钙稳态失衡对钙记忆相关蛋白表达的影响机制及钙离子调节剂临床疗效的荟萃分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Mechnism of Calcium Dishomeostasis Influence the Expression of Calcium Memory-related Proteins and Systematic Review of Calcium Modulators
  • 作者:杨振东
  • 论文级别:博士
  • 学科专业名称:神经病学
  • 学位年度:2013
  • 导师:张蕲
  • 学科代码:100204
  • 学位授予单位:华中科技大学
  • 论文提交日期:2013-05-01
摘要
钙离子是细胞内重要的第二信使,在细胞分裂增殖、受精、基因转录和表达等生理过程扮演着重要的角色,钙离子稳态失衡是很多疾病的共同病理机制之一。阿尔茨海默病患者由于老年斑、神经纤维缠结等病理产物的聚集,淀粉样前体蛋白(APP)、载脂蛋白E(ApoE)、早老素(PS)等基因突变会引起神经元钙稳态失调,影响神经元的存活和学习记忆过程。目前的解释仅限于多种病理变化引起的钙超载对神经元损伤和学习记忆形成和巩固过程的影响,具体环节和通路尚不清楚,低钙状态对学习记忆影响的机制未曾涉及。本研究根据前期工作提出:钙超载和低钙均会影响学习记忆过程,其机制可能是各种病理刺激导致的钙稳态失衡抑制了钙振荡,降低了钙-记忆相关蛋白质的磷酸化水平和合成,最终影响记忆的形成和巩固。为了佐证这一设想,本研究用NMDA受体激活剂和钙螯合剂分别处理神经元,模拟不同的钙病理,检测他们对钙振荡和钙-记忆相关蛋白质表达的影响,并选用一种在不同钙病理条件下对钙流具有双向调节作用的药物雷洛昔芬进行干预,成功的逆转了这一病理过程。为了进一步论证钙调节剂治疗AD有效性和安全性,我们选用了一种对钙流有抑制作用的NMDA受体拮抗剂美金刚和雷洛昔芬进行系统综述和Meta分析,发现它们对学习记忆均有改善作用。证明:钙稳态失衡确实是AD的重要病理机制,根据患者特点选用合适的钙调节剂是AD治疗的有效方法之一。本研究共分为三部分:
     第一部分钙稳态失衡对钙记忆相关蛋白表达的影响机制及雷洛昔芬的逆转效应
     [背景/目的]钙稳态失衡是阿尔茨海默病重要的病理特征之一,其具体机制至今未明。本研究试图揭示钙稳态失衡对钙记忆相关蛋白的影响及与钙振荡的关联。
     [方法]首先用各种浓度梯度的谷氨酸盐溶液和BAPTA-AM溶液刺激神经元来模拟细胞内钙超载和低钙状态,然后测试他们对钙振荡的影响。实验完毕,提取神经元总蛋白,用Western blotting分析钙-记忆相关蛋白的表达情况。用MTT法测试谷氨酸和BAPTA-AM刺激后神经元的活性。
     [结果]研究发现1~100uM的谷氨酸盐延长了钙峰持续期并且增加Cav1.2,NR1, NR2B, PSD95, CaMKII, pCREB的表达。300uM和1uM谷氨酸盐抑制钙振荡并减少PSD93和pCREB表达。雷洛昔芬增加300uM谷氨酸盐刺激后Cav1.2,NR2B,PKC, CREB的表达。luM-50uM BAPTA-AM呈浓度依赖性的抑制钙振荡,减少NRl,PSD95, PSD93, CaMKII, pCaMKII, pCREB的表达。雷洛昔芬增加20uM BAPTA-AM刺激后PSD95, PSD93, pCaMKII, CREB的表达。高浓度的谷氨酸和BAPTA-AM降低神经元的活性,但是可以被适当浓度的雷洛昔芬所逆转。
     [结论]钙稳态失调可以通过抑制钙振荡减少钙-记忆相关蛋白的表达,这可能是AD认知退变的机制之一。雷洛昔芬能够逆转钙振荡降低所致的钙-记忆相关蛋白表达下调。
     第二部分:美金刚治疗阿尔茨海默病的有效性和安全性系统综述和Meta分析
     [背景/目的]美金刚已经被美国食品药品监督管理局批准为治疗中重度阿尔茨海默病的治疗药物,然而,最近有几项临床研究却认为它对阿尔茨海默病并无明显的治疗益处,且存在一定的副作用。本研究将收集所有可以得到的临床研究以更新美金刚治疗阿尔茨海默病的结论。
     [方法]我们检索了九个数据库,时间截止2012年9月25日。用Review Manager version5.1合并同样的研究项目,检测异质性和敏感性,用森林图表示合并效应。Cochrane Handbook (version5.0.1)用于评价纳入研究的总体偏倚。Egger's检验和漏斗图用于评价报告偏倚。同时,我们也评价了美金刚治疗AD的有效性和安全性。
     [结果]一共检索到889篇文章,12篇入选。合并分析发现美金刚对阿尔茨海默病认知和临床医师总体印象有利;对精神状态,日常生活行动能力,没有明显的益处。对脑容量和代谢的结果存在争议。美金刚对失访率,不良事件导致的失访没有明显的影响,但对肥胖,思维混沌感,高血压,神经系统障碍和跌倒有更高的风险。漏斗图显示报告偏倚存在,但Egger's检验发现偏倚不显著。
     [结论]美金刚对AD患者认知和临床医师总体印象有益,但是对思维混沌,肥胖,高血压,神经系统障碍和跌倒存在较高的诱发风险。
     第三部分雷洛昔芬对更年期妇女认知和生活质量的影响:一个临床随机对照研究的系统综述
     [背景/目的]雷洛昔芬在临床上用作绝经后妇女骨质疏松的治疗和乳腺癌的预防。然而,他对老年女性认知和更年期症状的影响存在争议。本研究将用循证医学的方法尽可能收集所有的相关研究得出一个综合性的结论,给病人一些有意义的建议。
     [方法]我们检索了13个电子数据库,阅读标题和摘要以排除明显不合要求的文章,然后根据准入标准阅读全文和参考文献。如果没有全文,我们将会写信向作者索要PDF文本。将提取的数据记录在EXCEL表格中,两个作者将会根据Jadad分数和循证医学手册评价该研究的质量。
     [结果]我们获得了7项合格的研究,设计、评价指标和问卷有相当大的异质性。根据Jadad分数,其中有四项研究得到5分,三项研究得3分,仅仅两项研究使用了分配掩藏方法。有两项研究(n=5599)发现60mg/ml雷洛昔芬能够改善动词记忆,120mg/ml雷洛昔芬能减少轻度认知障碍的发病风险达33%,在一定程度上降低AD的发病率,其他两项研究则没有发现显著差异。有三项研究发现雷洛昔芬并不能减轻抑郁,其他研究则发现能够减轻抑郁。从现有的研究来看,没有充足的证据证明雷洛昔芬对焦虑、睡眠、性功能、血管症状是否有效,但却显著地使绝经期症状恶化。
     [结论]雷洛昔芬可能对认知有改善作用,但对焦虑、抑郁、睡眠、性功能、血管症状没有明显的影响,而且可使绝经期症状显著地恶化。它对绝经期女性骨质疏松的治疗以及乳腺癌的预防是安全的,但是不适合血管狭窄和有血栓形成倾向的患者。
Calcium is an important second messenger. It plays an important role in the process of cell differentiation, proliferation, fertilization, gene transcription and expression. The calcium dishomeostasis is one of the common pathological mechanism of many diseases. Lots of pathogenic products such as senile plaques, nerve fiber tangles and gene mutations of amyloid precursor protein (APP), apolipoprotein E (ApoE), presenilin (PS) induce neural calcium dishomeostasis in Alzheimer's patients, impair the exsit of the neurons and the process of learning and memory. The current interpretation is limited to the calcium overload caused by a variety of pathological changes on neuronal injury and the formation, consolidation of learning and memory, the detail machanisms are unclear and the study about the effect of low concentration calcium on learning and memory is not involved in. According to the preliminary work of this research, we report:calcium overload and low calcium are all influence the process of learning and memory, the mechanism is that the various pathological stimulus induce calcium dishomeostasis which inhibit the calcium oscillations, reducing the expression of memory related proteins and phosphorylation, affecting the formation and consolidation of memory. In order to confirm this conclusion, we treated neuron with NMD A receptor activator and calcium chelating agent respectively, simulated different calcium pathology and tested their effect on calcium oscillations and protein expression. We applied the raloxifene which was two-way adjustment on calcium pathology, it reversed the pathological process successfully. For further proving the correctness of this opinion, we chosed the memantine which is inhabitation of NMD A receptor and raloxifene to make a systematic review and Meta analysis. The results showed these two drugs improved memory significantly. So, calcium regulator is one of the effective treatment of AD. This research is divided into three parts:
     PartⅠ The machnism of calcium dyshomeostasis influence the expression of calcium memory-related proteins and the reversal effect of raloxifene
     Calcium dyshomeostasis is a important pathology of Alzheimer's disease, but the mechanism is not very clear. The aim of this study was to reveal the influence of calcium dyshomeostasis on expression of calcium memory-related proteins and it's relationship with calcium oscillations. We treated neuron with concentration gradient of glutamate and BAPTA-AM to simulate different calcium pathology and tested their influence on oscillations. Then, the total protein was exacted, the expression of calcium memory-related proteins was analysed by western blotting. MTT was used to test neuron activity after treating with glutamate and BAPTA-AM. We found1~100uM glutamate extended duration of calcium spikes and increased expression of Cav1.2, NR1, NR2B, PSD95, CaMKII, pCREB.300uM and luM glutamate inhibited calcium oscillations and decreased the expression of PSD93and pCREB. Raloxifene increased the expression of Cav1.2, NR2B, PKC, CREB after treating with300uM gulatamate. luM-50uM BAPTA-AM inhibited calcium oscillations depend on concentration and decreased the expression of NR1, PSD95, PSD93, CaMKⅡ, pCaMKⅡ, pCREB. Raloxifene would increased the expression of PSD95, PSD93, pCaMKⅡ, CREB after treating with20uM BAPTA-AM. High concentration glutamate and BAPTA-AM declined neuron activity, these was rescued by suitable concentration raloxifene. We would come to conclusion that the calcium dyshomeostasis decrease expression of calcium memory-related protein by inhibiting calcium oscillations, this may be a mechanism of cognition degeneration. Raloxifene would reverse this effect, so we recommend it as a selective treatment for Alzheimer's disease especially when the patients have high risk of osteoporosis or/and breast cancer.
     Part Ⅱ Effectiveness and safety of memantine treatment for Alzheimer's disease
     Memantine is approved as a treatment for moderate to severe Alzheimer's disease (AD). However, recent studies report that memantine is harmful for AD patients in several ways. This paper will systematically review all the available studies to provide an update regarding memantine as a treatment for AD. Two authors queried nine databases containing literature published prior to September15,2012and determined eligible studies based on the inclusion criteria. We used Review Manager to pool similar data. The Cochrane Handbook was used to assess the bias of the included studies. The chi-squared test, sensitivity analysis, Egger's test, and funnel plots were used to determine the heterogeneity and report bias, respectively. We obtained889studies and determined that12of those studies met the inclusion criteria. The pooled analysis showed that memantine had significant benefits for AD patients in terms of cognition and the clinician's global impression. There were no significant benefits for AD patients in terms of mental state or activities of daily life. The results on brain volume and metabolism were controversial in two of the studies. Memantine did not significantly affect discontinuation caused by serious adverse events but did increase the risk for somnolence, weight gain, confusion, hypertension, nervous system disorders, and falling. Memantine is beneficial for AD patients with regards to cognition and clinician's global impression but increases the risk for somnolence, weight gain, confusion, hypertension, nervous system disorders, and falling.
     PartⅢ Effects of raloxifene on cognition, mental health, sleep and sexual function in menopausal women:a systematic review of randomized controlled trials
     Raloxifene has been used as therapy for osteoporosis and ER+breast cancer prevention in menopausal women. However, its effects on cognition and climacteric syndrome are controversial. This study reviews the relevant studies and reaches a comprehensive conclusion. We retrieved thirteen electronic databases, read the titles and abstracts to exclude ineligible articles, and then read the full text and references to form a basis for decisions using the inclusion criteria. If full text was not available, we asked the author for a copy of the article. After the data were extracted and recorded, the research quality was evaluated by two authors using the Jadad score and Cochrane handbook. We found seven eligible studies. The design, evaluated items, questionnaires and scales were heterogeneous. The design quality was fair as evaluated by the Cochrane Handbook. We found that60mg/day raloxifene could improve verbal memory, and120mg/day raloxifene produced a33%decrease in the risk of mild cognitive impairment and also lowered the risk of Alzheimer's disease. There was not enough evidence to state if raloxifene had any effect on depression, anxiety, sleep, sexual function, vasomotor symptoms, but significantly worsened menstrual symptoms. Raloxifene may have some benefit for cognition, but it's not significant effect on anxiety, depression, sleep, sexual function, vasomotor symptoms and worsens menstrual symptoms. This drug is safe for treating osteoporosis and preventing breast cancer in menopausal women, but it is not suitable for patients who have any arterial stenosis or thrombophilia.
引文
Alexander C. Flint, Ryan S. Dammerman, and Kriegstein, A.R. (1999). Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal calcium oscillations. PNAS 96,12144-12149.
    Alkon, D.L., Epstein, H., Kuzirian, A., Bennett, M.C., and Nelson, T.J. (2005). Protein synthesis required for long-term memory is induced by PKC activation on days before associative learning. Proceedings of the National Academy of Sciences of the United States of America 102,16432-16437.
    Berridge, M.J. (2011). Calcium signalling and Alzheimer's disease. Neurochemical research 36,1149-1156.
    Canzoniero, L.M., Babcock, D.J., Gottron, F.J., Grabb, M.C., Manzerra, P., Snider, B.J., and Choi, D.W. (2004). Raising intracellular calcium attenuates neuronal apoptosis triggered by staurosporine or oxygen-glucose deprivation in the presence of glutamate receptor blockade. Neurobiology of disease 15,520-528.
    Carew, TJ. (1996). Molecular Enhancement of Memory Formation. Neuron 16,5-8.
    Cowger, J.J., and Torchia, J. (2006). Direct association between the CREB-binding protein (CBP) and nuclear receptor corepressor (N-CoR). Biochemistry 45,13150-13162.
    De Koninck, P. (1998). Sensitivity of CaM Kinase Ⅱ to the Frequency of Ca2+ Oscillations. Science 279,227-230.
    Dolmetsch, R.E., Xu, K., and Lewis, R.S. (1998). Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392,933-936.
    Doody, R.S., Tariot, P.N., Pfeiffer, E., Olin, J.T., and Graham, S.M. (2007). Meta-analysis of six-month memantine trials in Alzheimer's disease. Alzheimer's & dementia:the journal of the Alzheimer's Association 3,7-17.
    Garwood, C., Faizullabhoy, A., Wharton, S.B., Ince, P.G., Heath, P., Shaw, P.J., Baxter, L., Gelsthorpe, C., Forster, G, Matthews, F.E., et al. (2013). Calcium dysregulation in relation to Alzheimer-type pathology in the ageing brain. Neuropathology and applied neurobiology.
    Goetz, M.P., Schaid, D J., Wickerham, D.L., Safgren, S., Mushiroda, T., Kubo, M., Batzler, A., Costantino, J.P., Vogel, V.G., Paik, S., et al. (2011). Evaluation of CYP2D6 and efficacy of tamoxifen and raloxifene in women treated for breast cancer chemoprevention:results from the NSABP P1 and P2 clinical trials. Clinical cancer research:an official journal of the American Association for Cancer Research 17,6944-6951.
    Hardingham, G.E., Fukunaga, Y., and Bading, H. (2002). Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nature neuroscience 5,405-414.
    Haruhiko Bito, Karl Deisseroth, and Tsien, R. (1996). CREB Phosphorylation and Dephosphorylation:A Ca2+ -and Stimulus Duration-Dependent switch for Hippocampal Gene Expression. Cell biology international 87,1203-1214.
    Hongpaisan, J., and Alkon, D.L. (2007). A structural basis for enhancement of long-term associative memory in single dendritic spines regulated by PKC. Proceedings of the National Academy of Sciences of the United States of America 104,19571-19576.
    Huang, Y, Huang, Y.L., Lai, B., Zheng, P., Zhu, Y.C., and Yao, T. (2007). Raloxifene acutely reduces glutamate-induced intracellular calcium increase in cultured rat cortical neurons via inhibition of high-voltage-activated calcium current. Neuroscience 147, 334-341.
    Kawamoto, E.M., Vivar, C., and Camandola, S. (2012). Physiology and pathology of calcium signaling in the brain. Frontiers in pharmacology 3,61.
    Kloskowska, E., Malkiewicz, K., Winblad, B., Benedikz, E., and Bruton, J.D. (2008). APPswe mutation increases the frequency of spontaneous Ca2+ -oscillations in rat hippocampal neurons. Neuroscience letters 436,250-254.
    Kornhauser, J.M., Cowan, C.W., Shaywitz, A.J., Dolmetsch, R.E., Griffith, E.C., Hu, L.S., Haddad, C., Xia, Z., and Greenberg, M.E. (2002). CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 34,221-233.
    Kristine Yaffe, Kathryn Krueger, Steven R. Cummings, Terri Blackwell, Victor W. Henderson, Somnath Sarkar, Kristine Ensrud, and Grady, D. (2005). Effect of Raloxifene on Prevention of Dementia and Cognitive Impairment in Older Women:The Multiple Outcomes of Raloxifene Evaluation (MORE) Randomized Trial. Am J Psychiatry 162, 683-690.
    Legault, C., Maki, P.M., Resnick, S.M., Coker, L., Hogan, P., Bevers, T.B., and Shumaker, S.A. (2009). Effects of tamoxifen and raloxifene on memory and other cognitive abilities: cognition in the study of tamoxifen and raloxifene. Journal of clinical oncology:official journal of the American Society of Clinical Oncology 27,5144-5152.
    Li, W., Llopis, J., Whitney, M., Zlokarnik, G, and Tsien, R.Y. (1998). Cell-permeant caged InsP3 ester shows that Ca2+spike frequency can optimize gene expression. Nature 392, 936-941.
    Lucchesi, W., Mizuno, K., and Giese, K.P. (2011). Novel insights into CaMKII function and regulation during memory formation. Brain research bulletin 85,2-8.
    Martino, S., Cauley, J.A., Barrett-Connor, E., Powles, T.J., Mershon, J., Disch, D., Secrest, R.J., Cummings, S.R., and Investigators, C. (2004). Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. Journal of the National Cancer Institute 96,1751-1761.
    Michel, M., Green, C.L., and Lyons, L.C. (2011). PKA and PKC are required for long-term but not short-term in vivo operant memory in Aplysia. Learning & memory 18,19-23.
    Muchekehu, R.W., and Harvey, B.J. (2008).17beta-estradiol rapidly mobilizes intracellular calcium from ryanodine-receptor-gated stores via a PKC-PKA-Erk-dependent pathway in the human eccrine sweat gland cell line NCL-SG3. Cell calcium 44,276-288.
    Oliveira, A.M., and Bading, H. (2011). Calcium signaling in cognition and aging-dependent cognitive decline. BioFactors 37,168-174.
    Patricia Liljelund, Jeffrey G. Netzeband, and Gruol, D.L. (2000). L-Type Calcium Channels Mediate Calcium Oscillations in Early Postnatal Purkinje Neurons. The Journal of Neuroscience 20,7394-7403.
    Pelizzoni, I., Macco, R., Morini, M.F., Zacchetti, D., Grohovaz, F., and Codazzi, F. (2011). Iron handling in hippocampal neurons: activity-dependent iron entry and mitochondria-mediated neurotoxicity. Aging cell 10,172-183.
    Qinghua Hu, Shaileshlesh Deshpande, Kaikobad Irani, and C.Ziegelstein, R. (1999). [Ca2+]i Oscillation Frequency Regulates Agonist-stimulated NF-KB Transcriptional Activity. The Journal of biological chemistry 274,33995-33998.
    Quintanilla, R.A., Munoz, F.J., Metcalfe, M.J., Hitschfeld, M., Olivares, G, Godoy, J.A., and Inestrosa, N.C. (2005). Trolox and 17beta-estradiol protect against amyloid beta-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway. The Journal of biological chemistry 280,11615-11625.
    Rosenegger, D., and Lukowiak, K. (2010). The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea. Molecular brain 3,24.
    Rui, Y., Li, R., Liu, Y, Zhu, S., Yu, X., Sheng, Z., and Xie, Z. (2006). Acute effect of beta amyloid on synchronized spontaneous Ca2+ oscillations in cultured hippocampal networks. Cell biology international 30,733-740.
    Santos, S.F., Pierrot, N., Morel, N., Gailly, P., Sindic, C., and Octave, J.N. (2009). Expression of human amyloid precursor protein in rat cortical neurons inhibits calcium oscillations. The Journal of neuroscience:the official journal of the Society for Neuroscience 29,4708-4718.
    Santos, S.F., Tasiaux, B., Sindic, C., and Octave, J.N. (2011). Inhibition of neuronal calcium oscillations by cell surface APP phosphorylated on T668. Neurobiology of aging 32,2308-2313.
    Shiroma, S., Yamaguchi, T., and Kometani, K. (2005). Effects of 17beta-estradiol on chemically induced long-term depression. Neuropharmacology 49,97-102.
    Snider, B.J., Tee, L.Y., Canzoniero, L.M., Babcock, D.J., and Choi, D.W. (2002). NMDA, antagonists exacerbate neuronal death caused by proteasome inhibition in cultured cortical and striatal neurons. The European journal of neuroscience 15,419-428.
    Song, S., Li, J., Zhu, L., Cai, L., Xu, Q., Ling, C., Su, Y, and Hu, Q. (2012). Irregular Ca(2+) oscillations regulate transcription via cumulative spike duration and spike amplitude. The Journal of biological chemistry 287,40246-40255.
    Suzuki, T., Notomi, T., Miyajima, D., Mizoguchi, F., Hayata, T., Nakamoto, T., Hanyu, R., Kamolratanakul, P., Mizuno, A., Suzuki, M., et al. (2013). Osteoblastic differentiation enhances expression of TRPV4 that is required for calcium oscillation induced by mechanical force. Bone 54,172-178.
    Tanaka, M., Kawahara, K., Kosugi, T., Yamada, T., and Mioka, T. (2007). Changes in the spontaneous calcium oscillations for the development of the preconditioning-induced ischemic tolerance in neuron/astrocyte co-culture. Neurochemical research 32,988-1001.
    Tas, P.W.L., Eisemann, C., and Roewer, N. (2003). The volatile anesthetic isoflurane suppresses spontaneous calcium oscillations in vitro in rat hippocampal neurons by activation of adenosine A1 receptors. Neuroscience letters 338,229-232.
    Tomas Soderblom, Asa Laestadius, Camilla Oxhamre, and Richter-Dahlfors, A. (2002). Toxin-induced calcium oscillations:a novel strategy to affect gene regulation in target cells. Int J Med Microbiol 291,511-515.
    Tonkikh, A., Janus, C., El-Beheiry, H., Pennefather, P.S., Samoilova, M., McDonald, P., Ouanounou, A., and Carlen, P.L. (2006). Calcium chelation improves spatial learning and synaptic plasticity in aged rats. Experimental neurology 197,291-300.
    Tsuruta, F., Green, E.M., Rousset, M., and Dolmetsch, R.E. (2009). PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. The Journal of cell biology 187, 279-294.
    Vogel, V.G., Costantino, J.P., Wickerham, D.L., Cronin, W.M., Cecchini, R.S., Atkins, J.N., Bevers, T.B., Fehrenbacher, L., Pajon, E.R., Wade, J.L.,3rd, et al. (2010). Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial:Preventing breast cancer. Cancer prevention research 3,696-706.
    Wang, X., Dykens, J.A., Perez, E., Liu, R., Yang, S., Covey, D.F., and Simpkins, J.W. (2006). Neuroprotective effects of 17beta-estradiol and nonfeminizing estrogens against H2O2 toxicity in human neuroblastoma SK-N-SH cells. Molecular pharmacology 70, 395-404.
    Xu, F., Hennessy, D.A., Lee, T.K., and Syed, N.I. (2009). Trophic factor-induced intracellular calcium oscillations are required for the expression of postsynaptic acetylcholine receptors during synapse formation between Lymnaea neurons. The Journal of neuroscience:the official journal of the Society for Neuroscience 29,2167-2176.
    Yan, J.H., Gao, Z.G., Ye, J.P., and Weng, J.P. (2010). Exchange of a nuclear corepressor between NF-kappaB and CREB mediates inhibition of phosphoenolpyruvate carboxykinase transcription by NF-kappaB. Chinese medical journal 123,221-226.
    Yasar, S., Corrada, M., Brookmeyer, R., and Kawas, C. (2005). Calcium channel blockers and risk of AD:the Baltimore Longitudinal Study of Aging. Neurobiology of aging 26, 157-163.
    Zhu, L., Luo, Y., Chen, T., Chen, F., Wang, T., and Hu, Q. (2008). Ca2+ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells. Journal of cell science 121,2511-2518.
    Zhu, L.Q., Wang, S.H., Liu, D., Yin, Y.Y., Tian, Q., Wang, X.C., Wang, Q., Chen, J.G., and Wang, J.Z. (2007). Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. The Journal of neuroscience:the official journal of the Society for Neuroscience 27,12211-12220.
    [1]Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M (2005) Global prevalence of dementia:a Delphi consensus study. Lancet 366,2112-2117.
    [2]Lucas DR, Newhouse JP (1957) The toxic effects of sodium L-glutamate on the inner layers of the retina. Arch Ophthalmol 58,193-201.
    [3]Eccles JC (1983) Calcium in long-term potentiation as a model for memory. Neuroscience 10,1071-1081.
    [4]Klara Limba"ck-Stokin, Edward Korzus, Rie Nagaoka-Yasuda, Mark Mayford (2004) Nuclear Calcium/Calmodulin Regulates Memory Consolidation. The Journal of Neuroscience 24,10858-10867.
    [5]Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, Delucinge-Vivier C, Aso Y, Descombes P, Bading H (2009) Nuclear calcium signaling controls expression of a large gene pool:identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 5, e1000604.
    [6]Doody RS, Tariot PN, Pfeiffer E, Olin JT, Graham SM (2007) Meta-analysis of six-month memantine trials in Alzheimer's disease. Alzheimers Dement 3,7-17.
    [7]McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease:report of the NINCDS-ADRDA Work Group under the auspices of Department of Healthand Human Services Task Force on Alzheimer's Disease. Neurology 34,939-944.
    [8](2000) DSM-IV-TR:Diagnostic and Statistical Manual of Mental Disorders,4th ed. American Psychiatric Press, Washington, DC.
    [9]Saxton J, McGonigle-Gibson KL, Swihart AA, Miller VJ, Boller F (1990) Assessment of the severely impaired patient:description and validation of a new neuropsychological test battery. Psychol Assess 2,298-303.
    [10]Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer's disease. Am J Psychiatry 141,1356-1364.
    [11]Bayles KA, Tomoeda CK (1994) Functional Linguistic Communication Inventory. Canyonlands Publishing Co, Tucson, AZ.
    [12]Jensen AR, Rohwer WD Jr (1966) The Stroop color-word test:A review. Acta Psychol (Amst) 25,36-93.
    [13]Wechsler D (1987) Wechsler Memory Scale-Revised Manual. The Psychological Corporation, San Antonio, Texas.
    [14]Folstein MF, Folstein SE, McHugh PR (1975) Mini mental state:a practical method for grading the cognitive state of patients for the clinician. JPsychiatr Res 12, 189-198.
    [15]Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The Neuropsychiatric Inventory:comprehensive assessment of psychopathology in dementia. Neurology 44,2308-2314.
    [16]Cohen-Mansfield J, Marx MS, Rosenthal AS (1989) A description of agitation in a nursing home. J Gerontol 44, M77-84.
    [17]Galasko D, Schmitt F, Thomas R, Jin S, Bennett D, Ferris S (2005) Detailed assessment of activates of daily living in moderate to severe Alzheimer's disease. J Int Neuropsychol Soc 91,595-600.
    [18]Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M, Ferris S (1997) An inventory to assess activities of daily living for clinical trials in Alzheimer's disease:the Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord 11 (Suppl 2), S33-S39.
    [19]Galasko DR, Schmitt FA, Jin S (2000) Detailed assessment of cognition and activities of daily living in moderate to severe Alzheimer's disease. Neurobiol Aging 21, S168.
    [20]Schneider LS, Olin JT, Doody RS, Clark CM, Morris JC, Reisberg B, Schmitt FA, Grundman M, Thomas RG, Ferris SH (1997) Validity and reliability of the Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change the Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord 11, S22-32.
    [21]Guy W (1976) ECDEU Assessment Manual for Psychopharmacology. US Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute of Mental Health, Psychopharmacology Research Branch, Division of Extramural Research Programs. Pp.218-222.
    [22]Peskind ER, Potkin SG, Pomara N, Ott BR, Graham SM, Olin JT, McDonald S (2006) Memantine treatment in mild to moderate Alzheimer disease:a 24-week randomized controlled trial. Am J Geriatr Psychiatry 14,704-715.
    [23]Bakchine S, Loft H (2008) Memantine treatment in patients with mild to moderate Alzheimer's disease:results of a randomised, double-blind, placebo-controlled 6-month study. JAlzheimers Dis 13,97-107.
    [24]Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I; Memantine Study Group (2004) Memantine treatment in patients with moderate to severe Alzheimer's disease already receiving donepezil. JAMA 291,317-324.
    [25]Fox C, Crugel M, Maidment I, Auestad BH, Coulton S, Treloar A, Ballard C, Boustani M, Katona C, Livingston G (2012) Efficacy of memantine for agitation in Alzheimer's dementia: a randomised double-blind placebo controlled trial. PLoS ONE 7, e35185.
    [26]Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ; Memantine Study Group (2003) Memantine in moderate-to-severe Alzheimer's disease. NEng JMed 348,1333-1341.
    [27]H. Lundbeck A/S. Efficacy and Safety of Memantine in Moderate to Severe Alzheimer's Disease, http://clinicaltrials.gov/ct2/show/record/NCT00857649?term=NCT00857649&rank =1&view=results, July 2012.
    [28]Dyck CH, Tariot PN, Meyers B, Resnick EM (2007) A 24-week Randomized, Controlled Trial of Memantine in Patients With Moderate-to-severe Alzheimer Disease. Alzheimer Dis Assoc Disord 21,136-143.
    [29]Saxton J, Hofbauer RK, Woodward M, Gilchrist NL, Potocnik F, Hsu HA, Miller ML, Pejovic V, Graham S M, Perhach JL (2012) Memantine and Functional Communication in Alzheimer's Disease:Results of a 12-Week, International, Randomized Clinical Trial. JAlzheimers Dis 28,109-118.
    [30]Schmidt R, Ropele S, Pendl B, Ofner P, Enzinger C, Schmidt H, Berghold A, Windisch M, Kolassa H, Fazekas F (2008) Longitudinal multimodal imaging in mild to moderate Alzheimer disease:a pilot study with memantine. JNeurol Neurosurg Psychiatry 79,1312-1317.
    [31]Wilkinson D, Fox NC, Barkhof F, Phul R, Lemming O, Scheltens P (2012) Memantine and brain atrophy in Alzheimer's disease:a 1-year randomized controlled trial. JAlzheimers Dis 29,459-469.
    [32]Doody RS, Tariot PN, Pfeiffer E, Olin JT, GrahamSM (2007) Meta-analysis of six-month memantine trials in Alzheimer's disease. Alzheimer's & Dementia 3,7-17.
    [33]Winblad B, Jones RW, Wirth Y, Stoffler A, Mobius HJ (2007) Memantine in moderate to severe Alzheimer's disease:a meta-analysis of randomised clinical trials. Dement Geriatr Cogn Disord 24,20-27.
    [34]Lockhart IA, Orme ME, Mitchell SA (2011) The efficacy of licensed-indication use of donepezil and memantine monotherapies for treating behavioural and psychological symptoms of dementia in patients with Alzheimer's disease: systematic review and meta-analysis. Dement Geriatr Cogn Disord Extra 1, 212-227.
    [35]Porsteinsson AP, Grossberg GT, Mintzer J, Olin JT (2008) Memantine Treatment in Patients with Mild to Moderate Alzheimer's Disease Already Receiving a Cholinesterase Inhibitor: A Randomized, Double-Blind, Placebo-Controlled Trial. Current Alzheimer Research 5,83-89.
    [36]Graham SM. A Study of the Safety and Efficacy of Memantine in Moderate to Severe Alzheimer's Disease, http://clinicaltrials.gov/ct2/show/NCT00322153?term=NCT00322153&rank=1, August 2010.
    [1]Lin SQ, Sun LZ, Lin JF, et al.Estradiol lmg and drospirenone 2mg as hormone replacement therapy in postmenopausal Chinese women. Climacteric 2011; 14(4):472-81
    [2]IEmily Banks and Karen Canfell.Invited Commentary:Hormone Therapy Risks and Benefits-The Women's Health Initiative Findings and the Postmenopausal Estrogen Timing Hypothesis. Am J Epidemiol 2009; 170:24-28
    [3]Blumenthal RS, Baranowski B, Dowsett SA. Cardiovascular effects of raloxifene:the arterial and venous systems. Am Heart J 2004; 147:783-789
    [4]Peter Collins, Lori Mosca, Mary Jane Geiger, et al. Effects of the Selective Estrogen Receptor Modulator Raloxifene on Coronary Outcomes in The Raloxifene Use for the Heart Trial:Results of Subgroup Analyses by Age and Other Factors. Circulation 2009; 119:922-930
    [5]Konyalioglu S, Durmaz G, Yalcin A.The potential antioxidant effect of raloxifene treatment: a study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem Funct 2007; 25(3):259-66.
    [6]Todorova VK, Kaufmann Y, Luo S, et al. Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake. Cancer Chemother Pharmacol 2011; 67(2):285-91
    [7]Ko SS, Jordan VC. Treatment of osteoporosis and reduction in risk of invasive breast cancer in postmenopausal women with raloxifene. Expert Opin Pharmacother 2011; 12(4): 657-74
    [8]Victor G. Vogel, Joseph P. Costantino, D. Lawrence Wickerham, et al. Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial:Preventing Breast Cancer. Cancer Prev Res 2010; 3:696-706.
    [9]Walsh BW, Kuller LH, Wild RA, et al. Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. JAMA 1998; 279:1445-1451
    [10]Simoncini T, Genazzani AR, Liao JK. Nongenomic mechanisms of endothelial nitric oxide synthase activation by the selective estrogen receptor modulator raloxifene. Circulation 2002; 105:1368-1373
    [11]Peter Collins, Lori Mosca, Mary Jane Geiger, et al. Effects of the Selective Estrogen Receptor Modulator Raloxifene on Coronary Outcomes in The Raloxifene Use for the Heart Trial:Results of Subgroup Analyses by Age and Other Factors. Circulation 2009; 119:922-930
    [12]Yuka kasai, Masahiko Maegawa, Satoshi Yamamoto, et al. Effects of raloxifene on the production of cytokines in stimulated whole blood in ex vivo and in vitro studies. The journal of medical investigation 2011; 58:110-117
    [13]Konyalioglu S, Durmaz G, Yalcin A.The potential antioxidant effect of raloxifene treatment:a study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochem Funct 2007; 25(3):259-66.
    [14]Todorova VK, Kaufinann Y, Luo S, et al. Tamoxifen and raloxifene suppress the proliferation of estrogen receptor-negative cells through inhibition of glutamine uptake. Cancer Chemother Pharmacol 2011; 67(2):285-91
    [15]Eli Lilly and Company:Evista prescribing information,2011.
    [16]Ko SS, Jordan VC. Treatment of osteoporosis and reduction in risk of invasive breast cancer in postmenopausal women with raloxifene. Expert Opin Pharmacother 2011; 12(4): 657-74
    [17]Victor G. Vogel, Joseph P. Costantino, D. Lawrence Wickerham, et al. Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial:Preventing Breast Cancer. Cancer Prev Res 2010; 3:696-706
    [18]Buckwalter.JG, Geiger.AM, Parsons. TD, et al. Cognitive effects of short-term use of raloxifene:a randomized clinical trial. Intern J Neuroscience 2007; 117:1579-1590.
    [19]Kristine Yaffe, Kathryn Krueger, Steven R.Cummings, et al. Effect of Raloxifene on Prevention of Dementia and Cognitive Impairment in Older Women:The Multiple Outcomes of Raloxifene Evaluation (MORE) Randomized Trial. Am J Psychiatry 2005; 162:683-90
    [20]Vincenzo Natale, Paola Albertazzi, Natalie Missiroli, et al.Effects of raloxifene on mood, sleep, libido and cognitive function in postmenopausal healthy women: a pilot study. Maturitas 2004; 48:59-63.
    [21]Ronald Strickler, Dale W. Stovall, Diane Merritt, et al. Raloxifene and Estrogen Effects on Quality of Life in Healthy Postmenopausal Women:A Placebo-Controlled Randomized Trial. Obstet Gynecol 2000; 96:359-65.
    [22]Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials:is blinding necessary? Control Clin Trials 1996; 17:1-12.
    [23]Thomas Nickelsen, Edward G. Lufkin, B. Lawrence Riggs, et al.Raloxifene hydrochloride, a selective estrogen receptor modulator: safety assessment of effects on cognitive function and mood in postmenopausal women. Psychoneuroendocrinology 1999; 24:115-128.
    [24]Natalia B. Jarkova, Ferenc Martenyi, Daiva Masanauskaite, et al.Mood effect of raloxifene in postmenopausal women.Maturitas 2002; 42:71-75.
    [25]Francesmary Modugno, Roberta B. Ness, Susan Ewing, et al. Effect of Raloxifene on Sexual Function in Older Postmenopausal Women With Osteoporosis. Obstet Gynecol 2003; 101:353-61.
    [26]B.Kessel, L.Nacbtigall, L.plouffe, et al. effect of raloxifene on sexual function in postmenopausal women. Climacteric 2003; 248-256.
    [27]Didy E. Jacobsen, Monique M. Samson, Marielle H. Emmelot Vonk, et al.Raloxifene improves verbal memory in late postmenopausal women: a randomized, double-blind, placebo-controlled trial. Menopause 2010; 17(2):309-314.
    [28]Black LJ, Sato M, Rowley ER, et al. Raloxifene (LY139481 HCI) prevents bone loss and reduces serum cholesterol without causing uterine hypertrophy in ovariectomized rats. J Clin Invest 1994; 93:63-69.
    [29]Simpkins JW, Singh M. More than a decade of estrogen neuroprotection. Alzheimers Dement. 2008;4(Suppl 1):S131-6.
    [1]Iino M. Spatiotemporal dynamics of Ca 2+ signaling and its physiological roles. Proc Jpn Acad Ser B Phys Biol Sci 2010,86(3):244-256
    [2]Zhu LP, Luo YQ xiang T, et al. Ca+ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells. Journal of Cell Science 2011,121 (15):2511-2518
    [3]Song SS, Li JS, Zhu LP, et al. Irregular Ca2+ oscillations regulate transcription via cumulated spike duration and spike amplitude. J Biol Chem.2012 Oct 15. [Epub ahead of print]
    [4]Bootman M, Nigglit E, Berridge M, et al. Imaging the hierarchical Ca2+ signalling system in HeLa cells. Journal of Physiology 1997,499(2):307-314
    [5]Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 2011,3: a003947.
    [6]Obermair GJ, Szabo Z, Bourinet E, et al. Differential targeting of the L-type Ca2+ channel alpha 1C (Cavl.2) to synaptic and extrasynaptic compartments in hippocampal neurons. Eur J Neurosci 2004,19:2109-2122.
    [7]Chang CS, Gertler TS, Sumeier DJ. Calcium homeostasis, selective vulnerability and Parkinson's disease. Trends Neurosci 2009; 32:249-256.
    [8]Disterhoft JF, Oh MM. Pharmacological and molecular enhancement of learning in aging and Alzheimer's disease. J Physiol Paris 2006(99):180-192.
    [9]Forette F, Seux ML, Staessen JA, et al. The prevention of dementia with antihypertensive treatment: new evidence from the systolic hypertension in Europe (Syst-Eur) study. Arch Intern Med 2002,162:2046-2052.
    [10]韩济生.神经科学[M]第三版北京:北京大学出版社2009,p311.
    [11]Wu GY, Deisseroth K, Tsien RW. Activity dependent CREB phosphorylation:conver gence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen activated protein kinase pathway. Proc Natl Acad Sci USA 2001,98:2808-2813.
    [12]Barco A, Alarcon JM, Kandel ER. Expression of constitutively active CREB protein facilitates the late phase of longterm potentiation by enhancing synaptic capture. Cell 2002; 108,689-703.
    [13]Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signaling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010,11:682-696.
    [14]Chohan MO, Iqbal K. From tau to toxicity:emerging roles of NMDA receptor in Alzheimer's disease. J Alzheimers Dis 2006,10:81-87.
    [15]Dingledine R, Borges K, Bowie D, et al. The glutamate receptor ion channels. Pharmacol Rev 1999,51:7-61.
    [16]Tian X, Feig LA. Age-dependent participation of Ras GRF proteins in coupling calcium permeable AMPA glutamate receptors to Ras/Erk signaling in cortical neurons. J Biol Chem 2006; 28:7578-7582.
    [17]Lee HK, Kirkwood A. AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex. Semin Cell Dev Biol 2011,22:514-520.
    [18]Malenka RC. Synaptic plasticity and AMPA receptor trafficking. Ann NY Acad Sci 2003; 1003:1-11.
    [19]Fucile S. Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 2004, 35:1-8.
    [20]Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007; 47: 699-729.
    [21]Sweatt JD. The neuronal MAP kinase cascade:a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 2001,76:1-10.
    [22]Mansvelder HD, McGehee DS. Longterm potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 2000,27:349-57.
    [23]Wallace TL, Porter RH. Targeting the nicotinic alpha7 acetyltcholine receptor to enhance cognition in disease. Biochem Pharmacol 2011,82,891-903.
    [24]Dajas-Bailador FA, Mogg AJ, Wonnacott S. Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells:contribution of voltage-operated Ca2+ channels and Ca2+ stores. J Neurochem 2002,81:606-614.
    [25]Shen JX, Yakel JL. Nicotinic acetylcholine receptors mediate calcium signaling in the nervous system. Acta Pharmacol Sin 2009; 30:673-680.
    [26]Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytesinvolves calciuminduced calcium release from intracellular stores. Proc Natl Acad Sci USA 2001; 98:4148-4153.
    [27]Burnstock G, Knight GE. Cellular distribution and functionsof P2 receptor subtypes in different systems. Int Rev Cytol 2004,240:31-304.
    [28]Browne LE, Jiang LH, North RA. New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 2010; 31:229-237.
    [29]Pankratov Y, Lalo U, Krishtal OA, et al. P2X receptors excitatory synaptic currents in somatosensory cortex. Mol Cell Neurosci 2003,24:842-849.
    [30]Surprenant A, North RA. Signaling at purinergic P2X receptors. Annu Rev Physiol 2009,71:333-359
    [31]Furuichi T, Furutama D, Hakamata Y, et al. Multiple types of ryanodine receptor/Ca+ release channels are differentially expressedin rabbit brain. J Neurosci 1994; 14:4794-4805.
    [32]Hakamata Y, Nakai J, Takeshima H, et al. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 1992; 312: 229-235.
    [33]Chavis P, Fagni L, Lansman J, et al. Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 1996,382:719-722.
    [34]Bezprozvanny I, Watras J, Ehrlich BE. Bell-shaped calcium response curves of Ins(1,4,5)P3 and calcium gated channels from endoplasmic reticulum of cerebellum. Nature 1991; 351:751-754.
    [35]Meissner G. Adenine nucleotide stimulation of Ca2+ induced Ca2+ release in sarcoplasmic reticulum. J Biol Chem 1984; 259:2365-2374.
    [36]Kawai T, Watanabe M. Effects of ryanodine on the spike after hyperpolarization in sympathetic neurones of the rat superior cervical ganglion. Pflugers Arch 1989; 413,470-475.
    [37]Breuer AC, Bond M, Atkinson MB. Fast axonal transport is modulated by altering trans axolemmal calcium flux. Cell Calcium 1992; 13:249-262.
    [38]Kohda K, Inoue T, Mikoshiba K. Ca2+ release from Ca2+ stores, particularly from ryanodine sensitive Ca2+ stores, is required forthe induction of LTD in cultured cerebellar Purkinje cells. J Neurophysiol 1995; 74:2184-2188.
    [39]Reyes M, Stanton PK. Induction of hippocampal long term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J Neurosci 1996; 16:5951-5960.
    [40]Futatsugi A, Kato K, Ogura H, et al. Facilitation of NMDAR independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron 1999; 24: 701-173.
    [41]Kouzu Y, Moriya T, Takeshima H, et al. Mutant mice lacking ryanodine receptor type 3 exhibit deficits of contextual fear conditioning and activation of calcium/calmodulin dependent protein kinase II in the hippocampus. Brain Res Mol Brain Res 2000,76: 142-150.
    [42]Foskett JK, White C, Cheung KH, et al. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007; 87:593-658.
    [43]Iwai M, Tateishi Y, Hattori M, et al. Molecular cloning of mouse type 2 and type3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J Biol Chem 2005; 280:10305-10317.
    [44]Bootman MD, Berridge MJ. Subcellular Ca+ signals underlying waves and graded responses in HeLa cells. Curr Biol 1996; 6:855-865.
    [45]Berridge MJ. Elementary and global aspects of calcium signaling. J Physiol 1997; 499: 291-306
    [46]Finch EA, Turner TJ, Goldin SM. Calcium as a coagonist of inositol 1,4,5-trisphospahte induced calcium release. Science 1991; 252:443-446.
    [47]Taylor CW, da Fonseca PC A, Morris EP. IP3 receptors:the search for structure. Trends Biochem Sci 2004; 29:210-219.
    [48]Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 2005; 85:201-279.
    [49]Nelson O, Tu H, Lei T, et al. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1. J Clin Invest 2007;117:1230-1239.
    [50]Annaert WG, Levesque L, Craessaerts K, et al. Presenilin 1 controls gamma secretase processing of amyloid precursor protein in pregolgi compartments of hippocampal neurons. J Cell Biol 1999,147:277-294.
    [51]De Strooper B, Annaert W. Novel research horizons for presenilins and secretases in cell biology and disease. Annu Rev Cell Dev Biol 2010; 26:235-260.
    [52]Stutzmann GE, Smith I, Caccamo A, et al. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer's disease mice. J Neurosci 2006; 26:5180-5189.
    [53]Cheung KH, Shineman D, Muller M, et al. Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron 2008; 58:871-883.
    [54]Green KN, Demuro A, Akbari Y, et al. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 2008; 181: 1107-1116.
    [55]Leissring MA, Akbari Y, Fanger CM, et al. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 2000; 149:793-798.
    [56]Szabadkai G, Bianchi K, Varnai P, et al. Chaperone mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 2006,175:901-911.
    [57]Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER mitochondrion interface regulate Ca2+ signaling and cell survival.Cell 2007; 131:596-610.
    [58]de Brito OM, Scorrano L. Mitofusin-2 regulates mitochondrial and endoplasmic reticulum morphology and tethering:the role of Ras. Mitochondrion 2009; 9:222-226.
    [59]Simmen T, Aslan JE, Blagoveshchen-skaya AD, et al. PACS-2 controls endoplasmic reticulum-mitochondria communication and BID mediated apoptosis. EMBO J 2005, 24:717-729.
    [60]Wang HJ, Guay G, Pogan L, et al. Calcium regulates the association between mitochondria and smooth subdomain of the endoplasmic reticulum. J Cell Biol 2000, 150:1489-1498.
    [61]Pitts KR, YoonY, Krueger EW, et al. The dynamin like protein DLPl isessential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Cell Biol 1999; 10:4403-4417.
    [62]Hansford RG. Control of mitochondrial substrate oxidation. Curr Top Bioenerg 1980; 10:217-278.
    [63]Beutner G, Sharma VK, Giovannucci DR, et al. Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 2001; 276:21482-21488.
    [64]Sparagna GC, Gunter KK, Sheu SS, et al. Mitochondrial calcium uptake from physiological type pulses of calcium A description of the rapid uptake mode. J Biol Chem 1995; 270:27510-27515.
    [65]Palty R, Silverman WF, Hershfinkel M, et al. NCLX is an essential component of mitochondrial Na+/Ca2+exchange. Proc Natl Acad Sci USA 2010; 107:436-441.
    [66]Rizzuto R, Marchi S, Bonora M, et al. Ca2+ transfer from the ER to the mitochondria: when, how, andwhy. Biochem Biophys Acta 2009; 1787:1342-1351.
    [67]Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 2009,46:821-831.
    [68]Leung AW, Halestrap AP. Recent progress in elucidating the molecular mechanism of them it ochondrial permeability transition. Biochim Biophys Acta 2008,1777:946-952.
    [69]Jiang D, Zhao L, Clapham DE. Genome wide RNAi screen identifies Letml as a mitochondrial Ca2+/H+ antiporter. Science 2009; 326:144-147.
    [70]Verstreken P, Ly CV, Venken KJ, et al. Synaptic mitochondria are critical form mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005; 47:365-378.
    [71]Ma H, Cai Q, Lu W, et al. KIF5B motor adaptor syntax bulin maintains synaptic transmission in sympathetic neurons. J Neurosci 2009; 41:13019-13029.
    [72]Tanaka D, Nakada K, Takao K, et al. Normal mitochondrial respiratory function is essential for spatial remote memory in mice. Mol Brain 2008; 16:1-21.
    [73]Weeber EJ, Levy M, Sampson MJ, et al. The role of mitochondrial porins and the pereability transition pore in learning and synaptic plasticity. J Biol Chem 2002,277: 18891-18897.
    [74]Santella L, Ercolano E, Lim D, et al. Activated M-phase-promoting factor (MPF) is exported from the nucleus of starfish oocytes to increase the sensitivity of the Ins(l,4,5)P3 receptors. Biochem Soc Trans 2003; 31:79-82.
    [75]Leite MF, Thrower EC, Echevarria W, et al. Nuclear and cytosolic calcium are regulated independently. Proc Natl Acad Sci USA 2003; 100:2975-2980.
    [76]Kumar V, Jong YJ, O'Malley, et al. Activated nuclear metabotropic glutamate receptor mGlu5 couples to nuclear Gq/11 proteins to generate inositol 1,4,5-trisphosphate-mediated nuclear Ca2+ release. J Biol Chem 2008; 283:14072-14083.
    [77]Echevarria W, Leite MF, GuerraMT, et al. Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 2003; 5:440-446.
    [78]Bezin S, Fossier P, Cancela JM, et al. Nucleoplasmic reticulum is not essential in nuclear calcium signalling mediated by cyclic ADP ribose in primary neurons. Pflugers Arch 2008b; 456:581-586.
    [79]Schermelleh L, Carlton PM, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 2008; 320: 1332-1336.
    [80]Fricker M, Hollinshead M, White N, et al. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane bound invaginations of the nuclear envelope. J Cell Biol 1997; 136:531-544.
    [81]Marius P, Guerra MT, Nathanson MH, et al. Calcium release from ryanodine receptors in the nucleoplasmic reticulum. Cell Calcium 2006; 39:65-73.
    [82]Kramer A, Ludwig Y, Shahin V, et al. A pathway separate from the central channel through the nuclear pore complex for inorganic ions and small macromolecules. J Biol Chem 2007; 282:31437-31443.
    [83]Wang H, Clapham DE. Conformational changes of the in situ nuclear pore complex. Biophys J 1999; 77:241-247
    [84]Greber UF, Gerace L. Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal mediated transport into the nucleus. J Cell Biol 1995; 128:5-14.
    [85]Greber UF, Senior A, Gerace L. A major glycoprotein of the nuclear pore complex is a membrane spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J 1990; 9:1495-1502.
    [86]Greber UF, Gerace L. Nuclear protein import is inhibited by an antibody to a lumenal epitope of a nuclear pore complex glycoprotein. J Cell Biol 1992; 116:15-30.
    [87]Wei X, Henke VG, Strubing C,et al. Real-time imaging of nuclear permeation by EGFP in single intact cells. Biophys J 2003; 84:1317-1327.
    [88]Stoffler D, Goldie KN, Feja B, et al. Calcium-mediated structural changes of native nuclear pore complexes monitored by timelapse atomic force microscopy. J Mol Biol 1999; 287:741-752.
    [89]Fox JL, Burgstahler AD, Nathanson MH. Mechanism of long range Ca2+ signalling in the nucleus of isolated rat hepatocytes. Biochem J 1997,326:491-495.
    [90]Chamero P, Villalobos C, Alonso MT, et al. Dampening of cytosolic Ca2+ oscillations on propagation to nucleus. J Biol Chem 2002,277:50226-50229.
    [91]Lipp P, Thomas D, Berridge MJ, et al. Nuclear calcium signalling by individual cytoplasmic calcium puffs. EMBO J 1997; 16:7166-7173.
    [92]Huh YH, Kim KD, Yoo SH, et al. Comparison of and chromogranin effect on inositol 1,4,5-trisphosphate sensitivity of cytoplasmic and nucleoplasmic inositol 1,4,5-trisphosphate receptor Ca2+ channels. Biochemistry 2007; 46:14032-14043.
    [93]Higazi DR, Fearnley CJ, Drawnel, et al. Endothelin-1 stimulated InsP3 induced Ca2+ release is a nexus for hypertrophic signaling in cardiac myocytes. Mol Cell 2009, 33:472-482.
    [94]Bootman MD, Collins TJ, Peppiatt CM, et al. Calcium signaling an overview. Semin Cell Dev Biol 2001; 12:3-10.
    [95]Vermassen E, Van Acker K, Annaert WG, et al. Microtubule-dependent redistribution of the type-1 inositol 1,4,5-trisphosphate receptor in A7r5 smooth muscle cells. J Cell Sci 2003; 116:1269-1277.
    [96]Luo D, Yang D, Lan X, et al. Nuclear Ca2+ sparks and waves mediated by inositol 1,4,5-trisphosphate receptors in neonatal rat cardiomyocytes. Cell Calcium 2008; 43:165-174.
    [97]Shirakawa H, Miyazaki S. Spatiotemporal analysis of calcium dynamics in the nucleus of hamster oocytes. J Physiol 1996; 494:29-40.
    [98]Allbritton NL, Oancea E, Kuhn M, et al. Source of nuclear calcium signals. Proc Natl Acad Sci USA 1994; 91:12458-12462.
    [99]Lui PP, Kong SK, Fung KP, et al. The rise of nuclear and cytosolic Ca2+can be uncoupled in HeLa cells. Pflugers Arch 1998,436:371-376.
    [100]Gomes DA, Rodrigues MA, Leite MF, et al. C-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 2008; 283:4344-4351.
    [101]Bootman MD, Harzheim D, Smyrnias I, et al. Temporal changes in atrial EC-coupling during prolonged stimulation with endothelin-1. Cell Calcium 2007; 42: 489-501.
    [102]Kockskamper J, Seidlmayer L, Walther S, et al. Endothelin-1 enhances nuclear Ca2+ transients in atrial myocytes through Ins(1,4,5)P3-dependent Ca2+ release from perinuclear Ca2+stores. J Cell Sci 2008a; 121:186-195.
    [103]Humbert JP, Matter N, Artault JC, et al. Inositol 1,4,5-trisphosphate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphosphate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes. J Biol Chem 1996; 271:478-485.
    [104]Bkaily G, Nader M, Avedanian L, et al. G-protein-coupled receptors, channels, and Na+ /H+ exchanger in nuclear membranes of heart, hepatic, vascular endothelial, and smooth muscle cells. Can J Physiol Pharmacol 2006; 84:431-441.
    [105]Disterhoft JF, Moyer JR, Thompson LT. The calcium rationale in aging and Alzheimer's disease. Evidence from an animal model of normal aging. Ann NY Acad Sci 1994; 747:382-406.
    [106]Khachaturian ZS. Calcium hypothesis of Alzheimer's disease and brain aging. Ann NY Acad Sci 1994; 747:1-11.
    [107]Gallagher M, Landfield PW, McEwen B, et al. Hippocampal neurodegeneration in aging. Science 1996; 25:484-485.
    [108]Thibault O, Hadley R, Landfield PW. Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons:relationship to impaired synaptic plasticity. J Neurosci 2001; 21,9744-9756.
    [109]Gant JC, Sama MM, Landfield PW, et al. Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+ induced Ca2+ release. J Neurosci 2006; 26:3482-3490.
    [110]Gao J, Yin D, Yao Y, et al. Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase. Biochemistry 1998; 37: 9536-9548.
    [111]Murchison D, Griffith WH. Age-related alterations incaffeine sensitive calcium stores and mitochondrial buffering in rat basa forebrain. Cell Calcium 1999; 25:439-452.
    [112]Murchison D, Zawieja DC, Grif-fith WH. Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium 2004,36: 61-75.
    [113]Foster TC, Sharrow KM, Messe JR, et al. Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci 2001,21:4066-4073
    [114]Nixon RA, Saito KI, Grynspan F, et al. Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer's disease. Ann NY Acad Sci 1994; 747:77-91.
    [115]Matthews EA, Linardakis JM, Disterhoft JF, et al. The fast andslow after hyperpolarizations are differentially modulated in hippocampal neurons by aging and learning. J Neurosci 2009; 29:4750-4755.
    [116]Ris L, Godaux E. Synapse specificity of long-term potentiation breaks down with aging. Learn Mem 2007; 14:185-189.
    [117]Lee HK, Min SS, Gallagher M, et al. NMDA receptor independent longterm depression correlates with successful aging in rats. Nat Neurosci 2005; 8:1657-1659.
    [118]Tonkikh A, Janus C, El Beheiry H, et al. Calcium chelation improves spatial learning and synaptic plasticity in aged rats. Exp Neurol 2006,197:291-300
    [119]Tonkikh AA, Carlen PL. Impaired presynaptic cytosolic and mitochondrial calcium dynamics inaged compared to young adult hippocampal CA1 synapses ameliorated by calcium chelation. Neuroscience 2009; 159:1300-1308.
    [120]Kowalska M, Disterhoft JF. Relation of nimodipine doseand serum concentration to learningenhancement in aging rabbits. Exp Neurol 1994; 127:159-166.
    [121]Ingram DK, Joseph JA, Spangler EL, et al. Chronic nimodipine treatment in aged rats: analysis of motor and cognitive effects and muscarinic induced striatal dopamine release. Neurobiol Aging 1994; 15:55-61.
    [122]Sandin M, Jasmin S, Levere TE. Aging and cognition:facil-itation of recent memory in aged nonhuman primates by nimodipine. Neurobiol Aging 1990; 11:573-575.
    [123]Ban TA, Morey L, Aguglia E, et al. Nimodipine in thetreatment of old age dementias Prog Neuropsychopharmacol Biol Psychiatry 1990; 14:525-551.
    [124]Michael JB. Calcium Signalling and Alzheimer's Disease. Neurochem Res 2011; 36:1149-1156
    [125]Berridge MJ. Calcium hypothesis of Alzheimer's disease.Pflu'gers Archiv Eur J Physiol 2010; 459:441-449
    [126]Kuchibhotla KV, Goldman ST, Lattarulo CR, et al. Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008; 59:214-225
    [127]Palop JJ, Jones B, Kekonius L, et al. Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer's disease-related cognitive deficits. Proc Natn Acad Sci 2003; 100:9572-9577
    [128]Derkach VA, Oh MC, Guire ES, et al. Regulatory mechanisms of AMPA receptors in synaptic. Nature Rev Neurosci Rev 2007; 8:101-113
    [129]Derkach VA, Oh MC, Guire ES, et al.Regulatory mechanisms of AMPA receptors in synaptic. Nature Rev Neurosci Rev 2007; 8:101-113
    [130]Hsieh H, Boehm J, Sato C, et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 2006; 52:831-843
    [131]Cingolani LA, Goda Y. Actin in action:the interplay between the actin cytoskeleton and synaptic efficacy. Nature Rev Neurosci 2008; 9:344-356
    [1]Christian JP, Jenna CC, Emily RR, et al. Protective actions of sex steroid hormones in alzheimer's disease. Front Neuroendocrinol 2009; 30(2):239-258
    [2]James WS, Evelyn P, Wang X, et al. The potential for estrogens in preventing Alzheimer's disease. Ther Adv Neurol Disord 2009; 2(1):31-49
    [3]Espeland MA, Rapp SR, Shumaker SA, et al. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women's Health Initiative Memory Study. JAMA 2004; 291:2959-68
    [4]Shumar SA, Legault C, Kuller L, et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women:Women's Health Initiative Memory Study. JAMA,2004; 291:2947-58
    [5]Ko SS, Jordan VC. Treatment of osteoporosis and reduction in risk of invasive breast cancer in postmenopausal women with raloxifene. Expert Opin Pharmacother 2011;12(4):657-74
    [6]Victor GV, Joseph PC, Wickerham DL, et, al. Update of the National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2 Trial:Preventing Breast Cancer. Cancer Prev Res,2010; 3:696-706
    [7]Blumenthal RS, Baranowski B, Dowsett SA. Cardiovascular effects of raloxifene:the arterial and venous systems. Am Heart J 2004; 147:783-789
    [8]Walsh BW, Kuller LH, Wild RA, et al. Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. JAMA 1998; 279:1445-1451
    [9]Simoncini T, Genazzani AR, Liao JK. Nongenomic mechanisms of endothelial nitric oxide synthase activation by the selective estrogen receptor modulator raloxifene. Circulation 2002; 105:1368-1373
    [10]Peter C, Lori M, Mary JG, et al. Effects of the selective estrogen receptor modulator raloxifene on coronary outcomes in the raloxifene use for the heart trial:results of subgroup analyses by age and other factors. Circulation 2009;119:922-930
    [11]Yuka K, Masahiko M, Satoshi Y, et al. Effects of raloxifene on the production of cytokines in stimulated whole blood in ex vivo and in vitro studies. The journal of medical investigation 2011; 58:110-117
    [12]Eli Lilly and Company:Evista prescribing information,2011.
    [13]Belandia B, Parker MG. Nuclear receptors:a rendez-vous for chromatin remodeling factors. Cell 2003; 114:277-280.
    [14]Klinge CM. Estrogen receptor interaction with coactivators and corepressors. Steroids 2000; 65:227-251
    [15]McKenna NP, O'Malley BO. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 2002; 108:465-474.
    [16]Bryant HU, Glasebrook AL, Yang NN, et al. An estrogen receptor basis for raloxifene action in bone. Journal of Steroid Biochemistry and Molecular Biology 1999; 69:37-44.
    [17]Cheskis BJ, Karathanasis S, Lyttle CR. Estrogen receptor ligands modulate its interaction with DNA. Journal of Biological Chemistry 1997; 272:11384-91.
    [18]Kelly MJ, Qiu J, Ronnekleiv OK. Estrogen signaling in the hypothalamus. Vitam Horm 2005; 71:123-145.
    [19]Kelly MJ, Ronnekleiv OK. Membrane initiated estrogen signaling in hypothalamic neurons. Mol Cell Endocrinol 2008; 290:14-23.
    [20]Hammes SR, Levin ER. Extra-nuclear steroid receptors:nature and actions, Endocr Rev 2007; 28:726-741.
    [21]Vasudevan N, Pfaff DW. Nongenomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 2008; 29:238-257.
    [22]Micevych PE, Mermelstein PG. Membrane estrogen receptors acting through metabotropic glutamate receptors:an emerging mechanism of estrogen action in brain. Mol Neurobiol 2008; 38:66-77.
    [23]Hirahara Y, Matsuda K, Gao W, et al. The localization and non-genomic function of the membrane associated estrogen receptor in oligodendrocytes. Glia 2009; 57:153-165.
    [24]Lydia LD, Inigo A, Luis M GS. Neuro-protective actions of selective estrogen receptor modulators. Psychoneuroendocrinology 2009; 34(S1):S113-S122
    [25]Anait SL, Craig J. The key to the antiestrogenic mechanism of raloxifene is amino acid 351(aspartate) in the estrogen receptor. Cancer research 1998; 58:1872-1875.
    [26]Mika G, Hisaya K, Keizo O, et al. Raloxifene induces nucleolar translocation of the estrogen receptor. Molecular and Cellular Endocrinology 2010; 319:14-22
    [27]Neill KO, Chen S, Brinton RD, et al. Impact of the selective estrogen receptor modulator, raloxifene, on neuronal survival and outgrowth following toxic insults associated with aging and Alzheimer's disease. Exp Neurol 2004; 185:63-80
    [28]Nilsen J, Mor G, Naftolin F, et al. Raloxifene induces neurite out-growth in estrogen receptor positive PC 12 cells. Menopause 1998; 5:211-216.
    [29]Abdelhamid R, Luo J, Vandevrede L, et al.Benzothiophene selective estrogen receptor modulators provide neuroprotection by a novel GPR30 dependent mechanism. ACS Chem Neurosci 2011; 2(5):256-268
    [30]Kokiko ON, Murashov AK, Hoane MR. Administration of raloxifene reduces sensorimotor and working memory deficits following traumatic brain injury. Behavioural Brain Research 2006;170:233-240.
    [31]McMurray R, Islamov R, Murashov AK. Raloxifene analog LY117018 enhances the regeneration of sciatic nerve in ovariectomized female mice. Brain Research 2003; 980:140-145.
    [32]Rossberg MI, Murphy SJ, Traystman RJ, et al. LY353381.HC1, a selective estrogen receptor modulator,and experimental stroke. Stroke 2000; 31:3041-3046.
    [33]Barrett-Connor E, Cox DA, Song J, et al. Raloxifene and risk for stroke based on the framingham stroke risk score. American Journal of Medicine 2009; 122:754-761.
    [34]Yaffe K, Krueger K, Cummings SR, et al. Effect of raloxifene on prevention of dementia and cognitive impairment in. older women:the multiple outcomes of raloxifene evaluation (MORE) randomized trial. American Journal of Psychiatry 2005,162:683-690.
    [35]Jacobsen DE, Samson MM, Emmelot-Vonk MH, et al.Raloxifene improves verbal memory in late postmenopausal women:a randomized, double-blind, placebo-controlled trial.Menopause 2010;17:309-314.
    [36]Goekoop R, Duschek EJ, Knol DL, et al. Raloxifene exposure enhances brain activation during memory performance in healthy elderly males; its possible relevance to behavior. Neurolmage 2005; 25:63-75.
    [37]Goekoop R, Barkhof F, Duschek EJ, et al. Raloxifene treatment enhances brain activation during recognition of familiar items:a pharmacological fMRI study in healthy elderly males. Neuropsychopharmacology 2006; 31:1508-18.
    [38]Walf AA, Frye CA. Raloxifene and/or estradiol decrease anxiety-like and depressive-like behavior, whereas only estradiol increases carcinogen-induced tumorigenesis and uterine proliferation among ovariectomized rats. Behavioural Pharmacology 2010; 21:231-240
    [39]Strickler R, Stovall DW, Merritt D, et al. Raloxifene and estrogen effects on quality of life in healthy postmenopausal women:a placebo controlled randomized trial. Obstetrics and Gynecology 2000; 96:359-365.
    [40]Florio P, Quirici B, Casarosa E, et al.Neuroendocrine effects of raloxifene hydrochloride in postmenopausal women. Gynecological Endocrinology 2001; 15;359-366.
    [41]Carranza-Lira S, MacGregor-Gooch AL, Sarachaga-Osterwalder M. Mood modifications with raloxifene and continuous estrogen plus progestin hormone therapy. International Journal of Fertility and Women's Medicine 2004; 49:120-122.
    [42]Sugiyama N, Sasayama D, Amano N. Remarkable antidepressant augmentation effect of raloxifene, a selective estrogen receptor modulator, in a partial responder to fluvoxamine: a case report. Journal of Clinical Psychiatry 2007; 68:636-637.
    [43]Kulkarni J, Gurvich C, Lee SJ, et al. Piloting the effective therapeutic dose of adjunctive selective estrogen receptor modulator treatment in postmenopausal women with schizophrenia.Psychoneuroendocrinology 2010; 35:1142-1147
    [44]X Wu, Glinn MA, Ostrowski NL, et al. Raloxifene and estradiol benzoate both fully restore hippocampal choline acetyltransferase activity in ovariectomized rats. Brain Research 1999; 847:98-104
    [45]Landry M, Levesque D, Di Paolo T. Estrogenic properties of raloxifene, but not tamoxifen, on D2 and D3 dopamine receptors in the rat forebrain. Neuroendocrinology 2002;76:214-222
    [46]Grandbois M, Morissette M, Callier S, et al. Ovarian steroids and raloxifene prevent MPTP-induced dopamine depletion in mice. Neuroreport 2000; 11:343-346.
    [47]Callier S, Morissette M, Grandbois M, et al. Neuroprotective properties of 17b-estradiol, progesterone, and raloxifene in MPTP C57B1/6 mice. Synapse 2001; 41:131-138
    [48]Morissette M, Al Sweidi S, Callier S, et al. Estrogen and SERM neuroprotection in animal models of Parkinson's disease.Molecular and Cellular Endocrinology 2008;290:60-69.
    [49]Cyr M, Landry M, Di Paolo T. Modulation by estrogen-receptor directed drugs of 5-hydroxytryptamine-2A receptors in rat brain.Neuropsychopharmacology 2000; 23:69-78.
    [50]Smith LJ, Henderson JA, Abell CW, et al. Effects of ovarian steroids and raloxifene on proteins that synthesize, transport, and degrade serotonin in the raphe region of macaques. Neuropsychopharmacology 2004; 29:2035-2045.
    [51]Michelle L, Therese DP. Effect of chronic estradiol, tamoxifen or raloxifene treatment on serotonin 5-HT1A receptor. Molecular Brain Research 2003;112:82-89
    [52]Sa'nchez MG, Bourque M, Morissette M, et al. Steroids-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neuroscience and Therapeutics 2010; 16:e43-e71.
    [53]Henderson JA, Bethea CL. Differential effects of ovarian steroids and raloxifene on serotonin 1A and 2C receptor protein expression in macaques. Endocine 2008; 33(33): 285-93
    [54]Florio P, Quirici B, Casarosa E, et al. Neuroendocrine effects of raloxifene hydrochloride in postmenopausal women. Gynecological Endocrinology 2001; 15:359-366.
    [55]Neele SJ, Evertz R, Genazzani AR, et al. Raloxifene treatment increases plasma levels of β-endorphin in postmenopausal women:a randomized, placebo-controlled study. Fertility and Sterility 2002; 77:1110-1117
    [56]Bernardi F, Pluchino N, Stomati M, et al. CNS:sex steroids and SERMs. Annals of the New York Academy of Sciences 2003; 997:378-388.
    [57]Genazzani AR, Lombardi I, Borgioli G, et al. Adrenal function under long-term raloxifene administration increases b-endorphin and tetrahydroprogesterone. Gynecological Endocrinology 2003;17:159-168.
    [58]Michel C, Marc M, Michelle L, et al.Estrogenic activity of tamoxifen and raloxifene on rat brain AMPA receptors.Neuroreport 2001;12(35):535-539
    [59]Michel C, Othman G, Caroline T, et al.Ovarian steroids and selective estrogen receptor modulators activity on rat brain NMDA and AMPA receptors. Brain Research Reviews 2001; 37:153-161
    [60]Biewenga E, Cabell L,Audesirk T. Estradiol and raloxifene protect cultured SN4741 neurons against oxidative stress.Neuroscience Letters 2005; 373:179-183.
    [61]Konyalioglu S, Durmaz G, Yalcin A.The potential antioxidant effect of raloxifene treatment: a study on heart, liver and brain cortex of ovariectomized female rats. Cell Biochemistry and Function 2007; 25:259-266.
    [62]Armagan G, Kanit L, Terek CM, et al. The levels of glutathione and nitrite-nitrate and the expression of Bcl-2 mRNA in ovariectomized rats treated by raloxifene against kainic acid. International Journal of Neuroscience 2009; 119:227-239.
    [63]Mert O, Aysin O, Ebru DS, et al. The effects of estrogen and raloxifene treatment on antioxidant enzymes in brain and liver of ovarectomized female rats. Endocrine Research 2003; 29(2):183-189.
    [64]CM Wong, LM Yung, FP Leung, et al. Raloxifene protects endothelial cell function against oxidative stress. British Journal of Pharmacology 2008;155,326-334
    [65]Du B, Ohmichi M, Takahashi K, et al. Both estrogen and raloxifene protect against β-amyloid-induced neurotoxicity in estrogen receptor a-transfected PC 12 cells by activation of telomerase activity via Akt cascade. Journal of Endocrinology 2004; 183:605-615.
    [66]Ciriza I, Carrero P, Azcoitia I, et al. Selective estrogen receptor modulators protect hippocampal neurons from kainic acid excitotoxicity:differences with the effect of estradiolJournal of Neurobiology 2004; 61:209-221.
    [67]Todorova VK, Kaufmann Y, Luo S,et al.Tamoxifene and raloxifene supress the proliferation of estrogen receptor negative cells through inhabition of glutamine uptake.Cancer Chemother pharmacal 2011;67(2):285-91
    [68]Hsieh YC, Yu HP, Suzuki T, et al. Upregulation of mitochondrial respiratory complex IV by estrogen receptor-beta is critical for inhibiting mitochondrial apoptotic signaling and restoring cardiac functions following trauma-hemorrhage. J Mol Cell Cardiol 2006; 41:511-521.
    [69]Schwend T, Gustafsson JA. False positives in MALDI-TOF detection of ERbeta in mitochondria. Biochem Biophys Res Commun 2006; 343:707-711.
    [70]Benvenuti S, Luciani P, Vannelli GB, et al. Estrogen and selective estrogen receptor modulators exert neuroprotective effects and stimulate the expression of selective Alzheimer's disease indicator-1, a recently discovered antiapoptotic gene, in human neuroblast long-term cell cultures. Journal of Clinical Endocrinology and Metabolism 2005; 90:1775-1782
    [71]Jun K, Masahide O, Toshifumi T, et al. Raloxifene inhibits estrogen-induced up-regulation of telomerase activity in a human breast cancer cell line.The Journal of Biological Chemistry 2003; 278(44):43363-72.
    [72]Jing Y, Masato E, Koichi K, et al. Raloxifene analogue LY117018 suppresses oxidative stress-induced endothelial cell apoptosis through activation of ERK1/2 signaling pathway. European Journal of Pharmacology 2008; 589:32-36
    [73]Drew PD, Chavis JA. Female sex steroids:effects upon microglial cell activation. J Neuroimmunol 2000; 111:77-85.
    [74]Vegeto E, Belcredito S, Ghisletti S, et al. The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation. Endocrinology 2006; 147:2263-2272.
    [75]Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 2008; 29:507-519.
    [76]Lei DL, Long JM, Hengemihle J, et al. Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice. Neuroscience 2003; 121:659-666.
    [77]Suuronen T, Nuutinen T, Huuskonen J, et al. Anti-inflammatory effect of selective estrogen receptor modulators (SERMs) in microglial cells. Inflammation Research 2005; 54:194-203.
    [78]Tapia-Gonzalez S, Carrero P, Pernia O, et al. Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo afte r peripheral inflammation:potential role of microglial ERs. Journal of Endocrinology 2008; 198:219-230.
    [79]Cerciat M, Unkila M, Garcia-Segura LM, et al. Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-g-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro. Glia 2010; 58:93-102.
    [80]Barreto G, Santos-Galindo M, Diz-Chaves Y, et al. Selective estrogen receptormodulators decrease reactive astrogliosis in the injured brain:effects of aging and prolonged depletion of ovarian hormones. Endocrinology 2009;150:5010-15.
    [81]Garcia-Ovejero D, Azcoitia I, DonCarlos LL, et al. Glia-neuron crosstalk in the neuroprotective mechanisms of sex steroid hormones. Brain Res Rev 2005; 48:273-286.
    [82]韩济生.神经科学(第三卷.北京:北京大学出版社,2009:311
    [83]Y Huang, YL Huang, B Lai, et al. Raloxifene acutely reduces glutamate induced intracellular calcium increase in culture rat cortical neurons via inhibition of high-voltage activated cacium current. Neuroscience 2007; 147:334-441.
    [84]Suk-Ying T, Xiaoqiang Y, Kirill E, et al. Raloxifene relaxes rat cerebral arteries In vitro and inhibits L-type voltage-sensitive Ca2+ Channels. Stroke 2004; 35:1709-1714
    [85]Yau CC, Fung PL, Wing TW, et al. Therapeutically relevant concentrations of raloxifene dilate pressurized rat resistance arteries via calcium-dependent endothelial nitric oxide synthase activation.Arterioscler Thromb Vasc Biol.2010;30:992-999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700