异频声激活的抑制性输入对下丘神经元时程选择性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
下丘(inferior colliculus, IC),在声信号处理过程中,所接受的兴奋性和抑制性输入的相互作用可影响神经元对声刺激的反应。时程选择性是下丘神经元在处理声信号时表现出来的一种特性,同时也是神经元对声刺激诱发的兴奋和抑制性神经输入整合结果的表现。
     本实验在自由声场条件下,采用强度和频率固定,时程不同的短声来刺激小鼠,并记录下丘神经元的反应,分析小鼠下丘神经元的时程选择性;随后再同步加入异频声刺激,观察和分析同步异频声刺激所激发的抑制性输入对小鼠下丘神经元时程选择性的影响。实验共记录到117个神经元,其中88个(75%,88/117)神经元表现出时程选择性。根据神经元的时程调谐曲线,把它们划分成3种类型:长通型(3%,3/88)、短通型(80%,70/88)和带通型(17%,15/88);另外的29个(25%,29/117)神经元没有表现出时程选择特性,称之为非时程选择性神经元,分别是全通型(83%,24/29)和无规则型(17%,5/29)。同步加入异频声后,神经元在不同时程下的反应均受到一定程度的抑制,表现为发放数减少。对单个神经元进行分析,发现由异频声刺激诱发的抑制效应在不同时程下表现出不同的特征,分别是:短时程抑制型(12%,14/117),长时程抑制型(9%,11/117),中间时程抑制型(14%,16/117),侧抑制型(10%,12/117),全时程抑制型(48%,56/117),不规则抑制型(6%,8/117),其中全时程抑制型占主导。
     在88个具有时程选择性的神经元中,同步加入异频声后,有16个(18%,16/88)短通型神经元的时程选择性类型发生了变化,其中5个变成了带通型,还有11个变成了非时程选择性神经元。其余的72(82%,72/88)个时程选择性神经元的类型在加异频声前后不发生变化,但是,对比这72个时程选择性神经元在加异频声前后的时程选择性曲线,发现其中9个(13%,9/72)神经元的最佳时程发生改变,55个神经元(76%,55/72)的50%cut off时程发生变化。在同步加入异频声后,29个非时程选择神经元中的6个(20%,6/29)全通型神经元分别有3个变成短通型,2个变成带通型,还有1个变成无规则型,其余23个(80%,23/29)神经元的选择类型保持不变。
     在单个40 ms的最佳频率声刺激条件下获得的神经元反应的潜伏期,与加入异频声后反应的潜伏期进行了对比,发现大部分(75%,88/117)神经元的反应潜伏期在两种声刺激模式下基本保持不变,但其中29个(25%,29/117)神经元的潜伏期因加入异频声而延长。具体情况是:88个时程选择神经元中,潜伏期增加的有22个(25%,22/88),其余的66个(75%,66/88)保持不变;而29个非时程选择神经元中,潜伏期增加的有7个(24%,7/29),另22个(76%,22/29)保持不变。另一方面,对PSTH进行对比分析,发现不同神经元被抑制的模式也不尽相同,表现出早抑制模式(19%,22/117)、晚抑制模式(23%,27/117)和均衡抑制(58%,68/117)三种模式。潜伏期在同步加入异频声刺激时增加或者不变的神经元,不同抑制模式之间的比例不同。
     为了探讨由异频声刺激所引起的抑制效应的机制,对33个神经元进行了微电泳导入γ-氨基丁酸(γ-aminobutyric acid, GABA)能A受体拮抗剂荷包牡丹碱(bicuculline, Bic)实验。在离子电泳Bic阻断GABAA能抑制后,神经元的发放率有增加趋势,但神经元在不同时程下,增加的程度并不相同。33个注药实验神经元中,时程选择神经元有23个。其中的19个神经元在三种情况下(单BF声;同步双声;同步双声+注药)的选择类型一直保持不变,另有3个短通型神经元在同步双声刺激时变成无规则型,注药后恢复为短通型,还有1个短通型神经元在双声刺激时变成带通型,之后在注药时仍保持带通型。除23个时程选择性神经元,还有10个神经元为非时程选择神经元,且全部为全通型神经元。其中的8个神经元在三种情况下的选择类型保持不变,另有1个神经元在同步双声刺激时变成带通型,注药后恢复为全通型,还有1个神经元在双声刺激时变成带通型,之后在注药时保持带通型不变。结果表明,异频声刺激所诱发的抑制性输入可导致神经元对时程的选择性发生改变,提示神经元具有对双声刺激条件下诱发的兴奋性和抑制性输入进行整合的能力,以适应不同的声环境。
The interaction of excitatory and inhibitory inputs affects the response of inferior collicular (IC) neurons during acoustic signal processing. Duration selectivity which is an important property of IC neurons is the resulted of the intergration of excitatory and inhibitory inputs evoked by sound signal. We examined the duration selectivity in the IC neurons of Kunming mouse (Mus musculus, Km) by extra-cellular recording in the free-field condition with a single BF tone stimulus and a two-tone stimulus which is composed of a BF tone and a synchronized nonisofrequency tone, and then analyzed the effects of the inhibitory input excited by synchronized different frequency tone on the duration selectivity of IC neurons.
     Totally,117 neurons were recorded, and 88 (75%,88/117) of them displayed duration selectivity. According to duration tuning curves, they were divided into different types, such as long-pass (3%,3/88), short-pass (80%,70/88) and band pass (17%,15/88). Others 29 neurons (25%,29/117) didn't show duration selective features, including two types neurons of all-pass (83%,24/29) and irregular (17%,5/29). During the synchronized nonisofrequency tone was added, that is, under two-tone stimulation model, the neurons'response at each duration showed a reduction in the spike number. Meanwhile, we analyzed the duration-inhibition rate curves of each unit which showed different inhibition types:short-duration inhibition (12%,14/117), long-duration inhibition (9%,11/117), medium-duration inhibition (14%,16/117), sides-inhibition (10%,12/117), all-duration inhibition (48%,56/117) and irregular-inhibition (6%,8/117), the all-duration inhibition type neurons were in majority.
     Among 88 duration neurons under two-tone stimulation,16 (18%,16/88) short-pass neurons changed their selective type,5 units changed to band-pass and 11 units changed to non-selective type. Other 72 (82%,72/88) duration selective neurons kept their selective type same with before. However, the best duration of some neurons (13%,9/72) shifted, and most (76%,55/72) of these neurons' 50% cut off duration shifted. On the other hand, among 29 non-selective units,6 (20%,6/29) all-pass neurons changed their types,3 of them changed to short-pass,2 of them changed to band-pass and 1 of them changed to irregular type. Except the 6 units, other non-selective units (80%,23/29) kept their types same with before.
     Fixing the BF sound at 40 ms, we compared the response latency of each neuron under the two sound stimulus model (single BF tone stimulation; two-tone stimulation). The result showed that the latency of most units (75%,88/117) did not change; however, some neurons'(25%,29/117) latency increased. In 88 duration selective neurons,22 (25%,22/88) neurons'latency increased, other 66 (75%,66/88) neurons'latency unchanged; In 29 non-duration selective neurons,7 (24%,7/29) increased, other 22 (76%, 22/29) unchanged. On the other hand, neurons showed different suppressed patterns which were divided into three types according to the difference of inhibition degree between two half PSTHs divided by middle point of total response time. Three types were early-inhibition (19%,22/117), late-inhibition (23%,27/117) and proportional-inhibition (58%,68/117), respectively. The ratio of different inhibitional type neurons'number is different between latency increased and unchanged neurons
     33 neurons were examined in theγ-aminobutyric acid drug injection experiments for studying the underlying mechanism of inhibitory effect. After ion electrophoresis of Bicuculine, the number of spikes of IC neurons increased at different durations but the increased degrees were different. Among these 33 neurons,23 units were duration selective neurons,19 of them showed the same selective type under all the three conditions (single BF tone; two-tone; two tone and drug injection),3 short-pass neurons of them showed irregular type under two-tone stimulus condition and then changed back to short-pass type during drug injection,1 short-pass neuron showed band-pass type under the lately two condition (two-tone; two tone and drug injection). Besides 23 selective neurons, other 10 neurons were all-pass type neurons which did not show duration selectivity,8 of them showed the same selective type under all the three different conditions,1 neuron showed band-pass type under two-tone stimulus condition and then changed back to all-pass type during drug injection, what's more,1 neuron showed the same type of band-pass under the lately two conditions. The results indicated that the inhibitory input elicited by synchronized nonisofrequency sound stimulus could affect the duration selectivity of IC neurons and the neurons under two-tone stimulation condition also have the ability to reintegrate the excitatory and inhibitory neural input for adapting to the different acoustic environment.
引文
[1]Xia YF, Qi ZH, Shen JX. Neural representation of sound duration in the inferior colliculus of the mouse. Acta Otolaryngol,2000,5:638-643.
    [2]Ratnam R, Feng AS. Detection of auditory signals by frog inferior collicular neurons in the presence of spatially separated noise. J Neurophysiol,1998,6:2848-2859.
    [3]Moss CF, Sinha SR. Neurobiology of echolocation in bats. Current Opin in Neurobiol, 2003,13:751-758.
    [4]Goodman JC, Lee L, Degroot J. Development theories of speech perception: constraints from development data. In:The development of speech perception (Goodman JC, Nusbaum HC, eds), pp 3-33. Cambridge, MA:MIT.
    [5]Wu FJ, Chen QC, Jen PHS. Effect of inhibitory spectral integration on acoustic intensity sensitivity of neurons in the inferior colliculus of the big brown bat Eptesicus fuscus. Acata Zoologica Sinica,2004,3:380-387.
    [6]Wang D, Pi JH, Tang J, WU FJ, Chen QC. Dynamic modulations on intensity sensitivity evoked by weak noise in the inferior collicular neurons. Acata Physiologica Sinica,2005,1:59-65.
    [7]Wu CH, Jen PHS. GABA-mediated echo duration selectivity of inferior collilcular neurons of Eptesicus fuscus, determined with single pulses and pulse-echo pairs. J Comp Physiol A,2006,192:985-1002.
    [8]Ma X, Suga N. Corticofugal modulation of duration-tuned neurons in the midbrain auditory nucleus in bats. Proc Natl Acad Sci USA,2001,24:14060-14065.
    [9]吴飞健,陈其才,JEN PHS,沈均贤.频带整合对大棕蝠下丘神经元频率调谐的锐化作用.科学通报,2004,9:869-873.
    [10]吴飞健,陈其才,JEN PHS下丘神经元声信号处理过程中的频谱整合.生物物理学报,2003,3:291-296.
    [11]李安邦,吴飞健,陈其才.不同最佳频率的下丘神经元的声反应特性和方位敏感性.华中师范大学学报(自然科学版),2001,4:446-452.
    [12]韩琳琳,杨文伟,张皓,张季平,孙心德.小鼠听皮层对下丘神经元方位敏感性的调控.生物物理学报,2008,1:6-13.
    [13]张季平,孙心德,詹喜平,杨弘彦.电刺激大马蹄蝠听皮层对下丘神经元听觉
    敏感性的影响.生物物理学报,1999,1:98-103.
    [14]Pinheiro A, Wu M, Jen PHS. Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A, 1991,1: 69-85.
    [15]Potter HD. Patterns of acoustically evoked discharges of neurons in the mesencephalon of the bullfrog. J Neurophysiol,1965,28:1155-1184.
    [16]Feng AS, Hall JC, Gooler DM. Neural basis of sound pattern recognition in anurans. Prog Neurobiol,1990,34:313-329.
    [17]Pinheiro A, Wu M, Jen PHS. Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A,1991,1:69-85.
    [18]Casseday JH, Covey E. Neural tuning for sound duration:role of inhibitory mechanisms in the inferior colliculus. Science,1994,5:847-850.
    [19]He JF, Hashikawa T, Ojima H, Kinouch Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci,1997,7:2615-2625.
    [20]Chen GD. Effect of stimulus duration on responses of neurons in the chinchilla inferior colliculus. Hear Res,1998,1-2:142-150.
    [21]Perez-Gonzalez D, Malmierca MS, Moore JM, Hernandez O, Covey E. Duration selective neurons in the inferior colliculus of the rat:topographic distribution and relation of duration sensitivity to other response properties. J Neurophysiol,2006,2: 823-836.
    [22]Brand A, Urban A, Grothe B. Duration tuning in the mouse auditory midbrain. J Neurophysiol,2000,4:1790-1799.
    [23]Casseday JH, Fremouw T, Covey E. The inferior colliculus:A hub for the central auditory system. In:Springer handbook of auditory research, Vol 15, Integrate functions in the mammalian auditory pathway (Popper AN, Fay RR, eds), pp 238-318. New York:Springer.
    [24]Fuzessery ZM, Feng AS, Supin A. Central auditory processing of temporal information in bats and dolphins. In:Echolocation in bats and dolphins (Thomas JA, Moss CF, Vater M eds), pp 115-122. Chicago:The University of Chicago press.
    [25]Bauer EE, Klug A, Pollak GD. Features of contralaterally evoked inhibition in the inferior colliculus. Hear Res,2000,1-2:80-96.
    [26]Klug A, Bauer EE, Pollak GD. Multiple components of ipsilaterally evoked inhibition in the inferior colliculus. J Neurophysiol,1999,82:593-610.
    [27]Park TJ, Klug A, Oswald JP, Grothe B. A novel circuit in the bat's midbrain recruits neurons into sound location processing. Naturwissenschaften,1998,4:176-179.
    [28]Park TJ, Pollak GD. GAB A shapes a topographic organization of response latency in the mustached bat's inferior colliculus. J Neurosci,1993,13:5172-5187.
    [29]Wu SH, Kelly JB. In vitro brain slice studies of the rat's dorsal nucleus of the lateral lemniscus. I. Membrane and synaptic response properties. J Neuroph-ysiol,1995, 73:780-793.
    [30]Covey E, Kauer JA, Casseday JH. Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. J Neuroscience,1996,9:3009-3018.
    [31]Kuwada S, Batra R, Yin TCT, Oliver DL, Haberly LB, Stanford TR. Intracellular recordings in response to monaural and binaural stimulation of neurons in the inferior colliculus of the cat. J Neurosci,1997,17:7565-7581.
    [32]Peruzzi D, Sivaramakrishnan S, Oliver DL. Identification of cell types in brain slice of the inferior colliculus. Neuroscience,2000,2:403-416.
    [33]Casseday JH, Ehrlich D, Covey E. Neural measurement of sound duration:control by excitatory-inhibitory interactions in the inferior colliculus. J Neurouphysiol, 2000,3:1475-1487.
    [34]Faure PA, Fremouw T, Casseday JH, Covey E. Temporal masking reveals properties of sound-evoked inhibition in duration-tuned neurons of the inferior colliculus. J Neurosci,2003,7:3052-3065.
    [35]Ehrlich D, Casseday JH, Covey E. Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Neurophysiol,1997,5: 2360-2372.
    [36]Fuzessery ZM, Hall JC. Sound duration selectivity in the pallid bat inferior colliculus. Hear Res,1999,137:137-154.
    [37]Mora EC, Kossl M. Ambiguities in sound-duration selectivity by neurons in the inferior colliculus of the bat Molossus molossus from Cuba. J Neurophysiol,2004, 91:2215-2226.
    [38]Galazyuk AV, Feng AS. Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. J Comp Physiol A,1997,4:301-311.
    [39]Jen PHS, Chen QC, Wu FJ. Interaction between excitation and inhibition affects
    frequency tuning curve, response size and latency of neurons in the auditory cortex of the big brown bat, Eptesicus fuscus. Hear Res,2002,1-2:281-289.
    [40]王欣,吴飞健,陈其才.GABA能抑制参与弱噪声对下丘神经元的频率调谐的前掩蔽.华中师范大学学报(自然科学版),2006,2:248-251.
    [41]Pollak GD, Park TJ. The effect of GABAergic inhibition on monaural properties of neurons in the mustache bat's inferior colliculus. Hear Res,1993,1-2:99-117.
    [42]Pollak GD, Park TJ. Inferior colliculus in:Popper AN, Fay RR. Hearing by Bats. Berliin:Springer-verlag.1995:229-320.
    [43]Oliver D, Shneiderman A. The anatomy of the inferior colliculus:a cellular basis for intergration of monaural and binaural. In:Altschuler RA, Bobbin RP, et al. Neurobiologh of hearing:The Central Auditory System. New York:Raven press. 1991:218-219.
    [44]Faingold CL, Gehlbachm G, Gaspary DM. Functional pharmacology of inferior colliculus neurons In:Altschuler RA, Bobbin RP, et al. Neurobiologh of hearing: The Central Auditory System. New York:Raven press.1991:218-219.
    [45]陈其才,Jen PHS,吴飞健.γ-氨基丁酸能抑制可锐化大棕蝠听皮层神经元频率调谐.动物学报,2002,48:346-352.
    [46]陈其才,Jen PHS,吴飞健.γ-氨基丁酸能抑制对大棕蝠听皮层神经元声反应特性的影响.生物物理学报,2001,17:79-85.
    [47]Ingham NJ, Mcalpine D. GABAergic inhibition controls neural gain in inferior colliculus neurons sensitive to interaural time differences. J Neurosci,2005,25: 6187-6198.
    [48]Jen PHS,Wu CH. The role of GABAergic inhibition in shaping the response size and duration selectivity of bat inferior collicular neurons to sound pulses in rapid sequences. Hear Res,2005,1-2:222-234.
    [49]Jen PHS, Wu CH. Duration selectivity organization in the inferior colliculus of the big brown bat, Eptesicus fuscus. Brain Res,2006,1:76-87.
    [50]Bibikov NG, Chen QC, Wu FJ. Responses of inferior colliculus neurons to sounds presented at different rates in anesthetized albino mouse. Hear Res 2008,1-2:43-51.
    [51]Li AA, Wang Y, Wu FJ, Chen QC, Bibikov NG. Response of inferior colliculuar neurons to frequency-modulated sweeps in the Kunming mouse. Acta Zool Sin, 2007,4:659-667.
    [52]Luo F, Metzner W, Wu FJ, Zhang SY, Chen QC. Duration sensitive neurons in the inferior colliculus of horseshoe bats:adaptions for using CF-FM echolocation pulses. J Neurophysiol,2008,99:284-296.
    [53]廖阳,臧旭东,韩晓燕,李安安,陈其才,吴飞健.小鼠下丘神经元调制率选择性及其影响因素.生理学报,2009,5:469-479.
    [54]沈钧贤,徐智敏,沈力坚.昆明小鼠中脑下丘声反应的区域分布.科学通报,2002;19:1485-1488.
    [55]王欣,吴飞健,陈其才.弱噪声前掩蔽对下丘神经元频率调谐的影响.听力学及言语疾病杂志,2005,5:333-336.
    [56]Koch U, Grothe B. Hyperpolarization-Activated Current (Ih) in the Inferior Colliculus:Distribution and Contribution to Temporal Processing. J Neurophysiol 2003; 90: 3679-3687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700