核修饰基因MTO2/TRMU调控酵母P~R_(454)突变相关的氨基糖苷类抗生素敏感性及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线粒体12S rRNA基因A1555G突变是引起母系遗传性非综合症耳聋的重要原因,但是仅有A1555G突变不足以导致耳聋,耳聋表型的形成还与核修饰基因、环境因子、线粒体基因组单体型等多种因素相关。当前研究大多集中在分析环境因子或核基因等单一因素对A1555G突变的影响,而多个因素之间的协同作用机制尚不清楚。本论文以酿酒酵母为模式生物,综合分析了核修饰基因MT02/TRMU,线粒体PR454突变(与人A1555G突变同源)与氨基糖苷类抗生素三者之间的相互作用。
     本实验室前期工作发现,在携带A1555G突变的淋巴细胞中,核修饰基因TRMU的G28T突变(A10S)能显著抑制细胞对氨基糖苷类抗生素的敏感性。本论文利用携带线粒体15SrRNAPR454突变的酿酒酵母菌株,构建了MT02基因(与人TRMU基因同源)敲除模型,并分析了氨基糖苷类抗生素对携带PR454突变酵母菌株的影响以及核修饰基因MT02的作用。研究发现MT02基因敲除能显著抑制携带PR454突变酵母菌株对氨基糖苷类抗生素的敏感性,并深入分析了形成这一表型的机制。通过检测线粒体呼吸速率、线粒体膜电位、酵母菌株的抗生素摄入量、抗生素抗性基因表达以及能量代谢等指标,发现经抗生素处理后,携带PR454突变的酵母菌株的线粒体功能被抑制,但是MT02基因敲除使携PR454突变酵母菌株中糖酵解的关键调控基因已糖激酶、磷酸果糖激酶、丙酮酸脱氢酶的表达水平显著上调,这一变化降低了酿酒酵母对线粒体功能的依赖性,并使菌株对抗生素的敏感性下降。
     将人TRMUcDNA转化至同时携带线粒体PR454突变与MT02基因敲除的酿酒酵母mto2(PR)菌株中进行异源表达,结果显示TRMU基因能在酵母线粒体中特异性表达,并不同程度地恢复该菌株的线粒体功能。研究发现,与TRMU野生型转化菌株相比,TRMU A1OS突变型转化菌株对氨基糖苷类抗生素的敏感性更低,而且TRMU A1OS突变型转化菌株的线粒体功能几乎不受抗生素影响。
     本论文发现核修饰基因MTO2/TRMU能够调控线粒体PR454(A1555G)突变相关的氨基糖苷类抗生素敏感性,并系统研究了其分子机制。研究结果为阐明人TRMU基因调控A1555G突变相关的抗生素敏感性提供了借鉴,并可为研究核基因、线粒体基因、环境因素三者之间的相互作用提供参考。
Mitochondrial DNA (mtDNA) mutation is one of the most important factors leading to sensorineural hearing loss. Mitochondrial12S rRNA A1555G mutation is associated with both aminoglycoside-induced and non-syndromic deafness. However, the phenotypic expression of population carrying A1555G mutation is often found to be pleiotropic, ranging from severe deafness to normal hearing. This indicates that modifier factors including nuclear genes, mitochondrial haplotype and ototoxic drugs could affect the phenotypic manifestation of A1555G mutation. Using yeast Saccharomyces cerevisiae as a model system, we investigated the crosstalk among mitochondrial PR454mutation (corresponding to human A1555G mutation), nuclear modifier MTO2/TRMU and aminoglycosides, as well as their combined effects on mitochondrial and cellular function.
     Our previous work found that G28T mutation (A1OS) in TRMU gene could suppress aminoglycoside antibiotic sensitivity in lymphocytes carrying mitochondrial A1555G mutation. Yeast model was constructed by deleting TRMU homolog MT02gene from a strain carrying mitochondrial15S rRNA PR454mutation. We analyzed the effects of aminoglycosides on yeast carrying PR454mutation, and the role of nuclear modifier MTO2was also investigated. Phenotypic expression indicated that deletion of nuclear gene MT02suppressed aminoglycoside antibiotic sensitivity in-yeast carrying PR454mutation, and the underlying molecular mechanism was further analyzed. Biochemical function of cell and mitochondria including respiratory rate, mitochondrial membrane potential, antibiotic intake, expression level of drug resistance gene and energy metabolism were tested. Results showed that mitochondrial function in PR454mutant was impaired by aminoglycosides. Noticeably, deletion of MTO2from PR454mutant strain enhanced the expression levels of HXK2, PFK1and PYK1which regulating the glycolytic pathway. We proposed this independence of mitochondrial function and accelerated glycolysis made this strain less sensitive to aminoglycosides.
     Yeast strains expressing human TRMU gene were obtained by transforming TRMU cDNA into mto2(PR). Human TRMU gene was specifically expressed in yeast mitochondria, and trmu could be functionally complementary with yeast mto2p. Interestingly, yeast transformed with TRMU A1OS mutant cDNA was less sensitive to neomycin when compared with the TRMU wild-type transformant. However, functional analysis showed the mechanism that TRMU gene regulating neomycin sensitivity was different from yeast MTO2, and mitochondrial dysfunction had not been observed in yeast transformed with TRMU AlOS mutant cDNA. We also analyzed this difference and suggested a potential model to explain the phenomenon.
     Current study discovered a novel function of MT02/TRMU gene in regulating aminoglycoside sensitivity caused by mitochondrial (A1555G) mutation, and the crosstalk among nuclear modifier gene, mtDNA mutation and environmental factors was elucidated. Meanwhile, these results provided new insights for the study of human nuclear modifier TRMU.
引文
1. Wallace, D.C., A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer:a dawn for evolutionary medicine. Annu Rev Genet,2005.39:p.359-407.
    2. Wallace, D.C., W. Fan, and V. Procaccio, Mitochondrial energetics and therapeutics. Annu Rev Pathol, 2010.5:p.297-348.
    3. Liu, Y., et al., Mitochondrial transfer RNAMet 4435A>G mutation is associated with maternally inherited hypertension in a Chinese pedigree. Hypertension,2009.53(6):p.1083-90.
    4. Guan, M.X., et al., Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations. Am J Hum Genet, 2006.79(2):p.291-302.
    5. Ryan, M.T. and N.J. Hoogenraad, Mitochondrial-nuclear communications. Annu Rev Biochem,2007.76: p.701-22.
    6. Fischel-Ghodsian, N., et al., Mitochondrial ribosomal RNA gene mutation in a patient with sporadic aminoglycoside ototoxicity. Am J Otolaryngol,1993.14(6):p.399-403.
    7. Wallace, D.C., et al., Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science,1988.242(4884):p.1427-30.
    8. Cree, L.M., D.C. Samuels, and P.F. Chinnery, The inheritance of pathogenic mitochondrial DNA mutations. Biochim Biophys Acta,2009.1792(12):p.1097-102.
    9. Elliott, H.R., et al., Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet,2008.83(2):p.254-60.
    10. Taylor, R.W. and D.M. Tumbull, Mitochondrial DNA mutations in human disease. Nat Rev Genet,2005. 6(5):p.389-402.
    11. DiMauro, S. and E.A. Schon, Mitochondrial DNA mutations in human disease. Am J Med Genet,2001. 106(1):p.18-26.
    12. Kokotas, H., M.B. Petersen, and P.J. Willems, Mitochondrial deafness. Clin Genet,2007.71(5):p.379-91.
    13. Malik, S.G., et al., Prevalence of the mitochondrial DNA A1555G mutation in sensorineural deafness patients in island Southeast Asia. J Hum Genet,2003.48(9):p.480-3.
    14. Hu, D.N., et al., Genetic aspects of antibiotic induced deafness:mitochondrial inheritance. J Med Genet, 1991.28(2):p.79-83.
    15. Prezant, T.R., et al., Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet,1993.4(3):p.289-94.
    16. Hutchin, T., et al., A molecular basis for human hypersensitivity to aminoglycoside antibiotics. Nucleic Acids Res,1993.21(18):p.4174-9.
    17. Santorelli, F.M., et al., Maternally inherited cardiomyopathy:an atypical presentation of the mtDNA 12S rRNA gene A1555G mutation. Am J Hum Genet,1999.64(1):p.295-300.
    18. Vandebona, H., et al., Prevalence of mitochondrial 1555A→G mutation in adults of European descent. N Engl J Med,2009.360(6):p.642-4.
    19. Bitner-Glindzicz, M., et al., Prevalence of mitochondrial 1555A→G mutation in European children. N Engl J Med,2009.360(6):p.640-2.
    20. Rahman, S., et al., Hearing in 44-45 year olds with m.1555A> G, a genetic mutation predisposing to aminoglycoside-induced deafness:a population based cohort study. BMJ Open,2012.2:p. e000411.
    21. Gravina, L.P., et al., Carrier frequency of the 35delG and A1555G deafness mutations in the Argentinean population. Impact on the newborn hearing screening. Int J Pediatr Otorhinolaryngol,2007.71(4):p. 639-43.
    22. Lu, J., et al., Mitochondrial 12S rRNA variants in 1642 Han Chinese pediatric subjects with aminoglycoside-induced and nonsyndromic hearing loss. Mitochondrion,2010.10(4):p.380-90.
    23. Pandya, A., et al., Mutation in the mitochondrial 12S rRNA gene in two families from Mongolia with matrilineal aminoglycoside ototoxicity. J Med Genet,1997.34(2):p.169-72.
    24. Hutchin, T.P., et al., Association of a Particular Point Mutation of the Mitochondrial-DNA with Aminoglycoside-Induced Deafness. American Journal of Human Genetics,1993.53(3):p.20-20.
    25. Berrettini, S., et al., Mitochondrial non-syndromic sensorineural hearing loss:a clinical, audiological and pathological study from Italy, and revision of the literature. Biosci Rep,2008.28(1):p.49-59.
    26. Kokotas, H., et al., The A1555G mitochondrial DNA mutation in Greek patients with non-syndromic, sensorineural hearing loss. Biochem Biophys Res Commun,2009.390(3):p.755-7.
    27. Abreu-Silva, R.S., et al., Prevalence of the A1555G (12S rRNA) and tRNASer(UCN) mitochondrial mutations in hearing-impaired Brazilian patients. Braz J Med Biol Res,2006.39(2):p.219-26.
    28. Rydzanicz, M., et al., Mutation analysis of mitochondrial 12S rRNA gene in Polish patients with non-syndromic and aminoglycoside-induced hearing loss. Biochem Biophys Res Commun,2010.395(1): p.116-21.
    29. Lehtonen, M.S., et al., Frequency of mitochondrial DNA point mutations among patients with familial sensorineural hearing impairment. European Journal of Human Genetics,2000.8(4):p.315-318.
    30. Usami, S., et al., Prevalence of mitochondrial gene mutations among hearing impaired patients. Journal of Medical Genetics,2000.37(1):p.38-40.
    31. Liu, X., et al., [Large-scale screening of mtDNA A1555G mutation in China and its significance in prevention of aminoglycoside antibiotic induced deafness]. Zhonghua Yi Xue Za Zhi,2006.86(19):p. 1318-22.
    32. Liu, X.W., et al., [Mitochondrial DNA A1555G mutation analysis in 802 nonsyndromic hearing impairment patients]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2007.42(10):p.739-42.
    33. Zhu, Q., et al., [Molecular etiology of 573 patients with nonsyndromic hearing loss in 5 provinces of northwest region of China]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2007.21(10):p.460-2.
    34. Shen, Z., et al., Frequency and spectrum of mitochondrial 12S rRNA variants in 440 Han Chinese hearing impaired pediatric subjects from two otology clinics. J Transl Med,2011.9:p.4.
    35. Estivill, X., et al., Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment ofaminoglycosides. Am J Hum Genet,1998.62(1):p.27-35.
    36. Guan, M.X., N. Fischel-Ghodsian, and G. Attardi, Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation. Hum Mol Genet, 1996.5(7):p.963-71.
    37. Guan, M.X., N. Fischel-Ghodsian, and G. Attardi, Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation. Hum Mol Genet,2001.10(6):p.573-80.
    38. Dai, D., et al., Co-segregation of the T1095C with the A1555G mutation of the mitochondrial 12S rRNA gene in a patient with non-syndromic hearing loss. Biochem Biophys Res Commun,2008.377(4):p. 1152-5.
    39. Chen, B., et al., Mitochondrial ND5 T12338C, tRNA(Cys) T5802C, and tRNA(Thr) G15927A variants may have a modifying role in the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese pedigrees. Am J Med Genet A,2008.146A(10):p.1248-58.
    40. Zhao, H., et al., Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet,2004.74(1):p.139-52.
    41. Magnet, S. and J.S. Blanchard, Molecular insights into aminoglycoside action and resistance. Chemical Reviews,2005.105(2):p.477-497.
    42. Karimi, R. and M. Ehrenberg, Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur J Biochem,1994.226(2):p.355-60.
    43. Fourmy, D., M.I. Recht, and J.D. Puglisi, Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S rRNA. J Mol Biol,1998.277(2):p.347-62.
    44. Hobbie, S.N., et al., Binding of neomycin-class aminoglycoside antibiotics to mutant ribosomes with alterations in the A site of 16S rRNA. Antimicrob Agents Chemother,2006.50(4):p.1489-96.
    45. Feldman, M.B., et al., Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol,2010.6(3):p.244.
    46. Schroeder, R., C. Waldsich, and H. Wank, Modulation of RNA function by aminoglycoside antibiotics. EMBO J,2000.19(1):p.1-9.
    47. Qian, Y. and M.X. Guan, Interaction of aminoglycosides with human mitochondrial 12S rRNA carrying the deafness-associated mutation. Antimicrob Agents Chemother,2009.53(11):p.4612-8.
    48. Suzuki, T. and A. Nagao, Human mitochondrial tRNAs:biogenesis, function, structural aspects, and diseases. Annu Rev Genet,2011.45:p.299-329.
    49. Suzuki, T. and A. Nagao, Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip Rev RNA,2011.2(3):p.376-86.
    50. Yan, Q., et al., Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations. Biochem Biophys Res Commun, 2006.342(4):p.1130-6.
    51. Yan, Q., et al., Mutations in MTO2 related to tRNA modification impair mitochondrial gene expression and protein synthesis in the presence of a paromomycin resistance mutation in mitochondrial 15 S rRNA. J Biol Chem,2005.280(32):p.29151-7.
    52. Numata, T., et al., Snapshots of tRNA sulphuration via an adenylated intermediate. Nature,2006. 442(7101):p.419-24.
    53. Sasarman, F., et al., The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Hum Mol Genet,2011.20(23):p.4634-43.
    54. Lill, R. and U. Muhlenhoff, Maturation of iron-sulfur proteins in eukaryotes:mechanisms, connected processes, and diseases. Annu Rev Biochem,2008.77:p.669-700.
    55. Zeharia, A., et al., Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet,2009. 85(3):p.401-7.
    56. Schara, U., et al., Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations. J Inherit Metab Dis,2011.34(1):p.197-201.
    57. Kemp, J.P., et al., Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency. Brain,2011.134(Pt 1):p.183-95.
    58. Smits, P., J. Smeitink, and L. van den Heuvel, Mitochondrial translation and beyond:processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol,2010.2010:p.737385.
    59. Jacobs, H.T. and D.M. Turnbull, Nuclear genes and mitochondrial translation:a new class of genetic disease. Trends Genet,2005.21(6):p.312-4.
    60. McCulloch, V., B.L. Seidel-Rogol, and G.S. Shadel, A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol Cell Biol,2002.22(4):p. 1116-25.
    61. Bykhovskaya, Y., et al., Human mitochondrial transcription factor Bl as a modifier gene for hearing loss associated with the mitochondrial A1555G mutation. Mol Genet Metab,2004.82(1):p.27-32.
    62. Cotney, J., S.E. McKay, and G.S. Shadel, Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet,2009.18(14):p. 2670-82.
    63. Raimundo, N., et al., Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell,2012. 148(4):p.716-26.
    64. Costanzo, M.C. and T.D. Fox, Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet,1990.24:p.91-113.
    65. Tzagoloff, A. and A.M. Myers, Genetics of mitochondrial biogenesis. Annu Rev Biochem,1986.55:p. 249-85.
    66. Lemaire, C. and G. Dujardin, Preparation of respiratory chain complexes from Saccharomyces cerevisiae wild-type and mutant mitochondria:activity measurement and subunit composition analysis. Methods Mol Biol,2008.432:p.65-81.
    67. Li, M., et al., Identification of the paromomycin-resistance mutation in the 15 S rRNA gene of yeast mitochondria. J Biol Chem,1982.257(10):p.5921-8.
    68. Kutzleb, R., R.J. Schweyen, and F. Kaudewitz, Extrachromosomal inheritance ofparomomycin resistance in Saccharomyces cerevisiae. Genetic and biochemical characterization of mutants. Mol Gen Genet,1973. 125(1):p.91-8.
    69. Weiss-Brummer, B. and A. Huttenhofer, The paromomycin resistance mutation (parr-454) in the 15 S rRNA gene of the yeast Saccharomyces cerevisiae is involved in ribosomal frameshifting. Mol Gen Genet, 1989.217(2-3):p.362-9.
    70. Colby, G., M. Wu, and A. Tzagoloff, MTOl codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J Biol Chem,1998.273(43):p.27945-52.
    71. Li, X., et al., Isolation and characterization of the putative nuclear modifier gene MTOl involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation. J Biol Chem,2002. 277(30):p.27256-64.
    72. Decoster, E., A. Vassal, and G. Faye, MSSl, a nuclear-encoded mitochondrial GTPase involved in the expression of COXl subunit of cytochrome c oxidase. J Mol Biol,1993.232(1):p.79-88.
    73. Umeda, N., et al., Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. J Biol Chem,2005.280(2):p.1613-24.
    74. Bonnet, D., et al., Heart transplantation in children with mitochondrial cardiomyopathy. Heart,2001. 86(5):p.570-3.
    75. Adhya, S., et al., Mitochondrial gene therapy:The tortuous path from bench to bedside. Mitochondrion, 2011.11(6):p.839-44.
    76. de Grey, A.D., Mitochondrial gene therapy:an arena for the biomedical use of inteins. Trends Biotechnol, 2000.18(9):p.394-9.
    77. Manfredi, G., et al., Rescue of a deficiency in ATP synthesis by transfer ofMTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet,2002.30(4):p.394-9.
    78. Tanaka, M., et al., Gene therapy for mitochondrial disease by delivering restriction endonuclease Smal into mitochondria. J Biomed Sci,2002.9(6 Pt 1):p.534-41.
    79. Yang, A.F., et al., [Modifier factors influencing the phenotypic manifestation of the deafness associated mitochondrial DNA mutations]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi,2011.28(2):p.165-71.
    80. Bykhovskaya, Y., E. Mengesha, and N. Fischel-Ghodsian, Phenotypic expression of maternally inherited deafness is affected by RNA modification and cytoplasmic ribosomal proteins. Mol Genet Metab,2009. 97(4):p.297-304.
    81. Wang, Y., U. Singh, and D.M. Mueller, Mitochondrial genome integrity mutations uncouple the yeast Saccharomyces cerevisiae ATP synthase. J Biol Chem,2007.282(11):p.8228-36.
    82. Hunte, C., H. Palsdottir, and B.L. Trumpower, Protonmotive pathways and mechanisms in the cytochrome bcl complex. FEBS Lett,2003.545(1):p.39-46.
    83. Brandt, U., et al., Isolation and characterization of QCR1O, the nuclear gene encoding the 8.5-kDa subunit 10 of the Saccharomyces cerevisiae cytochrome bcl complex. J Biol Chem,1994.269(17):p.12947-53.
    84. Hua, Z. and T.R. Graham, Requirement for neolp in retrograde transport from the Golgi complex to the endoplasmic reticulum. Mol Biol Cell,2003.14(12):p.4971-83.
    85. Kondo, J. and E. Westhof, The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates. Nucleic Acids Res,2008.36(8):p.2654-66.
    86. Prezant, T.R., W.E. Chaltraw, Jr., and N. Fischel-Ghodsian, Identification of an overexpressed yeast gene which prevents aminoglycoside toxicity. Microbiology,1996.142 (Pt 12):p.3407-14.
    87. Farabaugh, P.J., Programmed translational frameshifting. Microbiol Rev,1996.60(1):p.103-34.
    88. Farabaugh, P.J., Programmed translational frameshifting. Annu Rev Genet,1996.30:p.507-28.
    89. Wang, X., Q. Yan, and M.X. Guan, Deletion of the MT02 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS Lett,2007. 581(22):p.4228-34.
    90. Urbonavicius, J., et al., Transfer RNA modifications that alter+1 frameshifting in general fail to affect-1 frameshifting. RNA,2003.9(6):p.760-8.
    91. Ogle, J.M. and V. Ramakrishnan, Structural insights into translational fidelity. Annu Rev Biochem,2005. 74:p.129-77.
    92. Otaegui, D., et al., Molecular characterization of putative modulatory factors in two Spanish families with A1555G deafness. Audiol Neurootol,2008.13(5):p.320-7.
    93. Human, H., et al., A South African family with the mitochondrial A1555G mutation on haplogroup LOd. Biochem Biophys Res Commun,2009.382(2):p.390-4.
    94. Young, W.Y., et al., Extremely low penetrance of hearing loss in four Chinese families with the mitochondrial 12S rRNA A1555G mutation. Biochem Biophys Res Commun,2005.328(4):p.1244-51.
    95. de Moraes, V.C., et al., Study of modifiers factors associated to mitochondrial mutations in individuals with hearing impairment. Biochem Biophys Res Commun,2009.381(2):p.210-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700