electrical stimulation of one and two electrode pairs in the human cochlea [J]. J Acoust Soc Am,1989,86(3):971-80.
    [33]Patrick JF, Clark GM. The Nucleus 22-channel cochlear implant system [J]. Ear Hear,1991,12(4 Suppl):3S-9S.
    [34]Brown CJ, Abbas PJ, Borland J, Bertschy MR. Electrically evoked whole nerve action potentials in Ineraid cochlear implant users:responses to different stimulating electrode configurations and comparison to psychophysical responses [J]. J Speech Hear Res,1996,39(3):453-67.
    [35]Snyder RL, Middlebrooks JC, Bonham BH. Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity [J]. Hear Res,2008,235(1-2):23-38.
    [36]Kwon BJ, van den Honert C. Effect of electrode configuration on psychophysical forward masking in cochlear implant listeners [J]. J Acoust Soc Am,2006,119(5 Pt 1):2994-3002.
    [37]Nadol JB, Jr. Patterns of neural degeneration in the human cochlea and auditory nerve:implications for cochlear implantation [J] Otolaryngol Head Neck Surg,1997,117(3 Pt 1):220-8.
    [38]Shore SE. Influence of centrifugal pathways on forward masking of ventral cochlear nucleus neurons [J]. J Acoust Soc Am,1998, 104(1):378-89.
    [39]Shore SE. Recovery of forward-masked responses in ventral cochlear nucleus neurons [J]. Hear Res,1995,82(1):31-43.
    [40]Fu QJ, Shannon RV. Effects of electrode configuration and frequency allocation on vowel recognition with the Nucleus-22 cochlear implant [J]. Ear Hear,1999,20(4):332-44.
    [41]Friesen LM, Shannon RV, Baskent D, Wang X. Speech recognition in noise as a function of the number of spectral channels:comparison of acoustic hearing and cochlear implants [J]. J Acoust Soc Am,2001 110(2):1150-63.
    [42]Fu QJ, Nogaki G, Galvin JJ,3rd. Auditory training with spectrally shifted speech:implications for cochlear implant patient auditory rehabilitation [J]. J Assoc Res Otolaryngol,2005,6(2):180-9.
    [43]Bond M, Elston J, Mealing S, Anderson R, Weiner G, Taylor RS, Liu Z, Stein K. Effectiveness of multi-channel unilateral cochlear implants for profoundly deaf children:a systematic review [J]. Clin Otolaryngol, 2009,34(3):199-211.
    [44]Stacey PC, Raine CH,O'Donoghue GM, Tapper L, Twomey T, Summerfield AQ. Effectiveness of computer-based auditory training for adult users of cochlear implants [J]. Int J Audiol,2010,49(5):347-56.
    [45]孙喜斌.聋幼儿听力语言康复评估[J].现代康复,1999,3(11):1288-1291.
    [46]Klop WM, Boermans PP, Ferrier MB, van den Hout WB, Stiggelbout AM, Frijns JH. Clinical relevance of quality of life outcome in cochlear implantation in postlingually deafened adults [J]. Otol Neurotol,2008, 29(5):615-21.
    [47]Robbins AM, Renshaw JJ, Berry SW. Evaluating meaningful auditory integration in profoundly hearing-impaired children[J]. Am J Otol,1991, 12 Suppl:144-50.
    [48]刘博,赵啸天,陈雪等.老年前期人工耳蜗植入患者听力言语康复策略探 讨[J].中国听力语言康复科学杂志,2004,2:13-16.
    [49]Beadle EA, McKinley DJ, Nikolopoulos TP, Brough J,O'Donoghue GM, Archbold SM. Long-term functional outcomes and academic-occupational status in implanted children after 10 to 14 years of cochlear implant use [J]. Otol Neurotol,2005,26(6):1152-60.
    [50]Haensel J, Engelke JC, Ottenjann W, Westhofen M. Long-term results of cochlear implantation in children [J]. Otolaryngol Head Neck Surg, 2005,132(3):456-8.
    [51]Oh SH, Kim CS, Kang EJ, Lee DS, Lee HJ, Chang SO, Ahn SH, Hwang CH, Park HJ, Koo JW. Speech perception after cochlear implantation over a 4-year time period [J]. Acta Otolaryngol,2003,123(2):148-53.
    [52]Orabi AA, Mawman D, Al-Zoubi F, Saeed SR, Ramsden RT. Cochlear implant outcomes and quality of life in the elderly:Manchester experience over 13 years [J]. Clin Otolaryngol,2006,31(2):116-22.
    [53]曹克利.多通道人工耳蜗在语前聋儿童及青少年中的应用[J].中华耳鼻咽喉科杂志,2000,35(1):16-19.
    [54]魏朝刚.母语为汉语患者应用多道人工耳蜗的言语识别[J].听力学及言语疾病杂志,1999,7(4):169-172.
    [55]郑振宇.语后聋Nucleus人工耳蜗使用者的声调识别[J].中国听力语言康复科学杂志,2004,1:12-13.
    [56]van Wijngaarden SJ, Steeneken HJ, Houtgast T. Quantifying the intelligibility of speech in noise for non-native listeners [J]. J Acoust Soc Am,2002,111(4):1906-16.
    [57]Liu S, Han D, Han N, Liu B, Chen X, Guo L, Liu H, Zhang D, Zhang N. The use of mandarin hearing in noise test in non-mandarin speakers [J]. Lin Chuang Er Bi Yan Hou Ke Za Zhi,2006,20(23):1079-81,84.
    [58]Silverman SR, Hirsh IJ. Problems related to the use of speech in clinical audiometry [J]. Ann Otol Rhinol Laryngol,1955,64(4):1234-44.
    [59]Tillman TW, Carhart R. An expanded test for speech discrimination utilizing CNC monosyllabic words. Northwestern University Auditory Test No.6. SAM-TR-66-55 [J]. Tech Rep SAM-TR,1966,1-12.
    [60]Owens E, Kessler DK, Raggio MW, Schubert ED. Analysis and revision of the minimal auditory capabilities (MAC) battery [J]. Ear Hear,1985, 6(6):280-90.
    [61]Nilsson M, Soli SD, Sullivan JA. Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise [J]. J Acoust Soc Am,1994,95(2):1085-99.
    [62]Dong RJ, Liu B, Peng XX, Chen XQ, Gong SS. Analysis of reliability and validity of the Chinese version of Nijmegen Cochlear Implant Questionnaire [J]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2010, 45(10):818-23.
    [1]黄秋红,郑亿庆.助听器与人工耳蜗的联合使用[J].听力学及言语疾病杂志,2007,15(5):397-399.
    [2]Kiefer J, Pok M, Adunka O, et al. Combined electric and acoustic stimulation of the auditory system:results of a clinical study[J]. Audiol Neurootol,2005,10 (3):134-144.
    [3]Gantz BJ, Turner C, Gfeller KE. Acoustic plus electric speech processing:preliminary results of a multicenter clinical trial of the Iowa/Nucleus Hybrid implant [J]. Audiol Neurootol,2006,11 (suppl 1): 63-68.
    [4]Talbot KN, Hartley DEH. Combined electro-acoustic stimulation:a beneficial union? [J]. Clin Otolaryngol,2008,33 (6):536-545.
    [5]Rizer FM, Arkis PN, Lippy WH. A postoperative audiometric evaluation of cochlear implant patients [J]. Otolaryngol Head Neck Surg,1988, 98 (3):203-206.
    [6]Boggess W, Balkany BT. Loss of residual hearing after cochlear implantation [J]. Laryngoscope,1989,99 (10 Pt 1):1002-1005.
    [7]John K Niparko主编,王直中主译.人工耳蜗植入原理与实践[M].北京:人民卫生出版社,2003:181.
    [8]0'Connor EF, O'Connor AF. Hearing preservation surgery:current opinions [J]. Adv Otorhinolaryngol,2010,67:108-115.
    [9]James C, Albegger K, Battmer R, et al. Preservation of residual hearing with cochlear implantation:how and why [J]. Acta Otolaryngol,2005, 125 (5):481-491.
    [10]Gantz BJ, Turner C. Combining acoustic and electrical speech processing:Iowa/Nucleus hybrid implant [J]. Acta Otolaryngol,2004, 124 (4):344-347.
    [11]Gstoettner WK, van de Heyning P,0'Connor AF, et al. Electric acoustic stimulation of the auditory system:results of a multi-centre investigation [J]. Acta Otolaryngol,2008,128 (9):968-975.
    [12]Lehnhardt E. Intracochlear placement of cochlear implant electrodes in soft surgery technique [J]. HNO,1993,41 (7):356-359.
    [13]Pau HW, Just T, Bornitz M, et al. Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation [J] Laryngoscope,2007,117 (3):535-540.
    [14]Briggs RJ, Tykocinski M, Stidham K, et al. Cochleostomy site: implications for electrode placement and hearing preservation [J]. Acta Otolaryngol,2005,125 (8):870-876.
    [15]Adunka 0, Unkelbach MH, Mack M, et al. Cochlear implantation via the round window membrane minimizes trauma to cochlear structures:a histologically controlled insertion study [J]. Acta Otolaryngol,2004, 124 (7):807-812.
    [16]Adunka OF, Radeloff A, Gstoettner WK,et al. Scala tympani cochleostomy Ⅱ:topography and histology [J]. Laryngoscope,2007,117(12):2195-2200.
    [17]Roland PS, Gstotner W, Adunka O. Method for hearing preservation in cochlear implant surgery [J]. Opin Tech Otolaryngol Head Neck Surg, 2005,16 (2):93-100.
    [18]Adunka OF, Pillsbury HC, Buchman CA. Minimizing intracochlear trauma during cochlear implantation [J]. Adv Otorhinolaryngol,2010,67:96-107.
    [19]Barriat S, Poirrier A, Malgrange B, et al. Hearing preservation in cochlear implantation and drug treatment [J]. Adv Otorhinolaryngol, 2010,67:6-13.
    [20]Takemura K, Komeda M, Yagi M, et al. Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig [J]. Hear Res,2004,196 (1-2):58-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700