构建基于G/S模式的数字月球平台关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“数字月球”是一个集月球科学、信息科学和系统科学于一体的综合学科,它不仅是一个学科领域的创新,同时也是一个工程技术系统的创新,是统一地用数字化手段解决月球科学问题,最大限度利用月球信息资源的有效途径。数字月球平台作为“数字月球”概念的应用和延伸,是“数字月球”的重要组成部分,也是“数字月球”产品化、平台化的主要体现方式。
     数字月球平台旨在提供以月球空间信息为主的信息服务,空间信息服务模式是其关键,G/S模式作为一种新型的空间信息网络服务模式,能够有效解决海量、异构、多源空间数据的组织和管理,实现了空间信息服务的聚合。
     本文针对我国绕月探测工程科学数据发布和成果共享的需求以及现有月球空间信息网络服务模式的不足,从研究数字月球平台理论体系出发,将G/S模式与数字月球平台进行结合,从信息服务的角度深入分析和研究了基于G/S模式的数字月球平台的架构体系和运行机制,对其中所涉及的关键技术进行了详细地梳理和阐述,建立了一套以数字月球标记语言DLML为基础的月球空间数据描述与分布式集成方法,并以此为核心构建了基于G/S模式的数字月球平台原型系统。本文取得的主要创新点包括:
     (1)设计了一种月球信息标识语言——数字月球标记语言DLML。在深入研究GML、KML等地理信息标识语言的基础上,结合我国月球探测科学数据发布和成果共享的需要,以可扩展标记语言XML的语法和格式为基础,设计和实现了一种月球信息标识语言,用于实现对以月球空间对象为核心的空间数据和属性数据以及探月科学成果数据、月球场景漫游控制和分布式数据集成的描述。
     (2)提出并设计了一种基于G/S模式的数字月球平台的技术架构。以“数据分散、信息汇聚、服务聚合”为理念,提出了一种基于G/S模式的、以数字月球标记言语DLML为核心的数字月球平台的技术架构。该技术架构有别于传统意义上的虚拟月球系统或基于其它架构模式的数字月球平台,具有一定的前瞻性和探索性。本文在深入研究基于G/S模式的数字月球平台的基础上,从我国月球探测科学数据发布与成果共享的角度出发,围绕数字月球标记语言DLML这个核心,对分布式月球空间数据服务器群中的关键技术和数字月球浏览器的设计与实现作了相应的研究,最终确立了基于G/S模式的数字月球平台的架构体系,并实现其原型系统。通过具体的应用实例验证了基于G/S模式的数字月球平台在提供月球空间信息服务过程中的有效性、优越性,为探索数字月球平台架构模式提供了科学依据和一定的参考价值。
     (3)提出了一种以服务聚合为核心的月球空间信息服务模式。本文将G/S空间信息服务聚合模式用于数字月球平台的核心——月球空间信息服务的数字化,以数字月球平台中的信息服务过程为研究对象,从数据分散、信息汇聚和服务聚合的角度对基于G/S模式的数字月球平台的架构体系和运行机制进行了分析和研究,为建立我国自主、可控的、面向服务架构的月球空间信息服务平台提供理论依据和应用模型。
     基于以上创新性的研究,本文取得的主要成果包括:
     1.丰富和完善了“数字月球”的概念及其应用框架
     在对“数字地球”概念及其应用进行研究的基础上,结合月球空间信息服务数字化的需求,对现有“数字月球”的概念和内涵进行了补充和完善,明确了“数字月球”的应用框架,系统和全面地阐述了“数字月球”的含义、理论依据、框架体系和关键技术,为数字月球平台的构建提供了理论指导和实践依据。
     2.初步建立了基于G/S模式的数字月球平台的理论体系和技术架构体系。
     从“数字月球”框架的角度,提出涵盖月球空间信息管理和月球空间信息服务的数字月球平台的概念,并对其含义、理论依据、框架体系、科研意义等进行了诠释,将G/S模式与数字月球平台相结合,从信息服务的角度分析和研究了基于G/S模式的数字月球平台的架构体系和运行机制,初步建立了基于G/S模式的数字月球平台的理论体系和技术架构体系,为建立我国自主、可控的数字月球平台提供理论依据和应用模型。
     3.建立了一套以数字月球标记语言DLML为基础的月球空间数据描述与分布式集成方法。
     在深入研究GML、KML等地理标记语言的基础上,针对我国绕月探测科学数据的特点和数据发布与成果共享的需求,设计了一种以可扩展标记语言XML的语法和格式为基础的月球信息标识语言——数字月球标记语言DLML。通过数字月球标记语言DLML能够实现对月球空间数据、属性数据、探月科学成果数据、场景漫游控制以及分布式数据集成的描述,建立了一套以数字月球标记语言DLML为基础的月球空间数据描述与分布式集成方法。
     4.搭建了基于G/S模式的数字月球平台原型系统。
     以G/S模式以及“数字月球”框架为理论基础,以嫦娥一号CCD影像数据和高程数据为数据支撑,以数字月球标记语言DLML为核心,搭建了基于G/S模式的数字月球平台原型系统。该系统采用G/S架构模式,前台通过以地学浏览器Geo-browser为原型的数字月球浏览器实现用户与系统的功能交互。后台通过分布式月球空间数据服务器管理月球相关数据。该系统通过数字月球标记语言DLML能够实现对以月球空间信息为主的信息进行描述、展示以及分布式集成,对建立我国自主、可控的数字月球平台以及其他月球数据管理与共享平台均具有一定的借鉴价值和推广价值。
Digital Moon is a comprehensive discipline that combines moon science, information technology and system science. Not only is it an innovation in disciplinary field, but also in engineering technology system. It is a unified digitized means of solving problems of Moon science and an efficient approach of utmost using of exploiting the moon information resources. Digital Moon Platform as the application and extension of Digital Moon is a significant component of Digital Moon and the main presentation method of the commercialization and platforming of it as well. Digital Moon platform is conducted to offer information services mainly about lunar spatial information, and its key is spatial information service module. G/S module as a new spatial information network service module is able to efficiently solve the organization and management problems of massive, isomerous and multi-sources spatial data, thus realized the polymerization of the spatial information service.
     Beginning with the study of the Digital Moon platform theory system, directed towards our country’s requirements of data publication and achievements sharing of lunar orbiting exploration engineering science and connected G/S module with Digital Moon platform, this article deeply analyzed and researched the architecture and operating mechanism of Digital Moon Platform based on G/S module from the information service perspective, elaborated the all the referring key technologies, established a suit of data description and distributed integration methods based on Digital Lunar Mark-up Language(DLML) of Lunar Spatial data, and finally constructed the prototype system of the Digital Moon Platform based on G/S module.
     The innovations achieved by this article are:
     (1) Designed a digital Lunar Mark-up Language (DLML). On the basis of deeply study of GML, KML and other geo-information mark-up language, according to the requirements of our country’s data publication and achievements sharing of lunar orbiting exploration engineering science, on the basis of the grammar and syntax of extensible mark-up language (XML), designed and implemented a kind of lunar information mark-up Language. DLML is used for realize the descriptions of spatial data and attribute data, achievement data of the moon exploration science, the moon scene wandering control and distributed data integration with the moon space objects at the core.
     (2) Put forward the architecture of Digital Moon based on G/S module. With the conception of Distribution of Data,Aggregation of Information,Polymerization of Service, this article proposed an architecture of Digital Moon platform which is based on G/S module and with the DLML at the core. Different from traditional virtual Moon system or Digital Moon Platforms based on other architectures, this architecture has prospect and prediction. This article on the basis of deeply study of the Digital Moon Platform based on G/S module, started from the data publication and achievement sharing of our country’s data exploration science, and centered on the DLML as the core, did some corresponding researches on the key technologies of distributed Moon spatial data server cluster and the design and implementation of Digital Moon browser, and ultimately established the architecture of Digital Moon Platform based on G/S module, as well as its prototype system. Moreover, through specific application examples, the validity and superiority of the moon space information service providing capacity of Digital Moon Platform based on G/S module has been proved.
     (3) Put forward a moon spatial information service module centering on information polymerization. This article uses the G/S spatial information service polymerization module on the core of Digital Moon Platform– digitalization of moon spatial information service, and using the information service process in Digital Moon Platform as research subject, analyzed and studied the architecture and operation mechanism of Digital Moon Platform based on G/S module from the perspective of Distribution of Data,Aggregation of Information,Polymerization of Service, thus offered the theoretical foundation and application model for our country to construct independent, controllable, architecture-oriented Lunar Spatial Information Service platform.
     Based on the innovative research mentioned above, the achievements this article has gained include:
     1. Enriched and enhanced the concept and application architecture of Digital Moon.
     On the basis of the study of the concept and application of Digital Earth and combined with the digitalize requirement of Lunar Spatial Information Service, this article complemented and enhanced the current concept and connotation of Digital Moon, clarified the application architecture of Digital Moon, systematically and comprehensively presented the meaning, theoretical foundation, architecture and key technologies of Digital Moon, therefore provided theoretical direction and practical evidence of constructing Digital Moon Platform.
     2. Preliminarily established the theory foundation and technical architecture of Digital Moon Platform based on G/S module.
     From the perspective of Digital Moo”, this article put forward the concept of the Digital Moon Platform covering Lunar Spatial Information management and Lunar Spatial Information Service, and annotated its meaning, theory foundation, architecture and significance of scientific research. Connecting G/S module with Digital Moon Platform, and analyzed and studied the architecture and operation mechanism of Digital Moon Platform from the perspective of information service. Preliminarily established the theory foundation and technical architecture of Digital Moon Platform based on G/S module and offered the theoretical foundation and application model for our country to construct independent and controllable Lunar Spatial Information Service platform.
     3. Defined a set of Lunar Spatial data description and distributed integration method based on DLML.
     On the basis of deeply study of GML, KML and other geo-information mark-up language and according to the requirements of our country’s data publication and achievements sharing of lunar orbiting exploration engineering science, this article, on the basis of the grammar and syntax of XML, designed a Lunar Information Mark-up language– DLML. DLML is able to realize the descriptions of Lunar Spatial data, attribute data, achievement data of the moon exploration, scene wandering control and distributed data integration, and established a set of Lunar Spatial data description and distributed integration method based on DLML.
     4. Constructed the prototype system of Digital Moon Platform base on G/S module
     On the basis of G/S module and the architecture of Digital Moon, on the support of the CCD image data and elevation data of Chang’E I, and centered on the DLML, this article constructed the prototype system of Digital Moon Platform based on G/S module. This system adopts G/S module, the front-end realizes user-system interaction through the Digital Moon browse modeled on the Geo-browser. Back-end manages lunar data through distributed Lunar Spatial data servers. This system, by using DLML, describes, presents and integrates the information mainly about Lunar Spatial data. This system has the value of reference and promotion for our country to construct independent and controllable Digital Moon Platform, and other lunar data management and sharing platforms.
引文
[1]李德仁,邵俊峰.论新地理信息时代[J].中国科学F辑:信息科学.2009(6):579-587.
    [2]李德仁,李清泉.地球空间信息学与数字地球[J].地球科学进展.1999(12):535-540.
    [3]李德仁.数字地球与3S技术[J].中国测绘.2003(2):28-31.
    [4]唐桂文.基于数字地球平台的地理信息服务系统[D].北京:首都师范大学,2008.
    [5]李晨.中国科学家谈“数字地球”[N].科学时报, 2006-05-22(A01)
    [6]龚建雅,李德仁.论地球空间信息服务技术的发展[J].测绘通报,2008:5-10.
    [7]沈荣骏.数字地球,在应用中求发展[J].装备指挥技术学院学报,2009,20(1):1-6.
    [8]李春来.嫦娥一号图像数据处理与全月球影像制图[J].中国科学:地球科学.2010.40(3):294-306.
    [9]韩增军.基于GIS的数字济南旅游信息服务系统的设计与实现[D].济南,山东大学,2008.
    [10] Akademia N,Barabashov,Nokolai P,et al.Atlas Obratnoi Storony Luny.Moskva:Izd-vo-Akademii Nauk SSSR,1960.
    [11] Lewis H A G.The Times Atlas of the Moon.London:Times Newspapers,1969
    [12] Bowker D E,Hughes J K.Lunar Orbiter Photographic Atlas of the Moon.Houston:Lunar and Planetary Institute,1971.
    [13] Bussey B,Spudis P.The Clementine Atlas of the Moon.Cambridge:Cambridge University Press,2004.
    [14] Eliason E,Isbell C,Lee E,et al.The Clementine UVVIS Global Lunar Mosaic.Houston:Lunar and Planetary Institute,1999.
    [15] Rosiek M R,Kirk R,Howington-Kraus E.Color-coded Topography and Shaded Relief Maps of the Lunar Hemispheres.33rd Lunar and Planetary Science Conference.Houston:Lunar and Planetary Institute,2002.
    [16] Smith D E,Zuber M T,Neumann G A,et al.Topography of the moon from the Clementine lidar.J Geophys Res,1997,102(E1):1591-1611.
    [17] Archinal B A,Rosiek M R,Kirk R L,et al.Completion of the unified lunar control network 2005 and topographic model.37th Lunar and Planetary Science Conference[CD-ROM].Houston:Lunar and Planetary Institute,2006.
    [18] Hare T M,Archinal B A,Becker T L,et al.Clementine mosaics warped to ulcn 2005 network.39th Lunar and Planetary Science Conference,Abs.#2337[CD-ROM].Houston:Lunar and Planetary Institute,2008.
    [19] Lee E M,Gaddis L R,Weller L,et al.A new Clementine basemap of the moon.40th Lunar and Planetary Science Conference,Abs.#2445[CD-ROM].Houston:Lunar and Planetary Institute,2009.
    [20] Becker T,Weller L,Gaddis L,et al.Progress on reviving lunar orbiter:Scanning,archiving,and cartographic processing at USGS.35th Lunar and Planetary Science Conference,Abs.#1791[CD-ROM].Houston:Lunar and Planetary Institute,2004.
    [21] Weller L,Red-ding B,Becker T,et al.Lunar orbiter revived:Very high resolution views of the Moon.37th Lunar and Planetary Science Conference.Houston:Lunar and Planetary Institute,2006.
    [22] Weller L,Becker T,Archinal B,et al.USGS lunar orbiter digitization project:Updates and status.38th Lunar and Planetary Science Conference.Houston:Lunar and Planetary
    [23] Byrne C J.Lunar Orbiter Photographic Atlas of the Near Side of the Moon.Berlin:Springer,2005.
    [24] Phillip P J.The International Atlas of Lunar Exploration.Cambridge:Cambridge University Press,2007.
    [25]王悦邦.月球软着陆三维视景仿真系统的研究与实现[D].哈尔滨工业大学,2007.
    [26]郭贵喜.月球软着陆可视化演示关键技术研究[D].哈尔滨工业大学,2007.
    [27]张汉青.月球探测器仿真系统的开发[J].空间科学学报.2008,28(3):236~241.
    [28]胡平飞.分布式交互三维视景仿真系统平台网络通信技术的研究与开发[J].武汉理工大学学报.2004, 28(1):70-73.
    [29]郭羽成.三维视景仿真中面向客户端的网络同步模型研究[D].武汉理工大学.2006.
    [30]左维.基于xML/Web serviees的月球探测科学数据管理与集成技术研究[D].中国科学院地球化学研究所.2004.
    [31]郭曦榕.基于G/S模式的数字旅游工程及其评估技术研究[D].成都理工大学.2010
    [32]于海龙,邬伦. OpenGIS参考模型ORM及地理信息服务应用模式[J].地理与地理信息科学, 2004,20(5):18-20。
    [33]贾文珏,李斌,龚健雅.基于工作流技术的动态GIS服务链研究[J].武汉大学学报.信息科学版,2005, 30( 11) : 982 -985.
    [34]黄晓斌,李琦,董宝青.基于GeoAgent和Web服务的空间信息服务及应用集成体系[J].计算机科学, 2004, 31( 9) : 72 -75.
    [35] Vaishampayan V A. Design of Multiple Description Scalar Quantizer[J]. IEEE Transactions on Information Theor y,1993,39( 3) : 821-834.
    [36]林绍福.面向数字城市的空间信息Web服务互操作与共享平台[d].北京:北京大学, 2002.
    [37]孙庆辉,王家耀.空间信息服务模式研究[J].武汉大学学报.信息科学版,2009(3):344-347.
    [38]方裕.GIS的未来,软件世界[J],2006(Z1):48-49.
    [39]沈荣骏.数字地球,在应用中求发展[J].装备指挥技术学院学报,2009,20(1):1-6.
    [40]欧阳自远.月球探测进展与我国的探月行动[J].自然杂志,2005,27(4):187-190.
    [41]邓岳辉.虚拟现实技术[J].电力情报,1997,(4):7-9.
    [42]苗放,叶成名,刘瑞等.新一代数字地球平台与“数字中国”技术体系架构探讨[J],测绘科学,2007,(6):157-158.
    [43]王培超,朱欣焰,苏科华,陈静.分布式空间数据标记语言的研究与实现[J].武汉大学学报·信息科学版,2009(6):659-662.
    [44]李晨.中国科学家谈“数字地球”[N].科学时报, 2006-05-22(A01)
    [45]崔铁军.地理信息服务导论[M].北京:科学出版社,2009:8-12.
    [46]龚建雅,李德仁.论地球空间信息服务技术的发展[J].测绘通报,2008:5-10.
    [47]承继成,郭华东,薛勇.数字地球导论(第二版)[M].北京:科学出版社,2007:10-20.
    [48] SHUPENG C, GENDEREN J V. Digital earth in support of global change research[J]. Internal Journal of Digital Earth ,2008,1 (1) :43265.
    [49]郭华东.数字地球: 10年发展与前瞻[J].地球科学进展,2009(9):955-962.
    [50]唐婷.数字地球:让我们知识更丰富[N].科学时报, 2009-09-13(A01)
    [51]李德仁,胡庆武.基于可量测实景影像的空间信息服务[J].武汉大学学报.信息科学版,2007(5):377-380.
    [52]李琦,杨超伟,易善桢.数字地球的体系结构[J].遥感学报,1999(4):254-258.
    [53]郭华东.数字地球:十年的发展与前瞻[J].地球科学进展.2009(9):955-960
    [54]香山科学会议第303次会议:数字中国发展战略[EB/OL]. http://www.xssc.ac.cn/Web/ListConfs/ConfPicShow.asp?requestno=1054.
    [55]闾国年,张书亮,王永君,陶陶,兰小机等编著.地理信息共享技术[M].北京:科学出版社,2007.
    [56]高刚毅.分布式地理信息系统[D].杭州:浙江大学,2004.
    [57]郭曦榕,苗放,王华军,许义兴等.空间信息G/S网络访问模式体系架构初探[J].计算机应用与软件,2009(10):72-74.
    [58] Chen, Jianhua; Miao, Fang; Wang, Weihong; Wang, Huajun, Design and implementation of ggearth spatial data service application system, Proceedings of SPIE - The International Society for Optical Engineering, Second International Conference on Earth Observation for Global Changes, v 7471, 2009.
    [59] Guo Xi-Rong; Miao Fang; Wang Hua-Jun; Du Gen-yuan, Initial Discussion on the Architecture of a New Spatial Information Network Service Mode Based on the Digital Earth,ESIAT2009, Published: IEEE Computer Society CPS, 2009,V3, p406-410.
    [60] Feng, Xiufu; Ye, Chengming; Miao, Fang; Li, Jiaguang; Discussion on a new network service model of spatial information. 2008 International Workshop on Education Technology and Training and 2008 International Workshop on Geoscience and Remote Sensing, ETT and GRS 2008, v 2, p 211-214, 2009.
    [61] Rui Liu, Xiang-sheng Kong, Fang Miao, Cheng-ming Ye, 2007. Earth science framework research based on the digital earth platform, (EI). Proc. Of SPIE Vol. 67531V, ( 2007),67531V-1-8.
    [62] Chengming Ye, Fang Miao, Xiangsheng Kong, Xiaojia Bi, and Rui Liu. The oil and gas engineering techniques based on Digital Earth Platform, Proc. SPIE 6795, 679579- 1- 5(2007).
    [63] C. Shupeng and J. van Genderen. Digital Earth in support of global change research. International Journal of Digital Earth Vol. 1, No. 1, March 2008, 43-65.
    [64] A. Gruen. Reality-based generation of virtual environments for digital earth. International Journal of Digital Earth.Vol. 1, No. 1, March 2008, p88-106.
    [65] Al Gore. The Digital Earth: Understanding our planet in the 21st Century. California Science Center, Los Angeles, California, on January 31, 1998.p1-4.
    [66] DENG Ji-qiu, BAO Guang-shu. Full feature data model for spatial Information network integration. J. CENT. SOUTH UNIV. TECHNOL. Oct. 2006, Vol. 13 No. 5, p584-589.
    [67] Ravi Prasad Karnati. A Survey of Geo-Spatial Data Integration Techniques.2007,p1-10.
    [68] W. Shi, L. Meng. Integration and interoperability of multiple theme data on the basis of Google Earth. Geoinformatics 2006 - Geospatial Information Technology, Wuhan, 28.-29. October 2006, 6421-39.
    [69] LiQi. Digital City-the 21 century’s life style.p1-7.
    [70] William Ribarsky. Towards the Visual Earth.p1-11.
    [71] OGC. OGC KML(Version: 2.2.0)[EB/OL]. http://www.opengeospatial.org/standards/kml. 2008.
    [72] Goodchild M F. Geographical data modeling[J]. Computers and Geosciences, 1992, 18(4): 401-408.
    [73] NASA World Wind[EB/OL].http://www.blogcn.com/user32/worldwind/blog/6828402.html,2005/03/14.
    [74] Li, Kang-Rong; Miao, Fang, The analysis of multi-dimension spatial data subdivision and storage, ,ESIAT2009, Published: IEEE Computer Society CPS, 2009, V3,p385-388.
    [75] Gruen, A. and Murai, Sh., 2002, High-resolution 3D modeling and visualization of Mount Everest. ISPRS journal of photogrammetry and remote sensing, 57, pp. 102-113.
    [76] Foresman, T. 2008. Evolution and implementation of the digital earth vision technology and society. International journal of digital earth, 1 (1).
    [77] Goodchild, M., 2008. The use cases of digital earth. International journal of digital earth, 1 (1).
    [78] Camara G.Frameworks for Sustainability of GIS and Earth Observation Technologies in Developing Countries, On-line paper:http://www.dpi.inpe.br/gilberto/codata_talk_camara.pdf, 2000,p1-11.
    [79] Wu, Y. Zhao,“XCS System: A New Architecture for Web-Based Applications”. W. LECTURE NOTES IN COMPUTER SCIENCE. 2004, Volume 3033, pages 1046-1050.
    [80] Declan Butler.The web-wide world[J].Nature,2006,439:776-778.
    [81] Matt Mills.NASA World Wind Tile Structure Technical Documentation[EB/OL].
    [82] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach. Bigtable: A Distributed Storage System for Structured Data. Google, Inc.2006,p1-14.
    [83] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System. SOSP’03, October 19–22, 2003,p1-15.
    [84] Yvan G. Leclerc, Martin Reddy, Lee Iverson, and Nat Bletter. Digital Earth: Building the New World.1999,p1-11.
    [85] Michael F.Goodchild. Implementing Digital Earth: A Research Agenda.Proceedings of the International Symposium on Digital Earth.Science Press,1999,p21-26.
    [86] Max Craglia, Michael F. Goodchild, Alessandro Annoni, Gilberto Camara. Next-Generation Digital Earth. International Journal of Spatial Data Infrastructures Research, 2008, Vol. 3, 146-167.
    [87] A. S. M. Maksud Kamal, Saburoh Midorikawa. 2004. GIS-based geomorphological mapping using remote sensing data and supplementary geoinformation a case study of the Dhaka city area, Bangladesh.International Journal of Applied Earth Observation and Geoinformation, 2004, (6):111–125.
    [88] Kumar P,Singh V,Reddy D.Advanced traveler information system for Hyderabad.
    [89] Markus Senoner. Google Earth and Microsoft Virtual Earth -two Geographic Information Systems.2007, p1-44.
    [90] Wu, Y. Zhao,“XCS System: A New Architecture for Web-Based Applications”. W. LECTURE NOTES IN COMPUTER SCIENCE. 2004, Volume 3033, pages 1046-1050.
    [91] Seidelmann P K,Abalakin V K,Bursa M,et al.Report of the IAU/IAG working group on cartographic coordinates and rotational elements of the planets and satellites:2000.Celest Mech Dyn Astr,2002,82:83—110.
    [92] Davies M E,Colvin T R,Meyer D L,et al.The unified lunar control network:1994 version.J Geophys Res,1994,99(E11):23211—23214.
    [93] Archinal B A,Rosiek M R,Kirk R L,et al.The Unified Lunar Control Network 2005.U.S.Geological Survey Open-File Report,2006.1367.
    [94] Rosiek M R,Cook A C,Robinson M S,et al.A revised planet-wide digital elevation model of the moon.38th Lunar and Planetary Science Conference,Abs.#2297[CD-ROM].Houston:Lunar and Planetary Institute,2007.
    [95] Archinal B A,Rosiek M R,Kirk R L,et al.Completion of the unified lunar control network 2005 and topographic model.37th Lunar and Planetary Science Conference,Abs.#2310.Houston:Lunar and Planetary Institute,2006.
    [96] Eliason E,Isbell C,Lee E,et al.Mission to the Moon:The Clementine UVVIS Global Lunar Mosaic,PDS Volumes USA_NASA_PDS_CL_4001 Through 4078.The U.S.Geological Survey,1999.
    [97] Eliason E M,Isbell C,Lee E,et al.Clementine Basemap mosaic,PDS Volumes USA_NASA_PDS_CL_3001 Through 3015.The U.S.Geological Survey,1997.
    [98] Isbell C,Eliason E M,Adams K C,et al.Clementine:A multi-spectral digital image model archive of the Moon.30th Lunar and Planetary Science Conference,Abs.#1812.Houston:Lunar and Planetary Institute,1999.
    [99] Li Y Q,Liu J Z,Yue Z Y.NAO-1:A lunar highland soil simulant developed in China.J Aerosp Engrg,2009,22:53—57.
    [100] Zheng Y C,Wang S J,Ouyang Z Y,et al.CAS-1 lunar soil stimulant.Adv Space Res,2009,3:448—454.
    [101] Lucey P G,Blewett D T,Jolliff B L.Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images.J Geophys Res,2000,105(E8):20297—20305.
    [102] Zheng Y C,Wang S J,Ouyang Z Y.Dielectric properties of lunar material and its microwave penetration depth.Geochim Cosmochim Acta,2005,69:A805.
    [103] Liu J J,Ren X,Mu L L,et al.Automatic DEM Generation from CE-1’s CCD Stereo Camera Images.In:40th Lunar and Planetary Science Conference.2009 March 23—27,Woodlands,Texas,2009.2570.
    [104]黄晓斌,李琦,董宝青.基于GeoAgent和Web服务的空间信息服务及应用集成体系[J] .计算机科学, 2004 ,31 (9) :72-75.
    [105]林绍福.面向数字城市的空间信息Web服务互操作与共享平台[D] .北京:北京大学,2002.
    [106]杨崇俊,网格及其对地理信息服务的影响[J].地理信息世界,2003 , 1(1):20-22.
    [107]卢亚辉,杨崇俊.基于Web Service的WebGIS系统的研究[J].2003,39(25):153-156.
    [108]李德仁,论广义空间信息网格和狭义空间信息网格[J].遥感学报,2005,9(5):513-519.
    [109]蔡少华,骆剑承,陈秋晓,沈占锋,郑江,孙庆辉.网格GIS中的GML语言技术与设计框架[J].地球信息科学,2003,9(03):47-51.
    [110]李德仁,朱欣焰,龚健雅.从数字地图到空间信息网格——空间信息多级网格理论思考[J],武汉大学学报?信息科学版,2003,28(06):642-649.
    [111]刘岳峰.地理空间信息服务概述[J],地理信息世界,2004,02(6):26-29.
    [112]陈应东,王玉海,崔铁军,基于流程的空间信息服务模式[J].中国地理信息系统协会第四次会员代表大会暨第十一届年会论文集,2007,232-236.
    [113]卢战伟,赵彦庆,陈荣国,陈应东.基于SOA的空间信息资源整合与服务模式探讨[J].计算机与数字工程,2009,37(9):125-175.
    [114]陈应东,崔铁军,卢战伟.基于SOA的空间信息服务架构模式[J].地理信息世界,2008,6:49-52.
    [115]邓红艳,武芳,王卓苧,刘薇薇.基于Web Service的空间信息服务研究[J].计算机工程与设计,2006,27(23):4450-4452.
    [116]叶成名.基于数字地球平台的地学信息资源整合初步研究[D].成都理工大学, 2007.
    [117]俞晓.空间信息网络访问模式——G/S模式研究[D].成都:成都理工大学,2009.
    [118]许义兴.基于G/S模式的开源数字地球平台研究[D].成都:成都理工大学,2008.
    [119]陈建华.原生模式GML空间数据管理机制研究[D].成都:成都理工大学,2008.
    [120]欧阳自远.中国月球探测的起步、进展与前景[J].科学世界,2007(11):1.
    [121]欧阳自远.月球科学概论[M].北京:中国宇航出版社,2005:304-318.
    [122]欧阳自远.月球探测进展与我国的探月行动[J].自然杂志, 2005,27(4):187-190
    [123]李春来.嫦娥一号激光测距数据及全月球DEM模型[J].中国科学:地球科学,2010,40(3):281-293.
    [124]李春来,邹永廖,刘建忠,等.绕月探测工程的数据处理和应用研究[EB/OL].(2007-07-06)[2008-10-05].http://www.clep. org. cn/index. asp? modelname = cegc _ tygc _nr&FractionNo=&titleno=cegctyygc&recno=19.
    [125]李学军,王新波,谢剑薇,王林旭.嫦娥一号月面影像图自动生成软件的设计与实现[J].装备指挥技术学院学报,2009,20(1):85-90.
    [126]沈荣骏,李学军.自动制图--月球遥感数据处理的新方向[J].装备指挥技术学院学报,2010,21(1):1-5.
    [127]欧阳自远.绕月探测工程的初步科学成果[J].中国科学:地球科学,2010, 40(3):261-280
    [128]燕琴,高武俊,刘锋.月球探测中的测绘技术[J].测绘科学,2004,29(4):61-63.
    [129]朱兰,左维,李春来.绕月探测工程卫星数据的存储与管理[J].天文研究与技术,2008,5. (4):365-372.
    [130]张福勤,李春来,邹永廖,刘建忠,刘建军,郑永春,苗来成,王世杰,林杨挺,刘敦一,欧阳自远.月球的构造演化:嫦娥月图解释的理论基础[J].地球化学,2010,39(2):110-122.
    [131]李瑞玲,刘建忠,李春来.月球探测计划中影像数据的格式[J].地球物理学进展,2006,21,(4):1155-1160.
    [132]王涛,项琳,曹锋.月球卫星CE-1三线阵影像数据的解算试验[J].遥感信息,2010,(3):18-20.
    [133]王慧,申家双,陈冬阳等.一种高性能的大区域遥感影像管理模型[J].海洋测绘,2006, 26(3): 71-74.
    [134]张书亮,闾国年,龚建雅,干嘉彦.地理标识语言——Geo-Web基础[M].北京:科学出版社,2008.
    [135]赵永平.全球空间数据基础设施研究与展望[J].科技导报(北京0,1998(2):58-62.
    [136]邓胜利.基于用户体验的交互式信息服务[M].武汉:武汉大学出版社,2008.
    [137]陈能成.网络地理信息系统的方法与实践[M].武汉:武汉大学出版社,2009.
    [138]边馥苓.空间信息导论[M].北京:测绘出版社,2005.
    [139]朱光.地理信息系统基本原理及应用[M].北京:测绘出版社,2003.
    [140]张正栋,邱国峰,郑春燕,胡华科.地理信息系统原理、应用与工程[M].武汉:武汉大学出版社,2005.
    [141]姚鹤岭.GIS Web服务研究[M].郑州:黄河水利出版社,2007.
    [142]周文生,毛锋,胡鹏.开放式WebGIS的理论与实践[M].北京:科学出版社,2007.
    [143] Don Box,Aaron,John Lam著,卓栋涛译.XML本质论[M].北京:中国电力出版社,2003.
    [144]甄玉钢,刘璐莹,康建初.基于XML的异构数据库集成系统构架与开发[J].计算机工程,2006,32(2):85-87.
    [145]毋河海.地理信息系统(GIS)空间数据结构与处理技术[D].北京:测绘出版社,1997.
    [146]崔铁军.地理信息服务理论导论[M].北京:科学出版社,2009.
    [147]蔡长安,王盈瑛.C/S和B/S的模式的比较和选择[J].渭南师范学院学报.2006,21(2): 47-51.
    [148]张照录,李涯丽,周秀慧,吴忠东.“数字地球”技术系统的体系结构[J].山东理工大学学报(自然科学版),2004(01):101-105.
    [149]王兴玲.基于XML的地理信息Web服务研究[D].中国科学院博士学位论文,2002.
    [150]王新闯,张子平.基于GML的GIS语义共享实现途径的探讨[J].测绘与空间地理信息,2004,27(6):16-18.
    [151]王鹏,马秋禾,刘立娜.XML-WebGIS中空间信息共享和互操作的新途径[J].计算机应用研究,2001, (12):142-144.
    [152]史东平.基于XML和Web Service的异构信息集成研究[D].山东:山东大学,2006.
    [153]贾文珏,李斌,龚健雅.基于工作流技术的动态GIS服务链研究[J].武汉大学学报·信息科学版,2005(11):982-985.
    [154]张立强.构建二维数字地球的关键技术研究[D].北京:中国科学院遥感应用研究所,2004.
    [155]褚伟宁.空间信息服务平台及其关键组件的研究与实现[D].解放军信息工程大学,2007.
    [156]张向荣.空间数据的存储、检索与可视化研究[D].西北工业大学,2006.
    [157]王世杰,赵军.全球化背景下的地理信息服务发展现状及思考[J].矿山测量,2007(12):48-50.
    [158]王玉海,崔铁军,郭黎,陈应东.地理信息服务系统结构体系的研究[J].测绘科学,2007(11):54-55.
    [159]陈淑婷,刘俊亮,李云浩.空间信息服务集成共享研究[J].江西理工大学学报,2006(02):12-15.
    [160]黄海峰,夏斌,黎华,熊永柱.空间地理信息网络服务集成框架初探[J].测绘科学,2006(07):112-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700