铁锣坪斜拉桥施工控制及仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代斜拉桥以其良好的结构性能和跨越能力以及优美的建筑造型在现代桥梁结构中占据重要地位,斜拉桥的仿真计算技术以及施工控制理论也日趋成熟,本文在目前已有的研究成果基础上,以铁锣坪大桥为研究对象,就斜拉桥施工控制仿真计算、主梁分段悬臂浇注过程控制等问题进行了初步探讨。
     本文首先回顾了国内外斜拉桥发展的历史,分析了国内外斜拉桥施工控制的现状以及发展前景,然后介绍了斜拉桥施工控制系统的主要组成部分,主要内容以及影响斜拉桥施工控制的各项因素,并提出了一些解决办法。
     其次,深入讨论了斜拉桥施工控制过程中的结构模拟计算分析方法以及结构分析中需考虑的有关问题,根据斜拉桥结构设计原理以及悬臂施工方法的特点,对大跨度斜拉桥的施工过程进行仿真分析。采用前进分析方法模拟每一阶段施工状态,得到各个工况下结构的索力、内力、位移值,并且选择具有代表性的斜拉索和施工梁段进行研究,然后对仿真计算的结果进行了详细的分析,总结出了结构在施工过程中的一些变化规律,为施工控制的实施奠定了理论轨迹。
     最后,具体阐述了铁锣坪大桥的施工方案和施工工艺、施工监测的主要内容和操作流程,详细说明了实际施工过程中须注意的问题以及施工控制的精度。由于在实际悬臂浇注施工中梁段前端的标高变化和仿真计算的标高变化有一定的差异,进而影响到立模标高的确定,所以本文引入了BP人工神经网络对未施工梁段的前端标高变化进行预测,将影响梁段标高变化的因素如已施工梁段距离所在索塔中心的距离,对应斜拉索第三次张拉力的大小,张拉时的大气温度,理论计算的标高变化作为输入样本,将实测标高变化作为输出样本对BP网络进行训练,利用BP网络具备输入参数与输出参数之间的非线性映射关系的特点对后续梁段在斜拉索第三次张拉完毕后的标高变化进行预测,为施工控制提供参考。通过对预测值与实测值的比较表明,二者吻合较好,证明了将BP神经网络用于斜拉桥施工控制是合理的,可行的。并且总结出了一些影响网络预测精度的原因以供参考。
Modern cable-stayed bridge with its good performance and the structure and the ability to leap beautiful architectural modeling in the modern bridge structure play an important role, the cable-stayed bridge construction simulation technology and control theory are becoming increasingly mature, in the present paper has been based on the research results, take Tie Luo Ping cable-stayed bridge as the object of study, cable-stayed bridge construction control simulation, the main sub-cantilever beam gating process control issues was also discussed.
     This paper first reviews the history of the development of domestic and international cable-stayed bridge, the construction of a cable-stayed bridge control of the domestic and international situation and development prospects, and then introduced a cable-stayed bridge construction control of the basic theory, implementation procedures, as well as the contributing factor of bridge construction control were recommended.
     Second, the analysis and calculation method of structure model were discussed in-details, some problems were taken into account, according to the design theory of the cable-stayed bridge and to the feature of the cantilever construction, emulation analysis for construction sequences of cable-stayed bridge is presented. A forward-analysis method is introduced, in which the actual construction process is considered, by all conditions of the cable force, the internal force, displacement values, and choose a representative of the cable and beam construction research shows that in the process of construction some changes in the law for the implementation of Construction Control laid the theoretical trajectory.
     Finally, Tie Luo Ping Bridge Construction Programme and construction technology, construction of the main elements of the monitoring and operation processes was elaborated, detailed description of the actual construction process should be noted that the issue of control and accuracy. As in the actual casting of cantilever beam in the front of the elevation changes of the simulation calculation and the elevation changes are some differences, thereby affecting the determination of elevation model legislation, this paper introduces BP artificial neural networks to the construction beam of the front elevation changes predict, it will affect the beam elevation changes in factors such as distance has been the construction of the tower beam from the center of, the corresponding tension cables third the size of tension when the atmospheric temperature, the elevation changes theoretical calculation as input samples , will be measured as output samples elevation changes of BP network training, use of BP network with the input parameters and output parameters in nonlinear relationship between the characteristics of the follow-up beam in the third tensioned cables after the elevation changes forecast for the construction control reference. Through the predictive value compared with the measured values show that the two good agreement, BP will prove that the neural network for cable-stayed bridge construction control is reasonable and feasible. In addition to summing up and some of the reasons for the prediction accuracy of the network for reference.
引文
[1]王伯惠.斜拉桥结构发展和中国经验.北京:人民交通出版社,2003,1-10
    [2]范立础,主编,桥梁工程(上,下册),北京.人民交通出版社,2001
    [3]陈明宪.斜拉桥建造技术.北京:人民交通出版社,2003,12
    [4]林元培编著.斜拉桥.北京:人民交通出版社,1995.
    [5]铁道部大桥工程局桥梁科学研究所编.斜拉桥.北京:科学技术文献出版社,1992
    [6]万国朝.90年代桥梁工程发展趋势.国外公路,1995(4).
    [7]蔡国宏译.斜拉桥的发展经验和展望.国外公路,1997(4)
    [8]向中富编著.桥梁施工控制技术.北京:人民交通出版社,2001.
    [9]葛耀君.分段施工桥梁分析与控制.北京:人民交通出版社,2003,10-191
    [10]徐君兰.大跨度桥梁施工控制(第一版)[M].北京:人民交通出版社,2000年.
    [11]楼庄鸿.国内外大跨径桥梁的现状和发展趋势[J].长沙:中南公路工程,1994年,第1期.
    [12]陈常松,颜东煌,詹建辉.大跨度预应力混凝十斜拉桥施工控制系统研究.世界桥梁,2002.4:45-48
    [13]颜东煌.斜拉桥合理设计状态确定与施工控制:[湖南大学博士学位论文],长沙:湖南大学,2001,50
    [14]石雪飞,斜拉桥结构参数估计及施工控制系统[D]上海:同济大学桥梁工程系,1999
    [15]K.Maeda,A.Otsuda&H.Takano.Construction of the Yokohama Bay Bridge Superstructure.Proceedings of IABSE,1988
    [16]杜凡亚译.东神户大桥上部结构的施工及假设精度控制.国外桥梁,1994年第3期
    [17]H.S.Chiu.Long-Term Deflection Control in Cantilever Prestressed Concrete Bridges,Journal of Engineering Mechanics,ASCE,Vol.122,No.6,1996
    [18]林元培.卡尔曼滤波法在斜拉桥施工中的应用.土木工程学报,1983年第3期
    [19]葛耀君.大跨度桥梁分段施工的状态估计.中国土木工程学会市政工程学会第三次全国城市桥梁学术会议论文集,1991年12月
    [20]颜东煌.对斜拉桥施工控制计算中几个问题的认识.中国土木工程学会桥梁与结构年会第十届年会,湖北武汉,1992年11月
    [21]陈德伟等.混凝土斜拉桥施工控制.土木工程学报,1993年第1期
    [22]官万轶,韩大建.大跨度斜拉桥施工控制方法研究进展.华南理工大学学报 1999.11
    [23]常英.随机最优控制在连续刚构桥和斜拉桥施工控制中的应用.公路交通科技,2001年第6期
    [24]J.I.Park,et al.Control System and Postprocessing in Erection of Composite Cable-stayed Bridge.Proceedings of Deauville Conference,Cable-Stayed Bridges and Suspension Bridges,1994
    [25]徐升桥,任为东,李艳明.丫髻沙大桥主桥的施工控制.中国土木工程学会桥梁及结构工程学会第十四届年会,湖北武汉,2000年
    [26]邓新安.斜拉桥的施工控制.中国海港建设,2001.10(5):34-37
    [27]颜东煌,文钰,刘光栋等.斜拉桥的施土最优控制.国外公路,1999.6(3):53-58
    [28]刘士林等.斜拉桥.北京:人民交通出版社,2002.4-6
    [29]范立础,杜国华.斜拉桥索力优化及非线性理想倒退分析,重庆交通学院学报,1992,50(3):20-26
    [30]肖汝诚,林平.计算结构力学在桥梁结构施工设计与施工控制中的作用,计算结构力学及其应用,1993,10(1):26-31
    [31]秦顺全.斜拉桥安装无应力状态控制法.桥梁建设,2003,60(2):31-34
    [32]颜东煌,刘光栋.确定斜拉桥合理施工状态的正装迭代法.中国公路学报,1999,(2):59-64
    [33]肖汝诚.桥梁结构分析及程序系统。北京:人民交通出版社,2002.38-42
    [34]袁曾任编著.人工神经网络及其应用.清华大学出版社,1999.
    [35]吴简彤,王建华.神经网络技术及其应用,哈尔滨工程大学出版社,2000
    [36]沈成武,神经网络讲义,武汉理工大学,2002.9
    [37]张门哲,大跨预应力混凝土斜拉桥施工控制及索塔温度效应分析:[硕士学位论文].湖南:湖南大学,2004.5
    [38]顾安邦主编,桥梁工程(下):人民交通出版社,2000
    [39]李国豪,桥梁与结构设计理论研究:上海科学与技术出版社,1983
    [40]程翔云,桥梁理论与计算,北京:人民交通出版社,1990
    [41]朱伯芳,有限元原理与应用,北京:中国水利水电出版社,1998.10
    [42]上官萍、房贞政等.塔梁墩固结斜拉桥结构受力分析.福州大学学报,1999年第3期
    [43]韩大建,官万轶,颜全胜.斜拉桥施工过程的预测和控制.华南理工大学学报,2001,29(1).14-17
    [44]F.Sakai,et al.Construction control system for cable-stayed bridges IABSE,Proc.IABSE,1988,92(8):147-152
    [45]F.Seki and S.Tanaka.Construction control system for cable-stayed bridge.IABSE,Proc.IABSE,1988,92(4):181-190
    [46]F.Sakai.Application of construction control system to erection of stiffening truss girder of Rainbow Bridge.Proc.Inter.Conf.Bridge into 21 Century,Hong Kong,1994,459-466
    [47]D.G.Carmichael.The state estimation problem in experimental structural mechanics.Proc.3rd Int.Conf.On Applications of Statistics and Probability in Soil and Struct.Engrg,1981,82(4):421-454
    [48]李传习,夏桂云.大跨度桥梁结构计算理论.北京:人民交通出版社,2002,20-31
    [49]F.Leonhardt and W.Zell.Past,present and future of cable-stayed bridges,Cable-stayed Bridge,Elsevier Science Publisher,1991,120(11):156-161
    [50]R.Walter.Cable Stayed bridge(2nd edition).London:Thomas Telford,1999,56-62
    [51]N.J.Gimsing.Cable supported bridges concept and design(2nd edition).Chi Chester,England:John Wiley & Sons,1997,72-81
    [52]M.S.Troitsky.Cable-stayed bridges:theory and design(2nd edition).Oxford:Oxford's Professional Books,1988,7-50
    [53]中华人民共和国交通部部颁标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023-89).人民交通出版社,1989年
    [54]中华人民共和国交通部部颁标准.公路斜拉桥设计规范(试行)(CJTJ027-96).人民交通出版社,1996年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700