APE1的氧化还原功能在卵巢癌铂类耐药中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是严重威胁女性健康的恶性肿瘤之一,其恶性程度在女性生殖系统肿瘤中占第1位。由于缺乏可靠的早期检测方法,约70%的患者初次诊断时已经为III或IV期,并且出现广泛转移,严重影响疾病的治疗效果,降低患者生存质量。目前国内外对卵巢癌初诊患者采用的标准治疗方案是联合积极彻底的肿瘤细胞减灭术和以铂类为基础的化疗治疗。根治性手术和化疗方案的进步发展使得卵巢癌的治疗有所改善。但是,肿瘤细胞原发性或继发性的化疗耐药是影响化疗效果,造成肿瘤复发、转移及死亡率居高不下的重要原因,给临床治疗带来极大困扰。因此,研究卵巢癌复发和化疗耐药的机制并采取有效的预防和治疗措施已成为卵巢癌治疗研究的当务之急。
     脱嘌呤/脱嘧啶核酸内切酶(Apurinic/apyrimidinic endonuclease,APE1)是DNA碱基切除修复(Base excision repair,BER)途径中的一种多功能蛋白酶,不仅具有核酸内切酶活性,在DNABER途径中发挥关键限速酶的作用,而且还能通过其氧化还原功能调控多种重要转录因子的活性,参与肿瘤的发生发展、氧化应激、细胞周期调控及凋亡等多种关键的细胞反应。APE1在DNA损伤修复和凋亡通路调控两大途径中均发挥重要作用。多项研究结果均表明,APE1的表达不仅与多种肿瘤的发生发展和预后相关,而且与多种肿瘤的放化疗敏感性相关。鉴于APE1上述的功能特点,我们推测APE1在肿瘤细胞化疗耐药中扮演着重要角色,可能成为极具潜力的肿瘤治疗靶点。
     我们前期发现①APE1的表达和细胞定位与卵巢癌发生发展、铂类化疗敏感性及预后相关;②卵巢癌顺铂耐药株A2780/cis中APE1的表达水平显著高于卵巢癌顺铂敏感株A2780;③高表达APE1能显著降低卵巢癌细胞对顺铂的敏感性。综合前期的研究基础,我们提出并证实了APE1在介导卵巢癌铂类耐药中发挥着重要作用。
     近年来多项研究证实,APE1的DNA修复功能在多种肿瘤的发生发展、化疗耐药及预后中扮演着重要角色。APE1具有3’-5’核酸外切酶作用,在错配的脱氧核糖核苷类似物的切除中发挥作用,抑制这种作用能够增加吉西他滨类化疗药物的治疗作用。体内体外实验均表明,通过RNA干扰或特异性小分子抑制剂抑制APE1的DNA修复功能,并与放化疗联合应用,在一定程度上能够增强放化疗对肿瘤细胞的杀伤能力。
     尽管针对APE1在卵巢癌铂类耐药过程中发挥的作用取得了一些研究结果,但仍有很多问题亟待深入探讨:我们对其DNA修复功能已有充分的了解,但对其氧化还原功能却知之甚少。APE1的氧化还原功能在其参与肿瘤发生发展、氧化应激、细胞周期调控及凋亡等多种关键细胞反应中发挥着重要作用,那么APE1的氧化还原功能在卵巢癌铂类耐药形成中又扮演怎样的角色?干预APE1是否能有效逆转卵巢癌铂类耐药呢?
     为此,我们在前期研究的基础上,进行了下列研究工作:根据APE1结构功能特点,构建含有APE1基因及其氧化还原区的重组腺病毒Ad5-APE1-EGFP和Ad5-Redox-APE1-EGFP;将Ad5-APE1-EGFP和Ad5-Redox-APE1-EGFP重组腺病毒分别感染卵巢癌细胞,荧光显微镜下观察绿色荧光蛋白(EGFP)的表达检测感染情况,qRT-PCR和Western blot分别检测重组腺病毒感染后卵巢癌细胞中APE1mRNA和蛋白水平变化; MTT、平板克隆形成实验及侵袭实验检测感染APE1不同重组腺病毒后卵巢癌细胞增殖能力及侵袭能力的变化;药物敏感性实验检测感染APE1不同重组腺病毒,对卵巢癌细胞顺铂敏感性的影响;流式细胞术检测感染APE1不同重组腺病毒后卵巢癌细胞周期的变化; Hoechst33258染色法检测APE1不同重组腺病毒感染后,顺铂诱导的卵巢癌细胞凋亡的变化;激光共聚焦检测APE1不同重组腺病毒感染后卵巢癌细胞中APE1的亚细胞定位;体内实验建立卵巢癌裸鼠皮下荷瘤模型,进一步观察APE1及其氧化还原功能在卵巢癌化疗耐药中的重要作用及其对肿瘤增殖的影响;构建针对APE1氧化还原区的Redox-APE1siRNA慢病毒下调Redox-APE1表达后,通过MTT法、药物敏感性实验及流式细胞术检测细胞周期观察其对卵巢癌细胞生物学行为的影响; qRT-PCR检测改变APE1表达水平对耐药相关基因的影响;⑴qRT-PCR和Westernblot法检测改变APE1表达水平对凋亡相关基因的影响;⑵qRT-PCR检测改变APE1表达水平对Jak/STAT通路基因表达的影响;⑶在卵巢癌A2780细胞中上调和下调APE1的表达,利用双荧光素酶报告基因系统检测了APE1表达水平对STAT3启动子活性的影响。
     通过以上实验我们获得了下列结果:成功构建含有APE1基因及其氧化还原区的重组腺病毒Ad5-APE1-EGFP和Ad5-Redox-APE1-EGFP;将Ad5-APE1-EGFP和Ad5-Redox-APE1-EGFP重组腺病毒分别感染卵巢癌细胞后,荧光显微镜下可观察到95%以上细胞能够表达EGFP,qRT-PCR和Western blot分别表明重组腺病毒感染后卵巢癌细胞中APE1mRNA和蛋白水平均显著升高(P<0.05); MTT、平板克隆形成实验及侵袭实验表明,感染APE1不同重组腺病毒后能够促进卵巢癌细胞的增殖,显著增强卵巢癌细胞的侵袭能力(P<0.05);药物敏感性实验证实感染APE1不同重组腺病毒后,卵巢癌细胞对顺铂的敏感性显著下降(P<0.05);流式细胞术结果表明,感染APE1不同重组腺病毒后,卵巢癌细胞周期G0/G1期比例下降,S期比例增加; Hoechst33258染色法显示,APE1不同重组腺病毒感染后,顺铂诱导的卵巢癌细胞凋亡发生减少;激光共聚焦检测结果显示,Redox-APE1重组腺病毒感染后卵巢癌细胞中APE1表达主要定位于细胞核,而APE1重组腺病毒感染后卵巢癌细胞中APE1表达主要表现为细胞核或细胞浆/细胞核共表达;成功建立卵巢癌裸鼠皮下荷瘤模型,通过体内实验进一步验证APE1及其氧化还原功能在卵巢癌化疗耐药中的重要作用及其对肿瘤增殖的影响;成功构建Redox-APE1siRNA慢病毒下调Redox-APE1表达后,能够抑制卵巢癌细胞增殖,导致G1/S期阻滞,并增加其对顺铂的敏感性(P<0.05); Real-time PCR结果表明在卵巢癌A2780细胞和A2780/cis细胞中高表达的APE1及Redox-APE1通过上调多药耐药基因MDR1、MRP4及ABCG2的mRNA水平,下调TOPOⅡmRNA水平;而在卵巢癌SKOV3细胞和SKOV3/cis细胞中,高表达全长APE1及Redox-APE1在显著上调MDR1同时,能够明显增加MRP2、MRP5及MRP6的mRNA水平,从而参与调控多药耐药机制;⑴APE1及Redox-APE1的高表达能够调控Bcl-2基因发挥抗凋亡作用,影响Bax发挥促凋亡作用,进而抑制由顺铂诱导的卵巢癌细胞发生凋亡;⑵高表达APE1及Redox-APE1能够显著上调IL-6mRNA水平和细胞上清中IL-6的含量,但却几乎不改变STAT3mRNA水平,而下调APE1的表达却能够显著抑制IL-6和STAT3mRNA水平,降低细胞上清中IL-6的含量;⑶双荧光素酶报告基因检测结果表明APE1的水平与STAT3启动子转录活性呈正相关。给予IL-6刺激后高表达APE1及Redox-APE1能够显著上调STAT3启动子相对活性,表明Redox-APE1在APE1调控STAT3启动子活性中发挥重要作用。这些结果为其作为基因治疗靶点提供有效依据。
     综上所述,本课题在前期工作基础上成功构建含有APE1基因及其氧化还原区的重组腺病毒及下调Redox-APE1表达水平的Redox-APE1siRNA慢病毒,从细胞水平和动物水平分别观察其对卵巢癌细胞生物学特性及铂类敏感性的影响,进一步为APE1的氧化还原功能参与卵巢癌铂类耐药机制提供直接证据,也为深入研究以APE1为逆转卵巢癌铂类耐药的治疗靶点提供新的思路。
Epithelial ovarian cancer (EOC), is one of the most frequent malignancies in femalereproductive system and has the highest mortality rate of all gynecological cancersworldwide. This high mortality is attributed in part to the lack of any reliable earlydetection method resulting in the majority of patients being diagnosed with advancedstage III or stage IV disease. Currently, the standard of care for ovarian cancer isaggressive surgical debulking followed by platinum-based combination chemotherapy.Although ovarian cancer is among the most chemosensitive malignancies at the time ofinitial treatment(surgery and taxane/platinum-based chemotherapy), most patients willultimately develop tumor recurrence and succumb to chemoresistant disease. Primary orsecondary chemoresistance is an important factor affecting chemotherapy and causedtumor recurrence, metastasis and higher mortality, which bring huge difficulties to clinicaltreatment. Therefore, it’s very importment to clarify the mechanisms of ovarian cancerrecurrence and chemoresistance and to take some effective measures to prevention and treatment of ovarian cancer.
     APE1is a multifunctional protein in DNA base excision repair pathway. It not onlyhas the activity of endonuclease but also is an essential enzyme in base excision repairpathway. It also acts as a major redox-signaling factor that involve in transcription factorregulation, tumor progression, oxidative stress, cell cycle and apoptosis. APE1plays animportment role in DNA damage and repair and apoptosis pathway regulation. A growingbody of evidence has demonstrated that APE1is not only critical for tumorigenesis andprogression in several human tumors and cancer cell lines, but also closely related to thechemosensitivity and radiosensitivity. It is reasonable to postulate that APE1maycontribute to the molecular mechanism of resistance to cisplatin-based chemotherapy, as avery potential tumor therapeutic target.
     Our previous results find that:①The expression and subcellular localization ofAPE1are involved in tumorigenesis, progression, chemosensitivity and prognosis inovarian cancer.②The cisplatin-resistant A2780/cis cells demonstrated higher expressionprotein levels of APE1than the cisplatin-sensitive A2780cells.③The overexpression ofAPE1had significant enhancement in cisplatin sensitivity. Above all the data, weproposed and confirmed that APE1involved in this resistance may provide new treatmentmodalities for ovarian cancer.
     A growing body of evidence has demonstrated that repair functions of APE1plays animportment role in tumorigenesis, progression, chemosensitivity and prognosis of variouscancers. Selective targeting of this DNA repair enzyme using RNA interference or specificsmall-molecule inhibitors blocking APE1repair functions have been shown to be effectiveinsensitizing cancer cells to both adiation and chemotherapy in vivo and in vitro.
     Some results about APE1's role in the chemoresistance process in ovarian cancerhave been clarified. However, a number of questions are unclear. Our understanding ofAPE1DNA repair functions have been fully, but little is known about its Redox function.What important role does the redox function of APE1have in the process ofcisplatin-based chemotherapy? Whether intervention APE1can effectively enhancechemosensitivity in ovarian cancer?
     On the basis of the results of preliminary studies, some works have been done:According to characteristics of APE1structure, we constructed Ad5-APE1-EGFP andAd5-Redox-APE1-EGFP recombinant adenovirus, which contains APE1gene and itsredox structure, respectively. To detect the effect of the overexpression of APE1and itsredox in ovarian cancer cells, The infection efficiency was confirmed byfluorescence microscope and qRT-PCR and Western blot were performed to evaluate theexpression of APE1mRNA and protein respectively. MTT assays, clone formation assaysand transwell assays were performed to evaluate the effects of Ad5-APE1-EGFP andAd5-Redox-APE1-EGFP recombinant adenovirus on cell proliferation and Invasion. Drugsensitivity assays were performed to determine the cisplatin sensitivity of ovarian cancercells. The effect of Ad5-APE1-EGFP and Ad5-Redox-APE1-EGFP recom-binant adenovirus on cell cycle was observed by flow cytometry analysis in infectedovarian cancer cells. Hoechst33258staining were performed to showed the apoptosis ratein ovarian cancer cells infected with Ad5-APE1-EGFP and Ad5-Redox-APE1-EGFPrecombinant adenovirus after treated with cisplatin.Immunofluorescence was used toobserves ubcellular localization of APE1in ovarian cancer cells infected with Ad5-APE1-EGFP and Ad5-Redox-APE1-EGFP. We constructed subcutaneous tumor model in nudemice and further confirmed that APE1and its resox played an iomportment role inchemoresistance in ovarian cancer and in tumor proliferation in vivo. We also constructedRedox-APE1siRNA lentivirus to down regulation the expression of APE1, and observedthe impact on biological function in ovarian cancer cell lines.
     Some results have been obtained:According to characteristics of APE1structure, wesuccessfully constructed recombinant adenovirus Ad5-APE1-EGFP andAd5-Redox-APE1-EGFP, Which contains APE1gene and its redox structure, respectively.The95%of ovarian cancer cells were infected with Ad5-APE1-EGFP and Ad5-Redox-APE1-EGFP recombinant adenovirus by fluorescence microscope and qRT-PCR andWestern blot results showed that the expression of APE1mRNA and protein weresignificantly increased in ovarian cancer cells infected with Ad5-APE1-EGFP and Ad5-Redox-APE1-EGFP, respectively(P<0.05). MTT assays, clone formation assays and transwell assays indicated that ovarian cancer cells infected with Ad5-APE1-EGFP andAd5-Redox-APE1-EGFP can increase the cell proliferative activity and the invasionability. Drug sensitivity assays demonstrated that the chemosensitivity of cisplatin-basedchemotherapy was significantly reduced. Cell cycle analysis by flow cytometry showedthat ovarian cancer cells infected with Ad5-APE1-EGFP and Ad5-Redox-APE1-EGFPresulted in accumulation in G2and S phase. While the proportion of G0/G1phase weredecreased. Hoechst33258staining showed that the apoptosis rate was weakly decreased inovarian cancer cells infected with Ad5-APE1-EGFP and Ad5-Redox-APE1-EGFP aftertreated with cisplatin. Immunofluorescence detection showed that the subcellular locationof APE1in ovarian cancer cells were cytoplasmic. We further confirmed that APE1andits resox played an iomportment role in chemoresistance in ovarian cancer and in tumorproliferation in vivo. We also successfully constructed Redox-APE1siRNA lentivirus todown regulation the expression of Redox-APE1, and observed the impact onbiological function in ovarian cancer cell lines. These results provided strong evidencesfor highlighting the potential of APE1to serve as a target for cancer therapeutics.
     In conclusion, on the basis of preliminary work, we successfully constructedrecombinant adenovirus Ad5-APE1-EGFP and Ad5-Redox-APE1-EGFP, Which containsAPE1gene and its redox structure, respectively. We also successfully constructed APE1siRNA lentivirus to down regulation the expression of APE1. We observed the impact onbiological function and the chemosensitivity to cisplatin in vivo and in vitro. These resultsfurther provided strong evidences for the role of APE1in chemoresistance of ovariancancer and also may provide new treatment modalities for ovarian cancer.
引文
1. Jemal A, Siegel R, Xu J, Ward E: Cancer statistics,2010. CA: a cancer journal forclinicians2010,60(5):277-300.
    2. Siegel R, Naishadham D, Jemal A: Cancer statistics,2012. CA: a cancer journal forclinicians2012,62(1):10-29.
    3. Banerjee S, Kaye SB: New Strategies in the treatment of ovarian cancer-currentclinical perspectives and future potential. Clinical cancer research: an officialjournal of the American Association for Cancer Research2013.
    4. Fraser M, Leung B, Jahani-Asl A, Yan X, Thompson WE, Tsang BK:Chemoresistance in human ovarian cancer: the role of apoptotic regulators.Reproductive biology and endocrinology: RB&E2003,1:66.
    5. Kelland LR: Preclinical perspectives on platinum resistance. Drugs2000,59Suppl4:1-8; discussion37-38.
    6. Michalke B: Platinum speciation used for elucidating activation or inhibition ofPt-containing anti-cancer drugs. Journal of trace elements in medicine and biology:organ of the Society for Minerals and Trace Elements (GMS)2010,24(2):69-77.
    7. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK: Interactions of antitumormetallodrugs with serum proteins: advances in characterization using modernanalytical methodology. Chemical reviews2006,106(6):2224-2248.
    8. Koberle B, Tomicic MT, Usanova S, Kaina B: Cisplatin resistance: preclinicalfindings and clinical implications. Biochimica et biophysica acta2010,1806(2):172-182.
    9. Kelland LR, Abel G, McKeage MJ, Jones M, Goddard PM, Valenti M, Murrer BA,Harrap KR: Preclinical antitumor evaluation of bis-acetato-ammine-dichloro-cyclohexylamine platinum(IV): an orally active platinum drug. Cancer research1993,53(11):2581-2586.
    10. Gonzalez VM, Fuertes MA, Alonso C, Perez JM: Is cisplatin-induced cell deathalways produced by apoptosis? Molecular pharmacology2001,59(4):657-663.
    11. Berndtsson M, Hagg M, Panaretakis T, Havelka AM, Shoshan MC, Linder S: Acuteapoptosis by cisplatin requires induction of reactive oxygen species but is notassociated with damage to nuclear DNA. International journal of cancer Journalinternational du cancer2007,120(1):175-180.
    12. Cohen SM, Lippard SJ: Cisplatin: from DNA damage to cancer chemotherapy.Progress in nucleic acid research and molecular biology2001,67:93-130.
    13. Damia G, Filiberti L, Vikhanskaya F, Carrassa L, Taya Y, D'Incalci M, Broggini M:Cisplatinum and taxol induce different patterns of p53phosphorylation. Neoplasia2001,3(1):10-16.
    14. Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G: Mitochondrial liaisonsof p53. Antioxidants&redox signaling2011,15(6):1691-1714.
    15. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, KroemerG: Molecular mechanisms of cisplatin resistance. Oncogene2012,31(15):1869-1883.
    16. Pabla N, Huang S, Mi QS, Daniel R, Dong Z: ATR-Chk2signaling in p53activationand DNA damage response during cisplatin-induced apoptosis. The Journal ofbiological chemistry2008,283(10):6572-6583.
    17. Holzer AK, Howell SB: The internalization and degradation of human coppertransporter1following cisplatin exposure. Cancer research2006,66(22):10944-10952.
    18. More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM: Role of thecopper transporter, CTR1, in platinum-induced ototoxicity. The Journal ofneuroscience: the official journal of the Society for Neuroscience2010,30(28):9500-9509.
    19. Ishida S, McCormick F, Smith-McCune K, Hanahan D: Enhancing tumor-specificuptake of the anticancer drug cisplatin with a copper chelator. Cancer cell2010,17(6):574-583.
    20. Borst P, Evers R, Kool M, Wijnholds J: A family of drug transporters: the multidrugresistance-associated proteins. Journal of the National Cancer Institute2000,92(16):1295-1302.
    21. Liedert B, Materna V, Schadendorf D, Thomale J, Lage H: Overexpression ofcMOAT (MRP2/ABCC2) is associated with decreased formation of platinum-DNAadducts and decreased G2-arrest in melanoma cells resistant to cisplatin. The Journalof investigative dermatology2003,121(1):172-176.
    22. Yamasaki M, Makino T, Masuzawa T, Kurokawa Y, Miyata H, Takiguchi S,Nakajima K, Fujiwara Y, Matsuura N, Mori M et al: Role of multidrug resistanceprotein2(MRP2) in chemoresistance and clinical outcome in oesophageal squamouscell carcinoma. British journal of cancer2011,104(4):707-713.
    23. Safaei R, Holzer AK, Katano K, Samimi G, Howell SB: The role of coppertransporters in the development of resistance to Pt drugs. Journal of inorganicbiochemistry2004,98(10):1607-1613.
    24. Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M, Goodman M,Howell SB: Increased expression of the copper efflux transporter ATP7A mediatesresistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clinicalcancer research: an official journal of the American Association for CancerResearch2004,10(14):4661-4669.
    25. Nakayama K, Kanzaki A, Terada K, Mutoh M, Ogawa K, Sugiyama T, Takenoshita S,Itoh K, Yaegashi N, Miyazaki K et al: Prognostic value of the Cu-transportingATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy.Clinical cancer research: an official journal of the American Association for CancerResearch2004,10(8):2804-2811.
    26. Jin J, Wang FP, Wei H, Liu G: Reversal of multidrug resistance of cancer throughinhibition of P-glycoprotein by5-bromotetrandrine. Cancer chemotherapy andpharmacology2005,55(2):179-188.
    27. Slater AF, Nobel CS, Maellaro E, Bustamante J, Kimland M, Orrenius S: Nitronespin traps and a nitroxide antioxidant inhibit a common pathway of thymocyteapoptosis. The Biochemical journal1995,306(Pt3):771-778.
    28. Serrano FA, Matsuo AL, Monteforte PT, Bechara A, Smaili SS, Santana DP,Rodrigues T, Pereira FV, Silva LS, Machado J, Jr. et al: A cyclopalladated complexinteracts with mitochondrial membrane thiol-groups and induces the apoptoticintrinsic pathway in murine and cisplatin-resistant human tumor cells. BMC cancer2011,11:296.
    29. Lewis AD, Hayes JD, Wolf CR: Glutathione and glutathione-dependent enzymes inovarian adenocarcinoma cell lines derived from a patient before and after the onset ofdrug resistance: intrinsic differences and cell cycle effects. Carcinogenesis1988,9(7):1283-1287.
    30. Ishikawa T: The ATP-dependent glutathione S-conjugate export pump. Trends inbiochemical sciences1992,17(11):463-468.
    31. Kasahara K, Fujiwara Y, Nishio K, Ohmori T, Sugimoto Y, Komiya K, Matsuda T,Saijo N: Metallothionein content correlates with the sensitivity of human small celllung cancer cell lines to cisplatin. Cancer research1991,51(12):3237-3242.
    32. Shuck SC, Short EA, Turchi JJ: Eukaryotic nucleotide excisio n repair: fromunderstanding mechanisms to influencing biology. Cell research2008,18(1):64-72.
    33. Gillet LC, Scharer OD: Molecular mechanisms of mammalian global genomenucleotide excision repair. Chemical reviews2006,106(2):253-276.
    34. Ahmad A, Robinson AR, Duensing A, van Drunen E, Beverloo HB, Weisberg DB,Hasty P, Hoeijmakers JH, Niedernhofer LJ: ERCC1-XPF endonuclease facilitatesDNA double-strand break repair. Molecular and cellular biology2008,28(16):5082-5092.
    35. Li Q, Yu JJ, Mu C, Yunmbam MK, Slavsky D, Cross CL, Bostick-Bruton F, Reed E:Association between the level of ERCC-1expression and the repair ofcisplatin-induced DNA damage in human ovarian cancer cells. Anticancer research2000,20(2A):645-652.
    36. Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, Aymeric L,Michaud M, Apetoh L, Barault L et al: Immunogenic death of colon cancer cellstreated with oxaliplatin. Oncogene2010,29(4):482-491.
    37. Bramson J, Panasci LC: Effect of ERCC-1overexpression on sensitivity of Chinesehamster ovary cells to DNA damaging agents. Cancer research1993,53(14):3237-3240.
    38. Coquerelle T, Dosch J, Kaina B: Overexpression of N-methylpurine-DNAglycosylase in Chinese hamster ovary cells renders them more sensitive to theproduction of chromosomal aberrations by methylating agents--a case of imbalancedDNA repair. Mutation research1995,336(1):9-17.
    39. Olaussen KA: A new step ahead for the consideration of ERCC1as a candidatebiomarker to select NSCLC patients for the treatment of cetuximab in combinationwith cisplatin. Cancer biology&therapy2009,8(20):1922-1923.
    40. Kunkel TA, Erie DA: DNA mismatch repair. Annual review of biochemistry2005,74:681-710.
    41. Mello JA, Acharya S, Fishel R, Essigmann JM: The mismatch-repair protein hMSH2binds selectively to DNA adducts of the anticancer drug cisplatin. Chemistry&biology1996,3(7):579-589.
    42. Vaisman A, Varchenko M, Umar A, Kunkel TA, Risinger JI, Barrett JC, Hamilton TC,Chaney SG: The role of hMLH1, hMSH3, and hMSH6defec ts in cisplatin andoxaliplatin resistance: correlation with replicative bypass of platinum-DNA adducts.Cancer research1998,58(16):3579-3585.
    43. Kamal NS, Soria JC, Mendiboure J, Planchard D, Olaussen KA, Rousseau V, PopperH, Pirker R, Bertrand P, Dunant A et al: MutS homologue2and the long-term benefitof adjuvant chemotherapy in lung cancer. Clinical cancer research: an officialjournal of the American Association for Cancer Research2010,16(4):1206-1215.
    44. Bassett E, Vaisman A, Tropea KA, McCall CM, Masutani C, Hanaoka F, Chaney SG:Frameshifts and deletions during in vitro translesion synthesis past Pt-DNA adductsby DNA polymerases beta and eta. DNA repair2002,1(12):1003-1016.
    45. Shachar S, Ziv O, Avkin S, Adar S, Wittschieben J, Reissner T, Chaney S, FriedbergEC, Wang Z, Carell T et al: Two-polymerase mechanisms dictate error-free anderror-prone translesion DNA synthesis in mammals. The EMBO journal2009,28(4):383-393.
    46. Alt A, Lammens K, Chiocchini C, Lammens A, Pieck JC, Kuch D, Hop fner KP,Carell T: Bypass of DNA lesions generated during anticancer treatment with cisplatinby DNA polymerase eta. Science (New York, NY)2007,318(5852):967-970.
    47. Roos WP, Tsaalbi-Shtylik A, Tsaryk R, Guvercin F, de Wind N, Kaina B: Thetranslesion polymerase Rev3L in the tolerance of alkylating anticancer drugs.Molecular pharmacology2009,76(4):927-934.
    48. Wang H, Zhang SY, Wang S, Lu J, Wu W, Weng L, Chen D, Zhang Y, Lu Z, Yang J etal: REV3L confers chemoresistance to cisplatin in human gliomas: the potential of itsRNAi for synergistic therapy. Neuro-oncology2009,11(6):790-802.
    49. Ceppi P, Novello S, Cambieri A, Longo M, Monica V, Lo Iacono M, Giaj-Levra M,Saviozzi S, Volante M, Papotti M et al: Polymerase eta mRNA expression predictssurvival of non-small cell lung cancer patients treated with platinum-basedchemotherapy. Clinical cancer research: an official journal of the AmericanAssociation for Cancer Research2009,15(3):1039-1045.
    50. Gifford G, Paul J, Vasey PA, Kaye SB, Brown R: The acquisition of hMLH1methylation in plasma DNA after chemotherapy predicts poor survival for ovariancancer patients. Clinical cancer research: an official journal of the AmericanAssociation for Cancer Research2004,10(13):4420-4426.
    51. Smith J, Tho LM, Xu N, Gillespie DA: The ATM-Chk2and ATR-Chk1pathways inDNA damage signaling and cancer. Advances in cancer research2010,108:73-112.
    52. Venkitaraman AR: Cancer susceptibility and the functions of BRCA1and BRCA2.Cell2002,108(2):171-182.
    53. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, MeuthM, Curtin NJ, Helleday T: Specific killing of BRCA2-deficient tumours withinhibitors of poly(ADP-ribose) polymerase. Nature2005,434(7035):913-917.
    54. Gourley C, Michie CO, Roxburgh P, Yap TA, Harden S, Paul J, Ragupathy K, Todd R,Petty R, Reed N et al: Increased incidence of visceral metastases in scottish patientswith BRCA1/2-defective ovarian cancer: an extension of the ovarian BRCAnessphenotype. Journal of clinical oncology: official journal of the American Society ofClinical Oncology2010,28(15):2505-2511.
    55. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, Boyd J,Reis-Filho JS, Ashworth A: Resistance to therapy caused by intragenic deletion inBRCA2. Nature2008,451(7182):1111-1115.
    56. Kroemer G, Galluzzi L, Brenner C: Mitochondrial membrane permeabilization in celldeath. Physiological reviews2007,87(1):99-163.
    57. Tajeddine N, Galluzzi L, Kepp O, Hangen E, Morselli E, Senovilla L, Araujo N,Pinna G, Larochette N, Zamzami N et al: Hierarchical involvement of Bak, VDAC1and Bax in cisplatin-induced cell death. Oncogene2008,27(30):4221-4232.
    58. Vousden KH, Lane DP: p53in health and disease. Nature reviews Molecular cellbiology2007,8(4):275-283.
    59. O'Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, MonksA, Sausville EA, Weinstein JN et al: Characterization of the p53tumor suppressorpathway in cell lines of the National Cancer Institute anticancer drug screen andcorrelations with the growth-inhibitory potency of123anticancer agents. Cancerresearch1997,57(19):4285-4300.
    60. Hengstler JG, Pilch H, Schmidt M, Dahlenburg H, Sagemuller J, Schiffer I, Oesch F,Knapstein PG, Kaina B, Tanner B: Metallothionein expression in ovar ian cancer inrelation to histopathological parameters and molecular markers of prognosis.International journal of cancer Journal international du cancer2001,95(2):121-127.
    61. Feldman DR, Bosl GJ, Sheinfeld J, Motzer RJ: Medical treatment of advancedtesticular cancer. JAMA: the journal of the American Medical Association2008,299(6):672-684.
    62. Peng HQ, Hogg D, Malkin D, Bailey D, Gallie BL, Bulbul M, Jewett M, Buchanan J,Goss PE: Mutations of the p53gene do not occur in testis cancer. Cancer research1993,53(15):3574-3578.
    63. Yuan M, Luong P, Hudson C, Gudmundsdottir K, Basu S: c-Abl phosphorylation ofDeltaNp63alpha is critical for cell viability. Cell death&disease2010,1:e16.
    64. Castedo M, Coquelle A, Vivet S, Vitale I, Kauffmann A, Desse n P, Pequignot MO,Casares N, Valent A, Mouhamad S et al: Apoptosis regulation in tetraploid cancercells. The EMBO journal2006,25(11):2584-2595.
    65. Vitale I, Galluzzi L, Vivet S, Nanty L, Dessen P, Senovilla L, Olaussen KA, Lazar V,Prudhomme M, Golsteyn RM et al: Inhibition of Chk1kills tetraploid tumor cellsthrough a p53-dependent pathway. PloS one2007,2(12):e1337.
    66. Mansouri A, Ridgway LD, Korapati AL, Zhang Q, Tian L, Wang Y, Siddik ZH, MillsGB, Claret FX: Sustained activation of JNK/p38MAPK pathways in response tocisplatin leads to Fas ligand induction and cell death in ovarian carcinoma cells. TheJournal of biological chemistry2003,278(21):19245-19256.
    67. Brozovic A, Fritz G, Christmann M, Zisowsky J, Jaehde U, Osmak M, Kaina B:Long-term activation of SAPK/JNK, p38kinase and fas-L expression by cisplatin isattenuated in human carcinoma cells that acquired drug resistance. Internationaljournal of cancer Journal international du cancer2004,112(6):974-985.
    68. Spierings DC, de Vries EG, Vellenga E, de Jong S: Loss of drug-induced activation ofthe CD95apoptotic pathway in a cisplatin-resistant testicular germ cell tumor cellline. Cell death and differentiation2003,10(7):808-822.
    69. Michaud WA, Nichols AC, Mroz EA, Faquin WC, Clark JR, Begum S, Westra WH,Wada H, Busse PM, Ellisen LW et al: Bcl-2blocks cisplatin-induced apoptosis andpredicts poor outcome following chemoradiation treatment in advancedoropharyngeal squamous cell carcinoma. Clinical cancer research: an officialjournal of the American Association for Cancer Research2009,15(5):1645-1654.
    70. Jain HV, Meyer-Hermann M: The molecular basis of synergism between carboplatinand ABT-737therapy targeting ovarian carcinomas. Cancer research2011,71(3):705-715.
    71. Ikeguchi M, Kaibara N: Changes in survivin messenger RNA level during cisplatintreatment in gastric cancer. International journal of molecular medicine2001,8(6):661-666.
    72. Ryan BM, O'Donovan N, Duffy MJ: Survivin: a new target for anti-cancer therapy.Cancer treatment reviews2009,35(7):553-562.
    73. Pinho MB, Costas F, Sellos J, Dienstmann R, Andrade PB, Herchenhorn D, PeixotoFA, Santos VO, Small IA, Guimaraes DP et al: XAF1mRNA expression improvesprogression-free and overall survival for patients with advanced bladder cancertreated with neoadjuvant chemotherapy. Urologic oncology2009,27(4):382-390.
    74. Hengstler JG, Lange J, Kett A, Dornhofer N, Meinert R, Arand M, Knapstein PG,Becker R, Oesch F, Tanner B: Contribution of c-erbB-2and topoisomerase IIalpha tochemoresistance in ovarian cancer. Cancer research1999,59(13):3206-3214.
    75. Citri A, Yarden Y: EGF-ERBB signalling: towards the systems level. Nature reviewsMolecular cell biology2006,7(7):505-516.
    76. Mitsuuchi Y, Johnson SW, Selvakumaran M, Williams SJ, Hamilton TC, Testa JR:The phosphatidylinositol3-kinase/AKT signal transduction pathway plays a criticalrole in the expression of p21WAF1/CIP1/SDI1induced by cisplatin and paclitaxel.Cancer research2000,60(19):5390-5394.
    77. Zhao H, Piwnica-Worms H: ATR-mediated checkpoint pathways regulatephosphorylation and activation of human Chk1. Molecular and cellular biology2001,21(13):4129-4139.
    78. Fijolek J, Wiatr E, Rowinska-Zakrzewska E, Giedronowicz D, Langfort R,Chabowski M, Orlowski T, Roszkowski K: p53and HER2/neu expression in relationto chemotherapy response in patients with non-small cell lung cancer. TheInternational journal of biological markers2006,21(2):81-87.
    79. Friedman E: Mirk/Dyrk1B in cancer. Journal of cellular biochemistry2007,102(2):274-279.
    80. Deng X, Ewton DZ, Friedman E: Mirk/Dyrk1B maintains the viability of quiescentpancreatic cancer cells by reducing levels of reactive oxygen species. Cancerresearch2009,69(8):3317-3324.
    81. Gao J, Zheng Z, Rawal B, Schell MJ, Bepler G, Haura EB: Mirk/Dyrk1B, a noveltherapeutic target, mediates cell survival in non-small cell lung cancer cells. Cancerbiology&therapy2009,8(17):1671-1679.
    82. Kroemer G, Marino G, Levine B: Autophagy and the integrated stress response.Molecular cell2010,40(2):280-293.
    83. Donnelly A, Blagg BS: Novobiocin and additional inhibitors of the Hsp90C-terminalnucleotide-binding pocket. Current medicinal chemistry2008,15(26):2702-2717.
    84. Ren JH, He WS, Nong L, Zhu QY, Hu K, Zhang RG, Huang LL, Zhu F, Wu G:Acquired cisplatin resistance in human lung adenocarcinoma cells is associated withenhanced autophagy. Cancer biotherapy&radiopharmaceuticals2010,25(1):75-80.
    85. Gaur S, Chen L, Yang L, Wu X, Un F, Yen Y: Inhibitors of mTOR overcome drugresistance from topoisomerase II inhibitors in solid tumors. Cancer letters2011,311(1):20-28.
    86. Ren A, Yan G, You B, Sun J: Down-regulation of mammalian sterile20-like kinase1by heat shock protein70mediates cisplatin resistance in prostate cancer cells. Cancerresearch2008,68(7):2266-2274.
    87. Miyazaki T, Kato H, Faried A, Sohda M, Nakajima M, Fukai Y, Masuda N, Manda R,Fukuchi M, Ojima H et al: Predictors of response to chemo-radiotherapy andradiotherapy for esophageal squamous cell carcinoma. Anticancer research2005,25(4):2749-2755.
    88. Shen DW, Ma J, Okabe M, Zhang G, Xia D, Gottesman MM: Elevated expression ofTMEM205, a hypothetical membrane protein, is associated with cisplatin resistance.Journal of cellular physiology2010,225(3):822-828.
    89. Verly WG, Paquette Y: An endonuclease for depurinated DNA in Escherichia coli B.Canadian journal of biochemistry1972,50(2):217-224.
    90. Raffoul JJ, Heydari AR, Hillman GG: DNA Repair and Cancer Therapy: TargetingAPE1/Ref-1Using Dietary Agents. Journal of oncology2012,2012:370481.
    91. Tell G, Fantini D, Quadrifoglio F: Understanding different functions of mammalianAP endonuclease (APE1) as a promising tool for cancer treatment. Cellular andmolecular life sciences: CMLS2010,67(21):3589-3608.
    92. Wilson DM,3rd, Simeonov A: Small molecule inhibitors of DNA repair nucleaseactivities of APE1. Cellular and molecular life sciences: CMLS2010,67(21):3621-3631.
    93. Xanthoudakis S, Miao GG, Curran T: The redox and DNA-repair activities of Ref-1are encoded by nonoverlapping domains. Proceedings of the National Academy ofSciences of the United States of America1994,91(1):23-27.
    94. Tell G, Quadrifoglio F, Tiribelli C, Kelley MR: The many functions of APE1/Ref-1:not only a DNA repair enzyme. Antioxidants&redox signaling2009,11(3):601-620.
    95. Nakamura J, Swenberg JA: Endogenous apurinic/apyrimidinic sites in genomic DNAof mammalian tissues. Cancer research1999,59(11):2522-2526.
    96. Fishel ML, Kelley MR: The DNA base excision repair protein Ape1/Ref-1as atherapeutic and chemopreventive target. Molecular aspects of medicine2007,28(3-4):375-395.
    97. Fortini P, Pascucci B, Parlanti E, D'Errico M, Simonelli V, Dogliotti E: The baseexcision repair: mechanisms and its relevance for cancer susceptibility. Biochimie2003,85(11):1053-1071.
    98. Bhakat KK, Mantha AK, Mitra S: Transcriptional regulatory functions of mammalianAP-endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxidants&redox signaling2009,11(3):621-638.
    99. Flaherty DM, Monick MM, Carter AB, Peterson MW, Hunninghake GW:Oxidant-mediated increases in redox factor-1nuclear protein and activator protein-1DNA binding in asbestos-treated macrophages. Journal of immunology (Baltimore,Md:1950)2002,168(11):5675-5681.
    100. Chung U, Igarashi T, Nishishita T, Iwanari H, Iwamatsu A, Suwa A, Mimori T, HataK, Ebisu S, Ogata E et al: The interaction between Ku antigen and REF1proteinmediates negative gene regulation by extracellular calcium. The Journal of biologicalchemistry1996,271(15):8593-8598.
    101. Bennett RA, Wilson DM,3rd, Wong D, Demple B: Interaction of human apurinicendonuclease and DNA polymerase beta in the base excision repair pathway.Proceedings of the National Academy of Sciences of the United States of America1997,94(14):7166-7169.
    102. Gaiddon C, Moorthy NC, Prives C: Ref-1regulates the transactivation andpro-apoptotic functions of p53in vivo. The EMBO journal1999,18(20):5609-5621.
    103. Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR,Goswami PC, Yodoi J, Gius D: Thioredoxin nuclear translocation and interactionwith redox factor-1activates the activator protein-1transcription factor in response toionizing radiation. Cancer research2000,60(23):6688-6695.
    104. Dianova, II, Bohr VA, Dianov GL: Interaction of human AP endonuclease1with flapendonuclease1and proliferating cell nuclear antigen involved in long-patch baseexcision repair. Biochemistry2001,40(42):12639-12644.
    105. Parker A, Gu Y, Mahoney W, Lee SH, Singh KK, Lu AL: Human homolog of theMutY repair protein (hMYH) physically interacts with proteins involved in longpatch DNA base excision repair. The Journal of biological chemistry2001,276(8):5547-5555.
    106. Vidal AE, Boiteux S, Hickson ID, Radicella JP: XRCC1coordinates the initial andlate stages of DNA abasic site repair through protein-protein interactions. The EMBOjournal2001,20(22):6530-6539.
    107. Kuninger DT, Izumi T, Papaconstantinou J, Mitra S: Human AP-endonuclease1andhnRNP-L interact with a nCaRE-like repressor element in the AP-endonuclease1promoter. Nucleic acids research2002,30(3):823-829.
    108. Busso CS, Iwakuma T, Izumi T: Ubiquitination of mammalian AP endonuclease(APE1) regulated by the p53-MDM2signaling pathway. Oncogene2009,28(13):1616-1625.
    109. Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, Pommier Y, LiebermanJ: Cleaving the oxidative repair protein Ape1enhances cell death mediated bygranzyme A. Nature immunology2003,4(2):145-153.
    110. Fritz G, Grosch S, Tomicic M, Kaina B: APE/Ref-1and the mammalian response togenotoxic stress. Toxicology2003,193(1-2):67-78.
    111. Hegde V, Wang M, Deutsch WA: Human ribosomal protein S3interacts with DNAbase excision repair proteins hAPE/Ref-1and hOGG1. Biochemistry2004,43(44):14211-14217.
    112. Sidorenko VS, Nevinsky GA, Zharkov DO: Mechanism of interaction betweenhuman8-oxoguanine-DNA glycosylase and AP endonuclease. DNA repair2007,6(3):317-328.
    113. Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, Kohno K, Mitra S,Bhakat KK: Regulatory role of human AP-endonuclease (APE1/Ref-1) inYB-1-mediated activation of the multidrug resistance gene MDR1. Molecular andcellular biology2008,28(23):7066-7080.
    114. Yamamori T, DeRicco J, Naqvi A, Hoffman TA, Mattagajasingh I, Kasuno K, JungSB, Kim CS, Irani K: SIRT1deacetylates APE1and regulates cellular base excisionrepair. Nucleic acids research2010,38(3):832-845.
    115. Curtis CD, Thorngren DL, Ziegler YS, Sarkeshik A, Yates JR, Nardulli AM:Apurinic/apyrimidinic endonuclease1alters estrogen receptor activity andestrogen-responsive gene expression. Molecular endocrinology (Baltimore, Md)2009,23(9):1346-1359.
    116. Huang E, Qu D, Zhang Y, Venderova K, Haque ME, Rousseaux MW, Slack RS,Woulfe JM, Park DS: The role of Cdk5-mediated apurinic/apyrimidinic endonuclease1phosphorylation in neuronal death. Nature cell biology2010,12(6):563-571.
    117. Kelley MR, Georgiadis MM, Fishel ML: APE1/Ref-1role in redox signaling:translational applications of targeting the redox function of the DNA repair/redoxprotein APE1/Ref-1. Current molecular pharmacology2012,5(1):36-53.
    118. Gelin A, Redrejo-Rodriguez M, Laval J, Fedorova OS, Saparbaev M, Ishchenko AA:Genetic and biochemical characterization of human AP endonuclease1mutantsdeficient in nucleotide incision repair activity. PloS one2010,5(8):e12241.
    119. Georgiadis MM, Luo M, Gaur RK, Delaplane S, Li X, Kelley MR: Evolution of theredox function in mammalian apurinic/apyrimidinic endonuclease. Mutation research2008,643(1-2):54-63.
    120. Luo M, Delaplane S, Jiang A, Reed A, He Y, Fishel M, Nyland RL,2nd, Borch RF,Qiao X, Georgiadis MM et al: Role of the multifunctional DNA repair and redoxsignaling protein Ape1/Ref-1in cancer and endothelial cells: small-moleculeinhibition of the redox function of Ape1. Antioxidants&redox signaling2008,10(11):1853-1867.
    121. Abbotts R, Madhusudan S: Human AP endonuclease1(APE1): from mechanisticinsights to druggable target in cancer. Cancer treatment reviews2010,36(5):425-435.
    122. Tell G, Pines A, Paron I, D'Elia A, Bisca A, Kelley MR, Manzini G, Damante G:Redox effector factor-1regulates the activity of thyroid transcription factor1bycontrolling the redox state of the N transcriptional activation domain. The Journal ofbiological chemistry2002,277(17):14564-14574.
    123. Vascotto C, Bisetto E, Li M, Zeef LA, D'Ambrosio C, Domenis R, Comelli M,Delneri D, Scaloni A, Altieri F et al: Knock-in reconstitution studies reveal anunexpected role of Cys-65in regulating APE1/Ref-1subcellular trafficking andfunction. Molecular biology of the cell2011,22(20):3887-3901.
    124. Kakolyris S, Kaklamanis L, Giatromanolaki A, Koukourakis M, Hickson ID,Barzilay G, Turley H, Leek RD, Kanavaros P, Georgoulias V et al: Expression andsubcellular localization of human AP endonuclease1(HAP1/Ref-1) protein: a basisfor its role in human disease. Histopathology1998,33(6):561-569.
    125. Qu J, Liu GH, Huang B, Chen C: Nitric oxide controls nuclear export of APE1/Ref-1through S-nitrosation of cysteines93and310. Nucleic acids research2007,35(8):2522-2532.
    126. Pinz KG, Bogenhagen DF: Efficient repair of abasic sites in DNA by mitochondrialenzymes. Molecular and cellular biology1998,18(3):1257-1265.
    127. Sheng Q, Zhang Y, Wang R, Zhang J, Chen B, Wang J, Zhang W, Xin X: Prognosticsignificance of APE1cytoplasmic localization in human epithelial ovarian cancer.Medical oncology (Northwood, London, England)2012,29(2):1265-1271.
    128. Karahalil B, Bohr VA, Wilson DM,3rd: Impact of DNA polymorphisms in key DNAbase excision repair proteins on cancer risk. Human&experimental toxicology2012,31(10):981-1005.
    129. Xi T, Jones IM, Mohrenweiser HW: Many amino acid substitution variants identifiedin DNA repair genes during human population screenings are predicted to impactprotein function. Genomics2004,83(6):970-979.
    130. Chang-Claude J, Popanda O, Tan XL, Kropp S, Helmbold I, von Fournier D, HaaseW, Sautter-Bihl ML, Wenz F, Schmezer P et al: Association between polymorphismsin the DNA repair genes, XRCC1, APE1, and XPD and acute side effects ofradiotherapy in breast cancer patients. Clinical cancer research: an official journalof the American Association for Cancer Research2005,11(13):4802-4809.
    131. Au WW, Salama SA, Sierra-Torres CH: Functional characterization ofpolymorphisms in DNA repair genes using cytogenetic challenge assays.Environmental health perspectives2003,111(15):1843-1850.
    132. Zhao W, Hu L, Xu J, Shen H, Hu Z, Ma H, Shu Y, S hao Y, Yin Y: Polymorphisms inthe base excision repair pathway modulate prognosis of platinum-basedchemotherapy in advanced non-small cell lung cancer. Cancer chemotherapy andpharmacology2013.
    133. Lu J, Zhang S, Chen D, Wang H, Wu W, Wang X, Lei Y, Wang J, Qian J, Fan W et al:Functional characterization of a promoter polymorphism in APE1/Ref-1thatcontributes to reduced lung cancer susceptibility. FASEB journal: official publicationof the Federation of American Societies for Experimental Biology2009,23(10):3459-3469.
    134. Yacoub A, Kelley MR, Deutsch WA: The DNA repair activity of human redox/repairprotein APE/Ref-1is inactivated by phosphorylation. Cancer research1997,57(24):5457-5459.
    135. Fritz G, Kaina B: Phosphorylation of the DNA repair protein APE/REF-1by CKIIaffects redox regulation of AP-1. Oncogene1999,18(4):1033-1040.
    136. Hsieh MM, Hegde V, Kelley MR, Deutsch WA: Activation of APE/Ref-1redoxactivity is mediated by reactive oxygen species and PKC phosphorylation. Nucleicacids research2001,29(14):3116-3122.
    137. McKenzie JA, Strauss PR: A quantitative method for measuring proteinphosphorylation. Analytical biochemistry2003,313(1):9-16.
    138. Busso CS, Lake MW, Izumi T: Posttranslational modification of mammalian APendonuclease (APE1). Cellular and molecular life sciences: CMLS2010,67(21):3609-3620.
    139. Bhakat KK, Izumi T, Yang SH, Hazra TK, Mitra S: Role of acetylated humanAP-endonuclease (APE1/Ref-1) in regulation of the parathyroid hormone gene. TheEMBO journal2003,22(23):6299-6309.
    140. Okazaki T, Chung U, Nishishita T, Ebisu S, Usuda S, Mishiro S, Xanthoudakis S,Igarashi T, Ogata E: A redox factor protein, ref1, is involved in negative generegulation by extracellular calcium. The Journal of biological chemistry1994,269(45):27855-27862.
    141. Vo N, Goodman RH: CREB-binding protein and p300in transcriptional regulation.The Journal of biological chemistry2001,276(17):13505-13508.
    142. Izumi T, Brown DB, Naidu CV, Bhakat KK, Macinnes MA, Saito H, Chen DJ, MitraS: Two essential but distinct functions of the mammalian abasic endonuclease.Proceedings of the National Academy of Sciences of the United States of America2005,102(16):5739-5743.
    143. Bhakat KK, Hazra TK, Mitra S: Acetylation of the human DNA glycosyla se NEIL2and inhibition of its activity. Nucleic acids research2004,32(10):3033-3039.
    144. Bhakat KK, Mokkapati SK, Boldogh I, Hazra TK, Mitra S: Acetylation of human8-oxoguanine-DNA glycosylase by p300and its role in8-oxoguanine repair in vivo.Molecular and cellular biology2006,26(5):1654-1665.
    145. Nakayama KI, Nakayama K: Ubiquitin ligases: cell-cycle control and cancer. Naturereviews Cancer2006,6(5):369-381.
    146. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK,Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell2005,123(5):773-786.
    147. Busso CS, Wedgeworth CM, Izumi T: Ubiquitination of human AP-endonuclease1(APE1) enhanced by T233E substitution and by CDK5. Nucleic acids research2011,39(18):8017-8028.
    148. Zhao J, Gao F, Zhang Y, Wei K, Liu Y, Deng X: Bcl2inhibits abasic site repair bydown-regulating APE1endonuclease activity. The Journal of biological chemistry2008,283(15):9925-9932.
    149. Fung H, Bennett RA, Demple B: Key role of a downstream specificity protein1sitein cell cycle-regulated transcription of the AP endonuclease gene APE1/APEX inNIH3T3cells. The Journal of biological chemistry2001,276(45):42011-42017.
    150. Cho KJ, Kim HJ, Park SC, Kim HW, Kim GW: Decisive role ofapurinic/apyrimidinic endonuclease/Ref-1in initiation of cell death. Molecular andcellular neurosciences2010,45(3):267-276.
    151. Luo M, He H, Kelley MR, Georgiadis MM: Redox regulation of DNA repair:implications for human health and cancer therapeutic development. Antioxidants&redox signaling2010,12(11):1247-1269.
    152. Bapat A, Fishel ML, Kelley MR: Going ape as an approach to cancer therapeutics.Antioxidants&redox signaling2009,11(3):651-668.
    153. Guo HH, Loeb LA: Tumbling down a different pathway to genetic instability. TheJournal of clinical investigation2003,112(12):1793-1795.
    154. Zou GM, Karikari C, Kabe Y, Handa H, Anders RA, Maitra A: The Ape-1/Ref-1redox antagonist E3330inhibits the growth of tumor endothelium and endothelialprogenitor cells: therapeutic implications in tumor angiogenesis. Journal of cellularphysiology2009,219(1):209-218.
    155. Koukourakis MI, Giatromanolaki A, Kakolyris S, Sivridis E, Georgoulias V,Funtzilas G, Hickson ID, Gatter KC, Harris AL: Nuclear expression of humanapurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer isassociated with resistance to chemoradiotherapy and poor outcome. Internationaljournal of radiation oncology, biology, physics2001,50(1):27-36.
    156. Herring CJ, West CM, Wilks DP, Davidson SE, Hunter RD, Berry P, Forster G,MacKinnon J, Rafferty JA, Elder RH et al: Levels of the DNA repair enzyme humanapurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1) are associated with theintrinsic radiosensitivity of cervical cancers. British journal of cancer1998,78(9):1128-1133.
    157. Robertson KA, Bullock HA, Xu Y, Tritt R, Zimmerman E, Ulbright TM, Foster RS,Einhorn LH, Kelley MR: Altered expression of Ape1/ref-1in germ cell tumors andoverexpression in NT2cells confers resistance to bleomycin and radiation. Cancerresearch2001,61(5):2220-2225.
    158. Wang D, Xiang DB, Yang XQ, Chen LS, Li MX, Zhong ZY, Zhang YS: APE1overexpression is associated with cisplatin resistance in non-small cell lung cancerand targeted inhibition of APE1enhances the activity of cisplatin in A549cells. Lungcancer (Amsterdam, Netherlands)2009,66(3):298-304.
    159. Yang S, Irani K, Heffron SE, Jurnak F, Meyskens FL, Jr.: Alterations in theexpression of the apurinic/apyrimidinic endonuclease-1/redox factor-1(APE/Ref-1)in human melanoma and identification of the therapeutic potential of resveratrol as anAPE/Ref-1inhibitor. Molecular cancer therapeutics2005,4(12):1923-1935.
    160. Ambudkar S, Kimchi C, Sauna ZE, Gottesman MM.: P-glycoprotein: from genomics tomechanism. Oncogene2003,22(47):7468-7485.
    161. Higgins CF.:Multiple molecular mechanisms for multidrug resistance transporters.Nature2007,12;446(7137):749-757.
    162. PersidisA.Cancer multidrug resistanee.Nat Bio technol1999,17:94-95.
    163. BromlbergJF, WrzeszezynskaMH, Devgan G, ZhaoY, Pestell RG, Albanese C, DarnellJE Jr:STAT3as an oncogene. Cell1999,98:295-303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700